用户名: 密码: 验证码:
热泵系统用R744混合工质特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HCFC22是目前国内热泵系统中最常用的工质,但HCFC22对环境有危害(ODP=0.05,GWP=1810)。随着环保要求的提高,开始采用替代工质HFC134a、HFC410A和HFC407C等。这些替代工质的ODP为零,但GWP还比较高,国内外在不断探寻更环保的替代工质。自然工质R744(C02)因此重新得到启用,发达国家已进入实用阶段,我国尚未实现商品化。当前使用的R744热泵存在着一些问题,如放热侧压力较高。本课题以R744为基本组分,混入适量其他工质,可望降低系统放热侧压力,并改善热泵循环性能。
     根据文献调研,目前对R744混合工质的研究主要集中在(自)复叠式低温制冷和空调系统,R744混合工质用于热泵系统的研究还处在起步阶段,针对这类热泵系统更加深入的理论与试验研究亟待开展。在课题组对R744单一工质热泵系统研究的基础上,围绕R744混合工质第二组分工质的优选与R744混合工质在热泵工况下的系统性能,本课题主要做了以下研究:
     (1)针对特定供热温度的热泵系统,根据环境性能、安全性能、降低运行压力性能、温度滑移性能等方面的优劣,对适合与R744混合的第二组分工质进行筛选,得出备选组分工质及适合采用的循环方式。基于传热窄点温差,建立混合工质热泵循环的计算模型,对不同R744混合工质亚临界、跨临界循环的工作特性进行计算和分析,综合考虑制热COPh、最优压力、容积制热量、排气温度、易燃易爆性等因素,得出R744和R290为最优的制冷工质组合。
     (2)通过对不同配比R744/R290自然混合工质的环境性能、安全性能、温度滑移性能、热力学性能及热泵循环性能的分析,得到合适的质量配比范围为80/20~100/0,并分析过热度和回热器的效果以使热泵系统具有较高的COPh。
     (3)设计并建立跨临界循环热泵试验装置,将R744和R290按不同质量配比混合后进行试验研究,探索循环性能随组分工质配比、制冷工质充注量的变化规律,得出不同配比的最佳充注量。最终得到R744/R290混合工质的最优质量配比为95/5,在此最优配比条件下,最优放热侧压力降低,系统COPh提高。试验结果验证了理论分析选择R744/R290自然混合工质的可行性。所得到的试验结果,为R744/R290热泵装置进一步优化和完善提供有益的参考。
     (4)针对优选配比95/5的R744/R290混合工质,分别采用理论模拟和试验研究的方法对最优压力的影响因子进行研究。首先建立基本循环热力学模型,分析影响R744/R290混合工质最优放热侧压力的因素,并对模拟结果进行回归分析,得到最优压力和显著影响因子之间的函数关系式,然后通过试验研究验证了气冷器出口制冷工质温度是最优压力的最显著影响因子。
Nowadays, HCFC22 is the mainly used refrigerant in China for heat pump systems, despite the fact it is harmful to the environment (ODP=0.05, GWP=1810). With the stricter environmental protection requirements imposed, alternatives, such as HFC 134a, HFC410A and HFC407C, have been gradually taking its place. These alternatives have the zero ODP; however, they still belong to high GWP gases, which leads to the never-ending researches at home and abroad for more environmentally friendly replacements. Therefore, the natural working fluid R744 (or CO2) has regained a new life in heat pump applications, and in fact it has already been commercialized in some developed countries, but still in research and development phase in mainland China. The reason is that there are still some problems with the currently used R744 heat pump, such as the high heat rejection pressure. In this research, in order to decrease the heat rejection pressure, and increase the system efficiency as well, R744 as the basic component is mixed with other working fluid in an appropriate amount.
     According to the literature on R744 mixtures, the current studies have been mainly aimed at the cascade or autocascade refrigeration system for low temperature and the cooling performance for air conditioning system. The investigations on the heating perfonnance of heat pump using R744 mixtures as refrigerants, especially for experimental studies, are still scarce and at the initial stage in the published literature. More theoretical and experimental researches on R744 mixtures should be carried out. Based on the researches carried out by our team on the heat pump system using single component R744 as a refrigerant, this project focuses on a second component working fluid selection, heat pump system characteristics using R744 mixtures. And this thesis focuses on the following elements:
     (1) For heat pump with specific temperature for heating, the second component fluid which is suitable to mix with R744 is selected according to the fluids' environmental performance, safety performance, reduced heat rejection pressure and temperature glide properties. The suitable component candidates and the suitable cycles are given. Based on the pinch point of heat transfer, the numerical models of heat pump cycle using R744-based mixture are developed. For different R744 mixture candidates, the operation characteristics in subcritical cycle and transcritical cycle are calculated and discussed. Based on a comprehensive consideration of COPh, optimum heat rejection pressure, volumetric heating capacity, discharge temperature, flammability and explosive property, the binary mixture R744/R290 is determined as the best working fluid for specific heat pump application.
     (2) For R744/R290 with different mass fraction, it discusses respectively how the R744 varies with the mass fraction of R744 based mixture's performance, safety performance, temperature glide property, physico-chemical properties and heat pump cycle performance. And the optimum mass fraction range of 80/20~100/0 for R744/R290 is obtained, and the influences of superheating degree and internal heat exchanger are analyzed to achieve a high COPh.
     (3) The experimental testrig is designed and set up for the transcritical cycle for heat pump system. The experimental researches with different R744 mass fraction are carried out, which conduct a study on the variations of heat pump performance, component's mass fraction and working fluid charge. The optimum working fluid charges for different mass fraction are given, and the optimum mass fraction of R744/R290 is found to be 95/5, with which the optimum heat rejection pressure is decreased while COPh of the system is increased. The experimental results validated the R744/R290 natural mixture proposed in theory. The experimental results provide useful reference on the optimization and improvement of R744/R290 heat pump testrig.
     (4) For R744/R290 with optimum mass fraction of 95/5, the influences of operation parameters on the optimum heat rejection pressure are discussed by the theoretical simulation and experimental research. The thermodynamic model for the basic cycle is proposed to study the property which will influence on the optimum heat rejection pressure. A regression analysis to the simulation results is made and then the correlation of the optimal heat rejection pressures in terms of main influencing parameters is developed. Then through experimental researches, the working fluid temperature at the exit of gas cooler is validated to be the main impact factor for the optimum heat rejection pressure.
引文
[1]吴华根,束鹏程,邢子文.采用替代工质的空气源热泵性能实验研究[J].暖通空调,2006,36(1):60-62,54.
    [2]Calm J M, Hourahan G C. Refrigerant data update[J]. Heating/Piping/Air Conditioning Engineering,2007,79 (1):50-64.
    [3]Lorentzen G. The use of natural refrigerants:a complete solution to the CFC/HCFC predicament[J]. Int JRefrig,1995,18 (3):190-197.
    [4]Kim M H, Pettersen J, Bullard C W. Fundamental process and system design issues in CO2 vapor compression systems[J]. Progress in Energy and Combustion Science,2004, 30(2):119-174.
    [5]李兆坚,江亿.我国广义建筑能耗状况的分析与思考[J].建筑学报,2006,7:30-33.
    [6]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2026年)[EB/OL]. http://www.gov.cn/jrzg/2006-02/09/content_183787.htm,2006-02-09.
    [7]国家能源局发展规划司.“十二五”能源规划前期重大问题研究选题指南[EB/OL]. http://www.ndrc.gov.cn/tztg/W020090827517961453746.doc,2009-08-27.
    [8]International Energy Agency (IEA). World Energy Outlook 2009[EB/OL]. http://www.iea.org/textbase/npsum/weo2009sum.pdf, Nov 2009.
    [9]阎康年.热力学史[M].济南:山东科学技术出版社,1989.
    [10]Cube H L V, Steimle F热泵的理论与实践[M].王子介译.北京:中国建筑工业出版社,1986.
    [11]Ball D A, Fischer R D, Hodgett D L. Design methods for ground-source heat pumps[J]. ASHRAE Trans,1983,89 (2B):416-440.
    [12]徐坚.地源热泵U型埋管换热器的变周期模型研究[D].杭州:浙江大学,2010.
    [13]Phetteplace G, Sullivan W. Performance of a hybrid ground-coupled heat pump system[J]. ASHRAE Trans,1998,104 (1B):763-770.
    [14]Sanner B, Karytsas C, Mendrinos D, et al. Current status of ground source heat pumps and underground thermal energy storage in Europe[J]. Geothermics,2003,32 (4-6): 579-588.
    [15]郁永章.热泵原理与应用[M].北京:机械工业出版社,1993.
    [16]Yang W, Zhou J, Xu W, Zhang G Q. Current status of ground-source heat pumps in China[J]. Energy Policy,2010,38 (1):323-332.
    [17]Hattemer B, Kavanaugh S P. Design temperature data for surface water heating and cooling systems[J]. ASHRAE Trans,2005,111 (1):695-701.
    [18]Aittomaki A. Lakes as a heat source in cold climate[C].21st International Congress of Refrigeration, Washington, USA,2003:872-878.
    [19]Laue H J. Regional report Europe:"heat pumps—status and trends"[J]. Int J Refrig, 2002,25 (4):414-420.
    [20]高伟.地表水水源热泵系统节能问题及适用性研究[D].重庆:重庆大学,2010.
    [21]Li Z, Lin D M, Shu H W. District cooling and heating with seawater as heat source and sink in Dalian, China[J]. Renewable Energy,2007,32 (15):2603-2616.
    [22]Fan R, Jiang Y Q, Yao Y, et al. Theoretical study on the performance of an integrated ground-source heat pump system in a whole year[J]. Energy,2008,33 (11):1671-1679.
    [23]吕海军.用于地下水源热泵的同井回灌装置[P].中国,实用新型专利,200720041216.8.2008-09-17.
    [24]王亚斌.天津地区地下水源热泵若干问题研究[D].北京:中国地质大学,2010.
    [25]Ma G Y, Chai Q H, Jiang Y. Experimental investigation of air-source heat pump for cold regions[J]. Int J Refrig,2003,26 (1):12-18.
    [26]胡文举.空气源热泵相变蓄能除霜系统动态特性研究[D].哈尔滨:哈尔滨工业大学,2010.
    [27]Chua K J, Chou S K, Yang W M. Advances in heat pump systems: A review[J]. Applied Energy,2010,87 (12):3611-3624.
    [28]Hepbasli A, Akdemir O, Hancioglu E. Experimental study of a closed loop vertical ground source heat pump system[J]. Energy Conversion and Management,2003,44 (4): 527-548.
    [29]Ozgener O, Hepbasli A. Modeling and performance evaluation of ground source (geothermal) heat pump systems[J]. Energy and Buildings,2007,39(1):66-75.
    [30]Li H, Yang H X. Study on performance of solar assisted air source heat pump systems for hot water production in Hong Kong[J]. Applied Energy,2010,87 (9):2818-2825.
    [31]Han D H, Lee K J, Kim Y H. Experiments on the characteristics of evaporation of R410A in brazed plate heat exchangers with different geometric configurations[J]. Applied Thermal Engineering,2003,23 (10):1209-1225.
    [32]Jung D S, Cho Y M, Park K. Flow condensation heat transfer coefficients of R22, R134a, R407C, and R410A inside plain and microfin tubes[J]. Int J Refrig,2004,27 (1):25-32.
    [33]Kim S G, Kim M S, Ro S T. Experimental investigation of the performance of R407C and R410A in several capillary tubes for air conditioners[J]. Int J Refrig,2002,25 (5): 521-531.
    [34]Gabrielii C, Vamling L. Drop-in replacement of R22 in heat pumps used for district heating-influence of equipment and property limitations[J]. Int J Refrig,2001,24 (7): 660-675.
    [35]Karagoz S, Yilmaz M, Comakli O, et al. R134a and various mixtures of R22/R134a as an alternative to R22 in vapour compression heat pumps[J]. Energy Conversion and Management,2004,45 (2):181-196.
    [36]Nam Y, Ooka R. Numerical simulation of ground heat and water transfer for groundwater heat pump system based on real-scale experiment[J]. Energy and Buildings, 2010,42(1):69-75.
    [37]Pan G, Li Z. Investigation on incomplete condensation of non-azeotropic working fluids in high temperature heat pump[J]. Energy Conversion and Management,2006,47 (13-14):1884-1893.
    [38]Rajapaksha L. Influence of special attributes of zeotropic refrigerant mixtures on design and operation of vapour compression refrigeration and heat pump systems[J]. Energy Conversion and Management,2007,48 (2):539-545.
    [39]Comakli K, Simsek F, Comakli O, et al. Determination of optimum working conditions R22 and R404A refrigerant mixtures in heat-pumps using Taguchi method[J]. Applied Energy,2009,86 (11):2451-2458.
    [40]Liu Z Q, Li X L, Wang H Q, et al. Performance comparison of air source heat pump with R407C and R22 under frosting and defrosting[J]. Energy Conversion and Management, 2008,49 (2):232-239.
    [41]Chata F B G, Chaturvedi S K, Almogbel A. Analysis of a direct expansion solar assisted heat pump using different refrigerants[J]. Energy Conversion and Management,2005,46 (15-16):2614-2624.
    [42]Nuntaphan A, Chansena C, Kiatsiriroat T. Performance analysis of solar water heater combined with heat pump using refrigerant mixture[J]. Applied Energy,2009,86 (5): 748-756.
    [43]Devotta S, Pendyala V R. Thermodynamic screening of some HFCs and HFEs for high temperature heat pumps as alternative to CFC114[J]. Int J Refrig,1994,17 (5):338-342.
    [44]赵力.中高温地热热泵循环工质及系统智能调控的研究[D].天津:天津大学,2001.
    [45]Li T X, Guo K H, Wang R Z. High temperature hot water heat pump with non-azeotropic refrigerant mixture HCFC22/HCFC141b[J]. Energy Conversion and Management,2002,43 (15):2033-2040.
    [46]史琳,朱明善,韩礼钟,等.一种适用于常温水源热泵的二元中高温制冷工质[P]:中国,发明专利,03149762.4.2004-05-05.
    [47]Urchueguia J F, Zacares M, Corberan J M, et al. Comparison between the energy performance of a ground coupled water to water heat pump system and an air to water heat pump system for heating and cooling in typical conditions of the European Mediterranean coast[J]. Energy Conversion and Management,2008,49 (10): 2917-2923.
    [48]Park K J, Shim Y B, Jung D. Performance of R433A for replacing HCFC22 used in residential air-conditioners and heat pumps[J]. Applied Energy,2008,85 (9):896-900.
    [49]Park K J, Jung D. Performance of heat pumps charged with R170/R290 mixture[J]. Applied Energy,2009,86 (12):2598-2603.
    [50]Aprea C, Mastrullo R, Renno C. An analysis of the performances of a vapour compression plant working both as a water chiller and a heat pump using R22 and R417A[J]. Applied Thermal Engineering,2004,24 (4):487-499.
    [51]史琳,朱明善,韩礼钟,等.一种适用于常温水源热泵的四元中高温制冷工质[P].中国,发明专利,03149761.6.2004-05-05.
    [52]周湘江.HFC1 25临界热泵特性研究[D].上海:交通大学,2006.
    [53]REFPROP, NIST Standard Reference Database 23[DB]. (Version 8.0).2010.
    [54]Engineering Equation Solver (EES) [CP]. (Academic Commercial Version 8.596).2010.
    [55]丁国良,黄冬平.二氧化碳制冷技术[M].北京:化学工业出版社,2006.
    [56]Lorentzen G. Trans-critical vapor compression cycle device[P]. World, PCT/N089/0089. 1989-01-09.
    [57]Lorentzen G. Revival of carbon dioxide as a refrigerant[J]. Int J Refrig,1994,17 (5): 292-301.
    [58]丁国良.CO2制冷技术新发展[J].制冷空调与电力机械,2002,23(86):1-6,48.
    [59]Eggen G, Aflekt K. Commercial refrigeration with ammonia and CO2 as working fluids[C].3rd IIR-Gustav Lorentzen Conference on Natural Working Fluids, Oslo, Norway,1998:281-292.
    [60]EPA GreenChill partnership achieves new landmark, reaching all 50 US States[EB/OL]. http://www.r744.com/articles/139920110517.php,2011-05-17.
    [61]Lorentzen G, Pettersen J. A new efficient and environmentally benign system for car air conditioning[J]. Int J Refrig,1993,16 (1):4-12.
    [62]Pettersen J. An efficient new automobile air conditioning system based CO2 vapor compression[J]. ASHRAE Trans,1994,100 (2):657-665.
    [63]Lorentzen G. Large heat pumps using CO2 refrigerant[C]. IIR Commission B1/2, Ghent, Belgium,1993.
    [64]Neksa P, Rekstad H, Zakeri G R, et al. CO2 heat pump water heater: characteristics, system design and experimental results[J]. Int J Refrig,1998,21 (3):172-179.
    [65]Cavallini A, Neksa P. Prospects for the return of CO2 as a refrigerant[C]. VI°Congreso iberoamericano de aire acondicionadoy refrigeracion, CIAR, Buenos Aires, Argentina, 2001,761-790.
    [66]Neksa P. CO2 heat pump systems[J]. Int J Refrig,2002,25 (4):421-427.
    [67]Zakeri G, Neksa P, Rekstad H, et al. Results and experiences with the first commercial pilot plant CO2 heat pump water heater[C]. IIF-IIR Commission B1, B2, E1 and E2, Purdue, USA,2000:59-65.
    [68]Stene J. Investigation of a residential brine-to-water CO2 heat pump for combined low-temperature space heating and hot water preparation[C].5th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Guangzhou, China,2002:268-275.
    [69]Stene J. Residential CO2 heat pump system for combined space heating and hot water heating[J]. Int J Refrig,2005,28 (8):1259-265.
    [70]Saikawa M, Hashimoto K. An experimental study on the behavior of CO2 heat pump cycle[C]. IIF-IIR Commission B2, with B1, E1 and E2, Oslo, Norway,1998:223-229.
    [71]Saikawa M, Hashimoto K, Kobayakawa T, et al. Development of prototype of CO2 heat pump water heater for residential use[C]. IIF-IIR Commission B1, B2, E1, and E2, Purdue University, USA,2000:51-57.
    [72]管海清,马一太,杨俊兰.日本家用CO2热泵热水器研究开发现状分析[J].家电科技,2004,6:59-61.
    [73]JRA4050-2001, The standard of heat pump water heater performance (CO2)[S]. (in Japanese)
    [74]马一太,杨昭,吕灿仁.CO2跨临界(逆)循环热力学分析[J].工程热物理学报.1998,19(6):665-668.
    [75]查世彤.二氧化碳跨临界循环膨胀机的研究与开发[D].天津:天津大学,2002.
    [76]李敏霞.二临界循环转子式膨胀机的分析与实验研究[D].天津:天津大学,2003.
    [77]孙兆虎,王国梁,姜培学,等.太阳能辅助CO2热泵与制冷系统实验研究[J].工程热物理学报,2008,29(3):381-384.
    [78]王守国,曹峰,邢子文.商用空气源跨临界二氧化碳热泵热水器产生高温水的实验研究[C].中国制冷学会学术年会,天津,2009.
    [79]吕静,王伟峰,周传煜.一种跨临界CO2/R22热泵空调及热水三联供方法[P].中国,发明专利,200810040188.7.2008-11-12.
    [80]谌盈盈.二氧化碳中高温热泵热水系统的实现方案及性能分析[D].长沙:中南学,2008.
    [81]时红臣.跨临界二氧化碳热泵热水器系统仿真与水回路实验研究[D].南京:南京理工大学,2006.
    [82]张志辉.二氧化碳跨临界制冷循环性能分析及微通道气体冷却器的研究[D].天津: 河北工业大学,2007.
    [83]New Chinese CO2 heat pump standard [EB/OL]. http://www.r744.com/articles/ 143820110714.php,2011-07-14.
    [84]黄逊青.压力安全标准缺失制约二氧化碳热泵发展[J].家电科技,2009,15:41.
    [85]Lorentzen G, Pettersen J. A new, efficient and environmentally benign system for car air-conditioning[J]. Int J Refrig,1993,16 (1):4-12.
    [86]Kohler J, Sonnekalb M, Kaise H, et al. Carbon dioxide as a refrigerant for vehicle air-conditioning with application to bus air-conditioning[C]. International CFC and Halon Alternatives Conference, Washington, USA,1995:376-385.
    [87]梁贞潜,丁国良,张春路,等.二氧化碳汽车空调器仿真与优化[J].上海交通大学学报,2002,36(10):1396-1400.
    [88]刘洪胜,金纪峰,陈江平,等.自然工质二氧化碳汽车空调性能的实验研究[J].上海交通大学学报,2006,40(8):1407-1411,1416.
    [89]刘军朴.跨临界二氧化碳汽车空调系统节流机构特性及相关优化研究[D].上海:上海交通大学,2003.
    [90]张会勇,李俊明,王补宣.过热度和高压压力对跨临界CO2汽车空调系统的影响[J].清华大学学报(自然科学版),2005,45(11):1573-1576.
    [91]邓建强,姜培学,石润富,等.跨临界二氧化碳汽车空调冷却换热设备开发[C].第三届制冷空调新技术研讨会,杭州,2005:425-428.
    [92]郝荣荣.二氧化碳汽车空调压比对系统性能影响仿真[D].北京:北京交通大学,2006.
    [93]刘伟.跨临界二氧化碳汽车空调换热器的研究及仿真[D].镇江:江苏大学,2007.
    [94]Petrov N E, Popov V N. Heat transfer and resistance of carbon dioxide being cooled in the supercritical region[J]. Thermal Engineering,1985,32 (3):131-134.
    [95]Petrov N E, Popov V N. Heat transfer and hydraulic resistance with turbulent flow in a tube of water under supercritical parameters of state[J]. Thermal Engineering,1988,35 (6):577-580.
    [96]VDI Warmeatlas Berechnungsblatter fur den Warmeubergang[M]. (7. Auflage). Dusseldorf:VDI Verlag,1994.
    [97]Olson D A, Allen D W. Heat transfer in turbulent supercritical carbon dioxide flowing in a heated horizontal tube[R]. NISTIR-6234,1998.
    [98]Pitla S S, Groll E A, Ramadhyani S. New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical carbon dioxide[J]. Int J Refrig,2002,25 (7):887-895.
    [99]Yoon S H, Kim J H, Hwang Y W, et al. Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region[J]. Int J Refrig,2003,26 (8):857-864.
    [100]杨俊兰.CO2跨临界循环系统及换热理论分析与实验研究[D].天津:天津大学,2005.
    [101]吕静.二氧化碳跨临界循环及换热特性的研究[D].天津:天津大学,2005.
    [102]侯光武.超临界二氧化碳在密闭竖直细管内的传热实验研究[D].大连:大连理工大学,2005.
    [103]Gungor K E,Winterton R H S. A general correlation for flow boiling in tubes and annuli[J]. International Journal of Heat and Mass Transfer,1987,29 (3):351-358.
    [104]Kandlikar S G. A general correlation for saturated and two-phase flow boiling heat transfer inside horizontal and vertical tubes[J]. Journal of Heat Transfer, ASME Trans, 1990,112 (2):219-228.
    [105]Liu Z, Winterton R H S. A general correlation for saturated and subcooled flow boiling in tubes and annuli-based on a nucleate pool boiling equation[J]. International Journal of Heat and Mass Transfer,1991,34 (11):2759-2766.
    [106]Bredesen A M, Hafner A, Pettersen J, et al. Heat transfer and pressure drop for in-tube evaporation of CO2[C]. International Conference on Heat Transfer Issues in Natural Refrigerants, College Park, USA,1997:1-15.
    [107]Hwang Y. A feasibility study on carbon dioxide refrigerant cycle[D]. College Park: University of Mryland,1997.
    [108]Hwang Y, Kim B, Radermacher R. Boiling heat transfer correlation for carbon dioxide[C]. International Conference on Heat Transfer Issues in Natural Refrigerants, College Park, USA,1997:44-57.
    [109]Yoon S H, Cho E S, Hwang Y W, et al. Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development J]. Int J Refrig,2004,27 (2):111-119.
    [110]杨亮,丁国良,黄冬平,等.亚临界二氧化碳换热特性研究进展[J].制冷学报,2003,4:28-34.
    [111]宫晓彬,柳建华,张良,等.二氧化碳管内流动沸腾换热特性实验研究进展[C].中国制冷学会学术年会,天津,2009:441-446.
    [112]Inokuty H. Graphical model of finding compression pressure of CO2 refrigerating machine for maximum COP[J].5th International Congress Refrigeration, Rome,1928: 185-192.
    [113]Kauf F. Determination of the optimum high pressure for the transcritical CO2 refrigeration cycles[J]. International Journal of Thermal Sciences,1999,38 (4): 325-330.
    [114]Sarkar J, Bhattacharyya S, Gopal M R. Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications[J]. Int J Refrig,2004,27 (8): 830-838.
    [115]Sarkar J, Bhattacharyya S, Gopal M R. Natural refrigerant-based subcritical and transcritical cycles for high temperature heating[J]. Int J Refrig,2007,30 (1):3-10.
    [116]Chen Y, Gu J J. The optimum high pressure for CO2 transcritical refrigeration systems with internal heat exchangers[J]. Int J Refrig,2005,28 (8):1238-1249.
    [117]Aprea C, Maiorino A. Heat rejection pressure optimization for a carbon dioxide split system: An experimental study[J]. Applied Energy,2009,86 (11):2373-2380.
    [118]Kumar K K, Gopal M R. Effect of system pressure on the steady state performance of a CO2 based natural circulation loop[J]. Applied Thermal Engineering,2009,29 (16): 3346-3352.
    [119]Liao S M, Zhao T S. Jakobsen A. A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles[J]. Applied Thermal Engineering,2000,20 (9): 831-841.
    [120]Cecchinato L, Corradi M, Minetto S. A critical approach to the determination of optimal heat rejection pressure in transcritical systems[J]. Applied Thermal Engineering,2010, 30(1):1812-1823.
    [121]Zhang W J, Zhang C L. A correlation-free on-line optimal control method of heat rejection pressures in CO2 transcritical systems[J]. Int J Refrig,2011,34 (4):844-850.
    [122]Srinivasan K. Identification of optimum inter-stage pressure for two-stage transcritical carbon dioxide refrigeration cycles[J]. The Journal of Supercritical Fluids,2011,58 (1): 26-30.
    [123]Corberan J M, Segurado J, Colbourne D, et al. Review of standards for the use of hydrocarbon refrigerants in A/C, heat pump and refrigeration equipment[J]. Int J Refrig, 2008,31 (4):748-756.
    [124]Lee Y S, Su C C. Experimental studies of isobutane (R600a) as the refrigerant in domestic refrigeration system[J]. Applied Thermal Engineering,2002,22 (5):507-519.
    [125]王如竹,丁国良.最新制冷空调技术[M].北京:科学出版社,2002.
    [126]刘圣春,马一太,胡来红,等.碳氢制冷剂应用于汽车空调的可行性分析[J].制冷与空调,2004,4(6):43-47.
    [127]Palm B. Hydrocarbons as refrigerants in small heat pump and refrigeration systems[J]. Int J Refrig,2008,31 (4):552-563.
    [128]Wang R Z, Li Y. Perspectives for natural working fluids in China[J]. Int J Refrig,2007, 30(4):568-581.
    [129]宁静红.R290/CO2自然工质复叠式制冷循环系统的理论分析与实验研究[D].天津:天津大学,2006.
    [130]陈刚.R290在家用空调中的应用现状及展望[J].家电科技.2010,12:64--65.
    [131]Ford to begin testing propane-powered Excursion [EB/OL]. http://www.autointell.com /news-2000/May-2000/May-05-00-p3.htm, May 05,2000.
    [132]宁静红,李慧宇,彭苗.新型绿色环保制冷剂R290在电冰箱上的应用[J].家电科技,2006,11:45-46.
    [133]童明伟,吴治娟,董茂林.R290的可燃爆炸性实验及在制冷机组中的试用[J].重庆大学学报(自然科学版),2002,25(1):36-39.
    [134]宁静红,彭苗,李魑宇.R290家用空调的替代与应用研究[J].流体机械,2006,34(12):72-74.
    [135]格力“R290冷媒空调”获全球首张VDE证书[EB/OL]. http://www.cheaa.com /Product/AC/PinPai/2010-10/86443.html,2010-10-08.
    [136]肖友元,刘畅,郭春辉,等.自然工质R290在家用空调器中的应用研究[J].流体机械.2009,37(5):61-65.
    [137]Kim S G, Kim M S. Experiment and simulation on the performance of an autocascade refrigeration system using carbon dioxide as a refrigerant[J]. Int J Refrig,2002,25 (8): 1093-1101.
    [138]Nicola G D, Polonara F, Stryjek R, et al. Performance of cascade cycles working with blends of CO2+natural refrigerants[J]. Int J Refrig,2011,34 (6):1436-1445.
    [139]Bhattacharyya S, Mukhopadhyay S, Kumar A, et al. Optimization of a CO2-C3H8 cascade system for refrigeration and heating[J]. Int J Refrig,2005,28 (8):1284-1292.
    [140]Bhattacharyya S, Mukhopadhyay S, Sarkar J. CO2-C3H8 cascade refrigeration-heat pump system: Heat exchanger inventory optimization and its numerical verification[J]. Int J Refrig,2008,31 (7):1207-1213.
    [141]Kim J H, Cho J M, Lee I H, et al. Circulation concentration of CO2/propane mixtures and the effect of their charge on the cooling performance in an air-conditioning system[J]. Int J Refrig,2007,30 (1):43-49.
    [142]Kim J H, Cho J M, Kim M S. Cooling performance of several CO2/propane mixtures and glide matching with secondary heat transfer fluid[J]. Int J Refrig,2008,31 (5): 800-806.
    [143]Cho J M, Kim Y J, Kim M S. Experimental studies on the characteristics of evaporative heat transfer and pressure drop of CO2/propane mixtures in horizontal and vertical smooth and micro-fin tubes[J]. Int J Refrig,2010,33(1):170-179.
    [144]Cho J M, Kim Y J, Kim M S. Experimental studies on the evaporative heat transfer and pressure drop of CO2 and CO2/propane mixtures flowing upward in smooth and micro-fin tubes with outer diameter of 5mm for an inclination angle of 45°[J]. Int J Refrig,2010,33 (5):922-931.
    [145]Grauso S, Mastrullo R, Mauro A W, et al. CO2 and propane blends:Experiments and assessment of predictive methods for flow boiling in horizontal tubes[J]. Int J Refrig, 2011,34(4):1028-1039.
    [146]Sarkar J, Bhattacharyya S. Assessment of blends of CO2 with butane and isobutane as working fluids for heat pump applications[J]. International Journal of Thermal Sciences. 2009,48(7):1460-1465.
    [147]Niu B L, Zhang Y F. Experimental study of the refrigeration cycle performance for the R744/R290 mixtures[J]. Int J Refrig,2007,30 (1):37-42.
    [148]牛宝联.复叠制冷系统低温环路自然工质混合物的理论及实验研究[D].天津:天津大学,2006.
    [149]颜俊,晏刚,钱伟,等.采用天然混合工质CO2/R600a和C02/R290的自复叠制冷循环性能研究[C].中国制冷学会学术年会,杭州,2007:531-535.
    [150]孙爱国.天然工质自行复叠制冷循环研究[D].杭州:浙江大学,2004.
    [151]宋世亮.天然工质应用于自行复叠制冷系统的研究[D].杭州:浙江大学,2005.
    [152]彭勃.采用R744/R290或R744/R600a混合自然工质的自复叠制冷系统工作特性[D].大连:大连理工大学,2007.
    [153]Semelsberger T A, Borup R L, Greene H L. Dimethyl ether (DME) as an alternative fuel[J]. Journal of Power Sources,2006,156 (2):497-511.
    [154]杨晓刚,司芳,郭林,等.二甲醚的生产现状及发展前景[J].精细与专用化学品,2005,13(15):5-7.
    [155]Granryd E. Hydrocarbons as refrigerants—an overview[J]. Int J Refrig,2001,24 (1): 15-24.
    [156]刘敬辉.二甲醚制冷性能研究[D].上海:上海交通大学,2005.
    [157]何茂刚,李铁辰,刘志刚.二甲醚作为冰箱制冷剂的实验研究[J].西安交通大学学报,2004,38(3):221-225.
    [158]黄忠,孙纯武,吴乐颂,等.二甲醚替代CFC12的电冰箱模拟计算和实验研究[J].重庆建筑大学学报,1999,21(3):50-55.
    [159]Koyama S, Jin D X, Xue J, et al. Experimental study on the performance of a CO2/DME system[C].22nd International Congress of Refrigeration, E2, Beijing, China, 2007:986.
    [160]Afroz H M M, Miyarab A, Tsubaki K. Heat transfer coefficients and pressure drops during in-tube condensation of CO2/DME mixture refrigerant[J]. Int J Refrig,2008,31 (8):1458-1466.
    [161]Onaka Y, Miyara A, Tsubaki K. Experimental study on evaporation heat transfer of CO2/DME mixture refrigerant in a horizontal smooth tube[J]. Int J Refrig,2010,33 (7): 1277-1291.
    [162]毕胜山,陈强,吴江涛,等.CO2/二甲醚混合制冷剂跨临界制冷循环性能分析[J].工程热物理学报,2009,30(1):1807-1810.
    [163]McCulloch A, Midgley P M, Ashford P. Releases of refrigerant gases (CFC-12, HCFC-22 and HFC-134a) to the atmosphere[J]. Atmospheric Environment,2003,37 (7):889-902.
    [164]Nicola G D, Giuliani G, Polonara F, et al. Blends of carbon dioxide and HFCs as working fluids for the low-temperature circuit in cascade refrigerating system[J]. Int J Refrig,2005,28 (2):130-140.
    [165]Winkler J M, Aute V, Radermacher R. Simulation and validation of a R404A/CO2 cascade refrigeration system[C]. International Refrigeration and Air Conditioning Conference, Purdue, USA,2008,2273:1-8.
    [166]Dopazo A, Fernandez-Seara J. Experimental evaluation of a cascade refrigeration system prototype with CO2 and NH3 for freezing process applications[J]. Int J Refrig, 2011,34(1):257-267.
    [167]Rezayan O, Behbahaninia A. Thermoeconomic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems[J]. Energy,2011,36 (2):888-895.
    [168]刘志刚,胡婧,吴江涛,等.R11离心式冷水机组替代冷媒的选择[J].工程热物理学报,2008,29(4):557-560.
    [169]郭涛,王怀信.采用不同工质的中高温热泵理论循环特性[J].天津大学学报,2010,43(8):667-673.
    [170]王鑫,史琳,朱明善,韩礼钟.离心式冷水机组R12替代物的理论分析[J].制冷学报,2004,1:17-21.
    [171]Balaras C A, Jeter S M. A methodology for selecting and screening novel refrigerants for use as alternative working fluids[J]. Energy Conversion and Management,1991,31 (4):389-398.
    [172]Goktun S. Selection of working fluids for high temperature heat pumps[J]. Energy, 1995,20 (7):623-625.
    [173]马一太,高志明,陈东,等.多元混合工质筛选及配比原则的研究[J].工程热物理学报,1997,18(1):17-20.
    [174]刘南希,史琳,李扬帆,等.中高温热泵工质及实验台研究[J].工程热物理学报, 2004,4:13-15.
    [175]昝成,史琳.零ODP的中高温热泵工质HTR04实验研究[J].工程热物理学报,2007,28(6):919-921.
    [176]史琳,昝成.中高温热泵工质的研究方法及性能分析[J].中国科学,2009,39(4):603-608.
    [177]郭卉,黄华军,彭梦.地源热泵空调系统制冷工质替代研究[J].长沙电力学院学报(自然科学版),2004,19(2):72-75.
    [178]Venkatarathnam G, Mokashi G, Murthy S S. Occurrence of pinch points in condensers and evaporators for zeotropic refrigerant mixtures[J]. Int J Refrig,1996,19 (6): 361-368.
    [179]Venkatarathnam G, Murthy S S. Performanee of some zeotropic mixtures as alternative refrigerants to R22 and R502[J]. International Journal of Energy Research,1998,22 (12):1065-1073.
    [180]赵力.基于传热窄点的非共沸混合工质优选方法[J].天津大学学报,2005,38(11):1001-1005.
    [181]赵力,高攀.基于非线性温-焓对应关系的非共沸制冷剂评价[J].中国科学E辑技术科学,2006,36(5):569-578.
    [182]Zhao P C, Zhao L, Ding G L, et al. Temperature matching method of selecting working fluids for geothermal heat pumps[J]. Applied Thermal Engineering,2003,23 (2): 179-195.
    [183]涂岱兴,赵力,王建立,等.二氧化碳逆循环中气体冷却器的传热窄点分布[J].机械工程学报,2009,45(9):307-311.
    [184]Jin X, Zhang X S. A new evaluation method for zeotropic refrigerant mixtures based on the variance of the temperature difference between the refrigerant and heat transfer fluid[J]. Energy Conversion and Management,2011,52(1):243-249.
    [185]Groll E A. Modeling of absorption/compression cycles using working pair carbon dioxide/acetone[J]. ASHRAE Trans,1997,103 (1):863-872.
    [186]Niu Y M, Chen J P, Chen Z J, et al. Construction and testing of a wet-compression absorption carbon dioxide refrigeration system for vehicle air conditioner[J]. Applied Thermal Engineering,2007,27 (1):31-36.
    [187]EES_REFPROP Inerface[CP]. NIST,2010.
    [188]Jung D, Chae S, Bae D, et al. Condensation heat transfer coefficients of flammable refrigerants[J]. Int J Refrig,2004,27 (3):314-317.
    [189]GB/T23137-2008,家用和类似用途热泵热水器[S].
    [190]Miyamoto H, Watanabe K. A thermodynamic property model for fluid-phase propane[J]. International Journal of Thermophysics,2000,21 (5):1045-1072.
    [191]Klein S A. Engineering Equation Solver Manual[Z]. (Commercial and Professional Versions 8.596).2010.
    [192]Lemmon E W, Tillner-Roth R. A Helmholtz energy equation of state for calculating the thermodynamic properties of fluid mixtures[J]. Fluid Phase Equilibria,1999,165 (1): 1-21.
    [193]陆亚俊,马最良,姚杨.空调工程中的制冷技术[M].(第二版).哈尔滨:哈尔滨工程大学出版社,2001.
    [194]廉乐明,谭羽飞,吴家正,等.工程热力学[M].(第五版).北京:中国建筑工业出版社,2007.
    [195]Kotas T J. The Exergy Method of Thermal Plant Analysis[M]. Tiptree (UK):Anchor Brendon Ltd.,1985.
    [196]田贯三.可燃制冷剂爆炸理论与燃烧爆炸抑制机理的研究[D].天津:天津大学,2000.
    [197]杨泗霖.防火与防爆[M].北京:首都经济贸易大学出版社,2000.
    [198]Poolen L J V, Holcomb C D. Critical temperatures, pressures, and densities for the mixtures CO2-C3H8, CO2-nC4H10, C2H6-C3H8, and C3H8-nC4H10[J]. Fluid Phase Equilibria,1999,165 (2):157-168.
    [199]杨世铭,陶文铨.传热学[M].(第四版).北京:高等教育出版社,2006.
    [200]Rieberer R. CO2 working fluid for heat pumps[D]. Graz: Graz University of Technology,1998.
    [201]吴业正.小型制冷装置设计指导[M].北京:机械工业出版社,2004.
    [202]孙奉仲.换热器的可靠性与故障分析导论[M].北京:中国标准出版社,1998.
    [203]陆耀庆.实用供热空调设计手册[M].北京:中国建筑工业出版社,2008.
    [204]方修睦.建筑环境测试技术[M]。北京:中国建筑工业出版社,2008.
    [205]Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science,1988,1 (1):3-17.
    [206]Cho H, Ryu C, Kim Y, et al. Effects of refrigerant charge amount on the performance of a transcritical CO2 heat pump[J]. Int J Refrig,2005,28 (8):1266-1273.
    [207]GB/T21362-2008,商业或工业用及类似用途的热泵热水机[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700