用户名: 密码: 验证码:
大型离心压缩机产品精益设计研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的迅猛发展,大型化、高效化、高速化、节能降噪成为大型压缩机发展的必然趋势。如何在科学发展观指导下,开发具有自主知识产权的大型压缩机研发技术,满足产品品质提升和产品创新的需求;以及如何在保证国计民生需求的同时,兼顾企业生存和发展的需要,降低研制成本,缩短研发周期,提高产品研发效率,已经成为大型压缩机制造行业所需要迫切解决的主要问题。
     为此,本课题以闻邦椿教授提出的综合设计方法为基础,以“精益”技术做理论联系实际的结合点,以大型压缩机组的创新设计为背景,以满足用户对产品广义质量需求和企业对产品收益需求,提出一种适于大型复杂机械系统的创新设计实施方法,即大型压缩机精益设计方法。它从系统工程的角度出发,通过大型压缩机设计的总体规划、整机功能展开、以及具体功能区域内的性能研究和优化设计工作,完成用户给定功能条件下的大型压缩机结构创新和关键系统结构性能、工艺性能和工作性能的提升工作。同时,基于产品开发过程的成本模型,利用AHP方法和模糊集理论、CAX集成平台,对产品创新设计过程的规模、效率和时间消耗进行了约束和控制。
     在课题的研究过程中,根据大型压缩机的结构特点和设计经验:①提出了深层次可视优化设计的基本方法,对其内容及实施流程进行了详细论述;②构建了用于缩减研发成本的设计对象精益筛选方法,并给出了具体的评价指标和实施方法;③给出了深层次动态优化设计在产品设计过程中,较为完整的具体实施方法及内容。并就如何应用精益筛选、深层次动态优化设计方法和深层次可视优化方法,在主功能区、辅助功能区关键结构,和主辅功能耦合区(即转子系统)的的概念化设计和详细设计阶段中,采用非线性动力学、结构力学、可靠性理论和非线性空气动力学理论等,对大型压缩机加气系统气动性能研究及优化设计方法、叶轮部装结构工艺性能和工作性能研究及优化设计方法、以及转子系统综合性能研究及优化设计方法,进行了详细论述。本文具体内容研究如下:
     (1)通过文献收集和企业调研,对现代设计理论的研究现状和发展趋势、以及企业进行产品创新设计过程中存在的问题和需求,进行了概括和总结。并借鉴精益在生产体系中的成功经验,提出了精益设计概念。指明了精益设计中“精”和“益的具体含义,确定了精益设计的基本技术框架。
     (2)对如何运用综合设计理论与方法完成复杂产品创新设计,进行了深入研究,形成了一套较为完整的大型压缩机精益设计实施方法。通过大型压缩机设计过程的总体规划、整机功能展开、以及主辅功能区和主辅功能耦合区的精益设计研究工作的开展,详细论述了如何在完成产品关键系统和结构设计、优化和设计质量评价工作的同时,兼顾成本控制的精益设计实施方法。并于样机试制完成后,在沈鼓集团的产品试车台位上通过单缸和三缸串联的机械运转试验,对产品的设计质量进行了检验。
     (3)在研究大型压缩机精益设计实施方法的过程中,完成了4种主要精益设计实施工具的构建工作。这些工具包括:从系统角度出发的功能分解工具、用于大幅缩减新产品研发成本的设计对象精益筛选工具、以及用于提高产品设计质量的深层次动态设计工具和深层次可视优化优化工具。在这些工具创建过程中:①构造了8D总体规划模型和实施框架;②提出了深层次可视优化方法的概念和具体应用方法;③丰富了深层次动态优化设计方法的内涵;④通过构建质量贡献率和成本影响率两个评价指标,形成了设计对象的精益筛选方法。
     (4)在主功能区的精益设计过程中,首先通过设计对象精益筛选,确立加气系统为首要研究对象,并利用深层次可视优化设计工具,完成其气动性能研究和概念化设计工作。其次,找到了原加气结构的设计缺陷,并根据对多种气动元件的分析和加气结构的分析,提出了一种带有进气涡壳的全新加气结构。在设计质量检验过程中,首次借助高性能计算平台,通过加气系统整流道模型(即包含加气结构及其相邻的两个模型级)的CFD分析工作,完成了引入加气结构后对周边气动元件的综合性能影响的评估工作。
     (5)在辅助功能区的精益设计过程中,以工艺性能改善为目标,采用可视优化设计与深层次动态设计相结合的方法,完成了关键结构创新及详细设计工作。并在此基础上,利用CAX集成应用环境,结合非线性接触理论和结构动力学理论,完成了叶轮部装结构工艺性能和运行工况条件下的结构性能研究工作。之后利用深层次动态优化设计方法,对新结构的工艺性能、结构性能加以改善。并利用概率有限元分析技术,与非线性接触分析技术相结合的非线性可靠性分析方法,对原始结构和改进结构功能实现的可靠度进行了对比计算,初步讨论了输入参数的不确定因素,对原型叶轮和新叶轮部装结构的结构性能影响问题。
     (6)在转子系统的精益设计过程中,详细论述了使用深层次动态设计工具,完成转子系统设计质量提升工作的具体操作方法和实施流程。从转子系统功能分析、综合性能优化以及设计质量的出厂验证和工作性能预估三个阶段入手,完成了大型压缩机转子系统综合性能研究、初始结构方案确定和最终结构详细设计工作。对大型压缩机转子系统单缸结构性能表现进行了深入研究。并使用三缸串联模型讨论了整个机组转子系统的结构性能表现。最后通过样机的机械运转试验和工作性能的非线性瞬态动力学预估手段,对产品的设计质量进行了评价。
With the rapid development of modern industry, Large-capacity, efficient operation, structure complication, energy saving and noise reduction becomes inevitable trend of large scale compressor development. How to develop super large compressor with indigenous intellectual property rights and meet the demands of upgrade quality and product creativity with the guidance of scientific development view. When the demand of the nation's economy and the people's livelihood is ensured, how to decrease research-and-development cost, reducing product development cycles, improve development efficiency will become key problems in large scale compressor manufacturing.
     The dissertation studies implementation methods of modern design theory based on synthesis design theory created by professor Wen Bangchun in large scale complicated products. By making quality and benefit as objectives, lean technology as foundation and super-large compressor as research object, adopting nonlinear dynamics, structural mechanics, reliability and nonlinear aerodynamics, making development cost as constraint conditions, a lean design implementation method is presented based on system engineering thinking.
     High-level viewable optimization design method is put forward in the process of studying this method. Evaluation index and operation method of screening method of design object are determined. Lean filtration and high-level dynamic optimization method and high-level viewable optimization method are introduced. And aerodynamic performance analysis, technological properties, working performance and optimization design of impeller components assembly structure and combination property and optimization design of rotor system are performed in main function domain, auxiliary function domain and coupling domain of both. The main research contents are as follows:
     (1) Lean design concept is put forward by learning from successful experience of lean in product system. The detail meanings of "fine" and "benefit" of lean design are explained and basic frameworks of lean design are determined.
     (2) Implementation method of a complete super large compressor lean design is offered based on synthesis design theory. General planning, function deployment of whole unit, lean design in main and auxiliary function domains and coupling domain of both are carried out in the design process of super large compressor. Lean design tools are selected based on synthesis design theory and lean thinking in detail. Lean design implementation method considering cost control is presented when design, optimization and evaluation of product key systems and structures are fulfilled.
     (3) Four implementation tools for lean design are constructed in the process of studying the implementation method when design quality is improved and cost is controlled. These tools are as follows:function decomposition tool for system, lean screening tool of design object for reducing development cost, high-level dynamic tool and viewable tool for improving product design quality. These constructed tools include as follows:①8D overall plan model and its implementation framework are determined;②The concept of high-level viewable optimization method and its application method are presented;③Application scope of high-level dynamic optimization method is extended;④Lean design screening method is formed by constructing two evaluation indexes of quality contribute rate and cost influence ratio.
     (4) In the process of lean design in main function domain, firstly, adding-gas system is determined as the most important research object by design object lean screening. And aerodynamic performance research and conceptualization design work are performed by using high-level viewable design tool. Design defects of the former adding-gas structure are discovered and a new adding-gas structure with inlet turbine casing is presented by analysis of many kinds of pneumatic components and adding-gas structure. In the checkup process of design quality, firstly, evaluation works about the adding-gas structure affecting on surrounding pneumatic components is completed after computational fluid dynamics of whole channel model of (including adding-gas structure and its adjacent two module levels) is analyzed by mean of high performance computing platform.
     (5) In the lean design process of auxiliary function domain, making as objective and combining high-level dynamic optimization design method and high-level viewable optimization design method, key structure creation and detailed design method are completed. And CAX integrated environment is constructed on the basis of above method. By combining nonlinear contact theory and structure dynamic theory, technological property of impeller assembly structure and structure performance at operating condition are completed. Then the initial design proposal of new impeller hub is presented by using viewable optimization method. Technological property and structure performance optimization are performed by using high-level dynamic optimization design method. Finally, combining stochastic finite element method and nonlinear reliability method, reliability of initial and improved structures are computed and function effect on both is discussed for different random parameters.
     (6) In the lean design process of rotor system, detailed operation method and implementation flow for improving design quality are completed by using high-level dynamic optimization tools. Starting with system function analysis, synthesis performance optimization, trial run and working performance forecast, synthesis performance analysis, initial scheme determination and final structure detail design work of super large compressor rotor system are completed. The dynamic characteristics of every single cylinder and whole series rotor system are studied. Evaluation work is performed for lean design method by using trail run of prototype and forecast method of nonlinear transient dynamic for working performance.
引文
1. Altshuller G. The Innovation Algorithm, TRIZ, Systematic Innovation and Technical Creativity [M]. Worcester Technical Innovation Center, INC,1999
    2. Hsiang-Tang Chang, Jahau Lewis Chen. The conflict-problem-solving CAD software integrating TRIZ into eco-innovation [J]. Advances in Engineering Software,2004, 35:553-566
    3. R. Stratton, D. Mann. Systematic innovation and the underlying principles behind TRIZ and TOC[J]. Journal of Materials Processing Technology.2003,139 (2):120-126
    4. Pahl G, Beitz W. Engineering design:a systematic approach [M]. London:The design council,1998
    5. SUH N P. The principles of design [M]. New York:Oxford University Press,1990
    6. 蔡池兰,肖人彬.公理设计下基于系统创新思维的解耦方法[J].机械工程学报,2006,42(11):184-190
    7. 张公绪,何国伟,郑慧英.新编质量管理学[M].北京:高等教育出版社,1998
    8. 孟庆国.基于三次设计和模糊理论的机械稳健设计[J].机械设计与制造,2000,(4):47-49
    9. Kogure M, Akao Y. Quality function deployment and CWQC in Japan [J]. Quality Progress,1983,16 (10):25-29
    10. Sullivan LP. Quality function deployment [J]. Quality Progress,1986,19(6):39~50
    11. King B. Listening to the voice of the customer: Using the quality function deployment system [J]. National Productivity Review,1987,6(3):277-281
    12. 杨明顺,李言,林志航.顾客需求向技术特征映射的产品设计规划求解[J].计算机集成制造系统,2006,12(6):853-856
    13. 谭润华,苑彩云,张瑞红,曹东兴.基于技术进化的产品设计过程研究[J].机械工程学报,2002,38(12):60-65
    14. 谭润华.产品创新设计若干问题研究进展[J].机械工程学报,2003,39(9):11-15
    15. 陈亚娣.C A D支持机械创新设计的方法和途径研究[J].机械管理开发,2006,(5):8-9
    16. 王瑞芳,陈建平,周桂英.机械产品方案创新设计思维的研究[J].机械研究与应用,2004,17(4):14-15
    17. 刘晓叙,陈敏.机械产品绿色设计理念[J].机械设计,2005,22(11):1-2
    18. 黄海鸿,刘光复,刘志峰,潘君齐.绿色设计中的材料选择多目标决策[J].机械 工程学报,2006,42(8):131-136
    19. 唐涛,刘志峰,刘光复,刘蕾.绿色模块化设计方法研究[J].机械工程学报,2003,39(11):149-154
    20. 栾忠权.基于产品环境生态指数的绿色设计方法研究[J].机械工程学报,2004,40(5):97-100
    21. 李方义,段广洪,汪劲松,李飒.产品绿色设计评估建模[J].清华大学学报(自然科学版),2002,42(6):783-786
    22. 王玉新,杨丽艳,朱殿华.复杂功能、结构关系表达及其在概念设计中应用[J].机械工程学报,2004,40(6):49-54
    23. 宋慧军,林志航.机械产品概念设计多层次混合映射功能求解框架[J].机械工程学报,2003,39(5):82-87
    24. 张国全,钟毅芳,何海.基于功能推理机制研究复杂机械产品的概念设计[J].机械工程学报,2003,39(4):19-24
    25. 邹光明,胡于,肖文生,李成刚.基于功能基的产品概念设计模型研究[J].中国机械工程,2004,15(3):206-209
    26. 姚王君,宁汝新,张旭等.计算机辅助产品方案设计方法研究[J].中国机械工程,2002,1(18):1573-1576
    27. 周传荣.结构动态设计[J].振动、测试与诊断,200,21(1):1-8
    28. 陈新,陈新度,秦叶,罗小年等.机械结构动态设计若干关键技术[J].中国机械工程,1997,8(5):104-108
    29. 孙凌玉.大型复杂结构动态性能自动优化设计的实现[J].农业机械学报,2005,36(12) :106-109
    30. 陈新,孙庆鸿,何杰等.基于虚拟环境的机械结构动态设计方法的研究[J].制造业自动化,2000,22(12):36-37
    31. 冯培恩,邱清盈,潘双夏等.机械产品的广义优化设计进程研究[J].中国科学(E辑),1999,29(4):338-346
    32. 徐有忠,潘双夏,邱清盈.面向广义优化的参数化设计方法研究[J].中国机械工程,2003,14(17):1485-1488
    33. 韩明红,邓家裸.复杂工程系统多学科设计优化集成环境研究[J].机械工程学报,2004,40(9):100-105
    34. 王国彪.基于可视化的广义优化设计的立论基础.北京科技大学学报,1999,21(2):208-209
    35. 张向军,桂长林.智能设计中的基因模型[J].机械工程学报,2001,37(2):8-11
    36. 田永利,邹慧君,郭为忠等.基于DPAM—-F的机电一体化系统广义执行机构子系统智能设计[J].上海交通大学学报,2005,39(1):66-70
    37. 商建东.基于产品功能特征模型的方案智能设计关键技术及应用研究[J].中国机械工程,2005,16(10):909-913
    38. 周自强,沈连嬉,李木军等.面向用户的虚拟设计环境的研究[J].机械工程学报,2005,41(6):137-142
    39. 李玉忠,陈泽琳,杨振野.基于知识的虚拟设计研究[J].中国机械工程,2004,15(9):809-812
    40. 潘军,马登哲,范秀敏,金烨.基于仿真的虚拟设计中的统计回归与优化研究[J].计算机集成制造系统CIMS,2004,10(4):404-409
    41. 熊有伦,尹周平.面向产品快速开发的几何推理和虚拟原型.中国机械工程,2002,13(4):328-332
    42. 周祖德,余文勇,陈幼平.数字制造的概念与科学问题[J].中国机械工程,2001,12(1):100-104
    43. 阎楚良,杨方飞.农业机械产品数字化设计技术及展望[J].中国工程科学,2006,8(9) :13-18)
    44. 熊光楞,范文慧.21世纪制造业的建模与仿真技术[J].系统仿真学报,2004,16(9):1884-1886
    45. 宁汝新,刘检华,唐承统.数字化制造中的建模和仿真技术[J].机械工程学报,2006,42(7):132-137
    46. AIAA Multidisciplinary Design Optimization Technical Committee. Current State of the Art on Multidisciplinary Design Optimization (MDO). An AIAA White Paper [R]. ISBN 1-56374-021-7,1991.
    47. Salas A. O., Townsend J. C. Framework Requirements for Multidisciplinary Application Development [A]. In: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization [C]. St. Louis, MO:September 2-4, 1998. AIAA Paper 98-4740.
    48. 余雄庆.多学科设计优化算法及其在飞行器设计中的应用研究[D].南京:南京航空航天大学,1999.
    49. 陈琪峰.飞行器分布式协同进化多学科设计优化方法研究[D].长沙:国防科学技术大学,2003.
    50. 王振国,陈小前,罗文彩等.飞行器多学科设计优化理论与应用研究[M].国防工业出版社,2006.
    51. Giesing J. P., Barthelemy J. M. A Summary of Industry MDO Applications and Needs. White Paper on Industrial Experience with MDO [A]. In: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization [C]. St. Louis MO:September 2-4,1998. AIAA Paper 98-4737-CP.
    52. 胡伟,钟毅芳,周济.复杂机械产品优化设计实现方法研究[J].机械工程学报,2002,38(1):35-38
    53. Philipp Limbourg, Hans-Dieter Kochs. Multi-objective optimization of generalized reliability design problems using feature models-A concept for early design stages[J]. Reliability Engineering and System Safety,2007, (1):1-14
    54. B. Wilczynski, Z. Mroz. Optimal design of machine components using notch correction and plasticity models[J]. Computers and Structures,2007, (1):1-16
    55. Sobieszczanski-Sobieski J., Haftka R. T. Multidisciplinary Aerospace Design Optimization:Survey of Recent Developments [A]. In: 34th Aerospace Sciences Meeting and Exhibit [C]. Reno, Nevada: January 15-18,1996. AIAA Paper 96-0711.
    56. 刘继民,郝建平,立泽.一体化设计理论及其进展[J].机械设计,2006,23(3)4-7
    57. 王维,聂冲,赵雯,王维平.复杂产品一体化优化设计框架研究[J].计算机仿真,2005,22(11):252-255
    58. 闻邦椿,张国忠,柳洪义.面向产品广义质量的综合设计理论与方法[M].北京:科学出版社,2007
    59. 闻邦椿.产品全功能与全性能的综合设计[M].北京:机械工业出版社,2008
    60. 闻邦椿,李以农,张义民等.振动利用工程[M].北京:科学出版社,2005
    61. 路甬祥.工程设计的发展趋势和未来[J].机械工程学报,1997,33(1):1-8
    62. 闻邦椿,刘树英,何勃.振动机械的理论与动态设计方法[M].北京:机械工业出版社,2001
    63. 闻邦椿,李以农,韩清凯.非线性振动理论中解析方法及工程应用[M].沈阳:东北大学出版社,2001
    64. 闻邦椿,周知承,韩清凯等.现代机械产品设计在新产品开发中的重要作用—兼论面向产品总体质量的“动态优化、智能化和可视化”三化综合设计法[J].机械工程学报,2003,39(10):43-51
    65. 张振生.PLM——精益制造的驱动力[J].经理人,2008,(5):100
    66. 胡志强等.传播精益六西格玛思想英格索兰志在供需两端[J].通用机械,2008,(1):25-27
    67. 张莹利.从丰田的精益生产方式看中国的生产管理[J].卓越管理,2007,(9)20-24
    68. 刘晖.互补的精益生产与六西格玛管理[J].中国质量,2007,(2):94-96
    69. 王颖,何桢,刘日波.精益六西格玛—增强企业竞争优势的有效方法[J].哈尔滨工业大学学报(社会科学版),2007,9(5):125-128
    70. 蒋冬建.精益生产及其基本理念的研究.市场周刊(理论研究),2007,(4):29-31
    71. POJASEKRB.Lean, Six Sigma, and the Systems Approach:Management Initiatives for Process Improvement [J]. EnvironmentalQualityManagement,2003,13 (2):85-92.
    72. GEORGEML. Lean Six Sigma:Combining Six Sigma Quality with Lean Speed[M]. New York:McGraw-Hil,12002:5
    73. 潘争亮,包立宏.精益生产理念在中国制造业的应用[]J.新材料产业,2007,(1):72-74
    74. 汪宏武,牛晓玲,李惠成等.精益生产模式的理论渊源研究[J].海军航空工程学院学报,2008,23(2):234-238
    75. Stanley W. Kandebo. Pilot Programs Test Lean Theories. International Aviation[J], 1997, (12):35-36
    76. 朱自强.应用计算流体力学[M].北京:北京航空航天大学出版社,1998
    77. 赵兴艳,苏莫明.CFD方法在流体机械设计中的应用[J].流体机械,2000,20(3):22-25
    78. 鲁嘉华.计算流体力学与求解方法在叶轮机械中的应用[J].上海工程技术大学学报,2003,17(1):16-21
    79. 刘顺隆,郑群.计算流体力学[M].哈尔滨:哈尔滨工程大学出版社,1998
    80. 苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997
    81. 赵兴艳,苏莫明,张楚华等.CFD方法在流体机械设计中的应用[J].流体机械,2000,28(3):22-25
    82. Harten A. High resolution scheme for hyperbolic system of conservation law [J].J Comp Phys,1983, (49):357-393
    83. Sweby P K. High resolution schemes using flux limiters for hyperbolic conservation laws[J]. SIAM J Num Anal,1984,21:995-1011
    84. Yee H C. Construction of explicit and implicit symmetric TVD scheme and their applications [J]. J Comp Phys,1987, (68):151-179
    85. Steger J L, Warming R F. Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods [J]. J Comp Phys,1981, (40):263-293
    86. Chakravarthy S R. The split-coefficient matrix method for hyperbolic system of gas dynamics equations [J]. AIAA Paper[C],1980,80-268
    87. Roe P L. Approximate Riemann solvers, parameter vectors and different schemes [J]. J Comp Phys,1981, (43):357-372
    88. Jameson A, Schmidt W, Turkel E. Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes [J].AIAA Paper [C],1981, 81-1259
    89. Ni R H. A Multiple grid scheme for solving the Euler equation [J]. J AIAA,1982,20: 1 565~1571
    90. Van Leer B, Tai C H, Powell K G. Design of optimally smoothing multistage schemes for the Euler equations [J].AIAA Paper[C],1989,89-1933
    91. 姚征,陈康民.CFD通用软件综述[J].上海理工大学学报,2002,24(2):137-144
    92. Elholm, E. Ayder, Van Den Braembussche. Experimental Study of the Swirling Flow in the Volute of a Centrifugal Pump [J]. ASME Journal of Turbomachinery,1992,114 (2):336-372
    93. E Ayder, D.Hagelstein. Improved Model for the Design and Analysis of Centrifugal Compressor Volutes. ASME Journal of Turbomachinery [J],1999,121 (3):619-625
    94. 蔡兆林,吴克启,区颖达.矩形截面蜗壳中的流动损失预示[J].工程热物理学报,1993,14(4):398-401
    95. 吴克启,黄坚.风机蜗壳内部旋涡流动的数值分析[J].工程热物理学报,2001,22(3) :316-319
    96. 胡胜利,吴克启.风机矩形蜗壳内部流动特性及其二次流的研究[J].工程热物理学报,1993,14(2):151-154
    97. 廖伟丽,李建中.混流式水轮机蜗壳内流动的数值研究[J].大电机技术,2002,(2):54-58
    98. 郑小波,罗兴琦,廖伟丽等.不完全蜗壳的CFD分析及优化设计[J].水利发电学报,2004,23(6):9-12
    99. 姚承范,蒯鸿亮,朱营康.低噪高效风机蜗壳的研究[J].流体机械,1991,7:2-6
    100.韩占忠,赵福堂,华智刚.压气机蜗壳通道中气流流动的数值模拟[J].内燃机学报,2002,20(2):125-128
    101.房克信,李国祥,孙学军等.不同型线蜗壳喷嘴出口的速度分布特性[J].内燃机学报,2001,19(4):383-386
    102.孙长辉,刘正先,王斗等.蜗壳变型线改进离心风机性能的研究.流体机械,2007,35(4):1-5
    103.曹淑珍,祈大同,张义云.小流量工况下离心风机蜗壳内部的三维流动测量分析[J].西安交通大学学报,2002,36(7):688-692
    104.王企鲲,戴韧,陈康民.离心通风机整机准定常流动数值研究[J].流体机械,2003,31(3):8-12
    105.陈景义,李超,伍继浩.通风机损失模型的分析研究[J].甘肃工业大学学报,2000,26(3):65-68
    106.吕伟领,席光,宫武旗等.前向多翼离心风机叶片尾迹和蜗壳二次流动的试验研究[J].西安交通大学学报,2005,39(1):21-25
    107.罗荣,吴克启.空调用贯流风机系统的内流计算及其优化研究[J].流体机械,2003,31(10):19-21
    108.胡俊伟,丁国良,赵力等.贯流风机结构参数及工作特性的关联[J].上海交通大学学报,2004,38(7):1156-1170
    109.李新宏,何慧伟,宫武旗等.离心通风机整机定常流动数值模拟[J].工程热物理学报,2002,23(4):453-456
    110.吴苇,谢军龙,吴克启.斜流压缩机转子与蜗壳匹配的内流分析[J].流体机械,2004,32(4):12-15
    111.高满旭,宋华,徐泽宁,付丽华.大型鼓风机转子轮盘强度的有限元计算与分析[J].风机技术,2001(2):34-37
    112.邱凯,徐自力,王尚锦,张义忠.离心压缩机叶轮三维有限元计算强度分析系统应用力学学报[J].1999,16(3):121-124
    113.蔡兆麟,韩海燕,彭鑫.旋转叶轮三维应力分布及其改善措施[J].华中科技大学学报,2003,31(12):81-83
    114.张馥华,王有槐.压气机叶轮强度三维有限元计算分析[J].柴油机,1996(6)22-25
    115.李建设.H140增压器混流涡轮叶轮结构强度研究[M].北京:北京理工大学,2001
    116.龙卫国,金波.离心式压缩机叶轮叶片应力有限元分析[J].南华大学学报(理工版),2001,15(4):44-49
    117.周传月,李宏伟,王旭.离心压缩机过盈配合叶轮结构应力分[J].风机技术,1998(3):8-10
    118.李祖辉.大型透平膨胀机转子动力学分析及叶轮强度分析[D].杭州:浙江大学,2006
    119. Stephane Burguburu, Clement Toussaint, Christophe Bonhomme, et al. Numerical optimization of turbomachinery bladings[J]. Journal of Turbo machinery,2004, 126:91-100.
    120. Arensak, Rentropap,Stollb S O, et al. An adjoint approach to optimal design of turbine blades [J]. Applied Numerical Mathematics,2005,53:93-105.
    121. Wang X J, Damodaranm. Aerodynamic shape optimization using computational fluid dynamics and parallel simulated annealing algorithms[R]. AIAA Paper,2000, 2000-4847.
    122. Gu C G, Miao YM. Blade design of axial2flow compressors by the method of optimal control theory. Ⅰ:physical model and mathematical expression[J]. Trans ASMEJ of Turbomachinery,1987,109 (1):99-102.
    123. GU C G,MIAO Y M. Blade design of axial2flow compressors by the method of optimal control theory. Ⅱ:application of pontryagin's maximum principles,a sample calculation and its results[J]. Trans ASMEJ of Turbomachinery,1987,109 (1):103-107.
    124. Pierret S, Van Den Braemubussche R A. Turbomachinery blade design using a navier-stokes solver and artificial neural network [J]. ASME Journal of Turbomachinery,1999,121:326-332.
    125.谷传纲,阎日方,王彤.采用改进的BP神经网络预测离心通风机性能的研究[J].西安交通大学学报,1999,33(3):43-47.
    126.王晓锋,席光,王尚锦.离心压缩机叶轮的响应面优化设计Ⅰ:设计方法[J].工程热物理学报,2004,25(3):408-410.
    127. Triggma, Tubby G R, Sheard A G. Automatic genetic optimization approach to two dimensional blade profile design for steam turbines[J]. Journal of Turbomachinery, 1999,121:11-17.
    128.舒信伟,谷传纲,王彤,杨波.一种离心压缩机叶片优化设计方法[J],热能动力工程,2008,23(2):135-139
    129.吕玉坤,王建,张健,卢权.加装短叶片离心叶轮的参数优化及实验研究[J].热能动力工程,2008,23(2):131-134.
    130.关振群,罗阳军,王学军等.离心式叶轮三维参数化形状优化设计方法[J].机械强度,2006,28(6):833-868
    131.金向明,高德平,蔡显新等.整体离心叶轮叶片的振动可靠性分析[J].航空动力学报,2004,19(5):610-613
    132.徐燕申.机械动态设计[M].北京:机械工程出版社,1992
    133.董绍强,廖道训,陆永忠.摄动法在局部结构动力修改逆问题中的应用研究[[J].机械科学与技术,2001,20(6):801-805
    134.宋清华.高速旋转系统动态特性分析及优化方法研究[D].济南:山东大学,2006
    135.王东华,刘占生.基于遗传算法的转子结构优化设计[[J].汽轮机技术,2005,47(6):407-410
    136.毛海军,孙庆鸿,陈南等.基于BP神经网络的磨床主轴系统动态优化方法研究[J].制造业自动化,2000.22(12):39-41
    137.荣见华,郑健龙,徐飞鸿.结构动力修改及优化设计[M].北京:人民交通出版社,2002
    138.顾亮,胡琪琪.结构动力修改的拟力修改法[[J].北京理工大学学报,1997,17(5):533-538
    139.丁莉芬,缪龙秀.基于灵敏度分析的结构动力修改方法研究[[J].铁道学报,1999,21(1):17-19
    140. Y. -H. Park, Y. -s. Park. Structural modification based on measured frequency response functions:an exact eigenproperties reallocation [J]. Journal of Sound and Vibration,2000,237 (3):411-426
    141. Yong-Hwa Park, Youn-sik Park. Structure optimization to enhance its natural frequencies based on measured frequency response functions [J]. Journal of Sound and Vibration,2000.229 (5):1235-1255
    142. T. Y. Chen, B. P. Wang Optimal design of rotor-bearing systems with eigenvalue constraints [J]. Journal of Engineering for Gas Turbines and Power,1993,115: 256-260
    143. Ting Nung Shiau, Jon Li Hwang. Minimum weight design of a rotor bearing system with multiple frequency constraints [J]. Journal of Engineering for Gas Turbines and Power,1988,110:592-599
    144. Ting Nung Shiau, Jon Li Hwang. Optimum weight design of a rotor bearing system with dynamic behavior constraints [J]. Journal of Engineering for Gas Turbines and Power,1990,112:454-462
    145. Lin Yih-Hwang, A Lin, Sheng-cheng. Optimal Weight Design of Rotor Systems with Oil-film Bearings Subjected to Frequency Constraints [J]. Finite Elements in Analysis and Design,2001,37 (10):777-798
    146.姚学诗.大型汽轮发电机组转子—支承系统动态优化设计研究[D].南京:南京航空航天大学,2001
    147.姚学诗,周传荣.转子系统动力学优化设计[J].发电设备,2003,5,18-21
    148.黄太平,罗贵火.转子系统动力学优化设计[J].航空动力学报,1994,9(2)113-116
    149.秦然,张建伟.转子临界转速的求解方法比较[J].沈阳化工学院学报,2007,21(1):74-76
    150. Prohl M A. A new method for calculating critical speeds of flexible rotors [J]. J. of Appl.Mech, Trans ASME 1945 (3):142-148
    151. Wu F, Flowers G T. Transfer matrix technique for evaluating the natural frequencies and critical speeds of a rotor with multiple flexible disks [J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design,1992,114 (2):242-248
    152.曾焉,樊久铭.汽轮机转子动力学建模[J].电站系统工程,2007,23(4):27-28
    153.王宁峰,王桂红.基于ANSYS的转子临界转速计算[J].青海大学学报,2007,25(5):18-21
    154.朱向哲.转子系统稳态和瞬态不平衡响应的有限元分析[J].状态检测与分析,2007,28(2):58-61
    155.车仁炜,陆念力.汽轮发电机组转子一轮盘系统的动力分析[[J].汽轮机技术,2004.46(1):16-17
    156.张谦,曹磊.基于ansys的临界转速计算[J].振动工程学报,2004,17(S):234-237
    157.缪红燕,徐鸿,王斌.转子一支承系统临界转速的有限元法研究[[J].2002年全国振动(诊断、模态、噪声与结构动力学)工程及应用学术会议论文集,2002.10:16-19
    158. Newkirk B L. Shaft whipping [J]. General Electric Rev.,1924.27:169-178
    159.张文.转子动力学理论基础[M].北京:科学出版社,1990
    160. Newkirk B L. Journal bearing instability:A review [M]. Inst. Mech. Conf. on Lubr. and Wear, Oct.1957
    161. Lund J W. Review of the concept of dynamic coefficients for fluid film journal bearings [J]. J. of Tribology,1987.109:37-41
    162. H. L. Wettergren, K. O. Olsson. Dynamic instability of a rotating asymmetric shaft with internal viscous damping supported in anisotropic bearings [J]. Journal of Sound and Vibration,1996.195 (1):75-84
    163. V. J. Nolan, N. Sri Namachchivaya. Almost-sure stability of linear gyroscopic systems [J]. Journal of Sound and Vibration,1999,227 (1):105-130
    164. R. J. Mcdonald, N. Sri Namachchivaya. Parametric stabilization of a gyroscopic system [J]. Journal of Sound and Vibration,2002,255 (4):635-662
    165. Chung-Yi Lin, Lien-Wen Chen. Dynamic stability of a beam with a constrained damping layer [J]. Journal of Sound and Vibration,2003, (267):209-225
    166. S. P Sosnyts' kyi. On the stability of an equilibrium state of gyroscopic coupled systems [J]. Ukrainian Mathematical Journal,2003,55 (2):311-321
    167. B. W. Huang, H. K. Kung. Variations of instability in a rotating spindle system with various bearings [J]. International Journal of Mechanical Sciences,2003 (45):57-72
    168.徐龙详,朱均.大型汽轮发电机组轴系稳定性研究[J].机械工程学报,1992,28(3) :6-11
    169.李建国,朱均,虞烈.多个滑动轴承支承的转子系统稳定性研究[J].应用力学学报,1990,7(3):131-136
    170.朱均.转子-滑动轴承系统的稳定裕度[J].机械工程学报,1995,31(2):57-62
    171.张卫,朱均.转子-轴承系统稳定性灵敏度分析的广义能量法[J].机械工程学报,1997,33(4):98-103
    172. Kicinski J, Drozdowski R, Materny P. The nonlinear analysis of the effect of support construction properties on the dynamic properties of multi-support rotor systems. Journal of Sound and Vibration,1997,206 (4):523-539
    173. Ding J, Krodkiewski J M. Inclusion of static indetermination in the mathematical model for nonlinear dynamic analysis of multi-bearing rotor systems. Journal of Sound and Vibration,1993,164 (2):267-282
    174. Chan D S H. Nonlinear analysis of rotor dynamic instabilities in high-speed turbo-machinery. Journal of Engineering for Gas Turbines and Power,1996,118: 122-129
    175.郑惠萍,陈予恕,梁建术.滑动轴承转子系统非线性动力学稳定性[J].机械设计,2002,6:14-16
    176.郑惠萍,陈予恕,梁建术.滑动轴承不平衡弹性转子系统周期运动的稳定性[J].天津大学学报,2002,35(3):298-303
    177.闻邦椿,顾家柳,夏松波等.高等转子动力学—理论、技术与应用[M].北京:机械工业出版社,2000
    178.闻邦椿,武新华,丁千等.故障旋转机械非线性动力学的理论与实验[M].北京:科学出版社,2004
    179.黄文虎,夏松波,焦映厚等.旋转机械非线性动力学设计基础理论与方法[M].北京:科学出版社,2006
    180.孟光.转子动力学研究的回顾与展望[J].振动工程学报,2002,15(1):1-9
    181.黄文虎,武新华,焦映厚等.非线性转子动力学研究综述[J].振动工程学报,2000,13(4):497-509
    182. Muszynska A. Whirl and whip rotor bearing stability problems. Journal of Sound and Vibration,1986,110 (3):443-462
    183. Muszynska A. Stability of whirl and whip in rotor bearing systems. Journal of Sound and Vibration,1988,127 (1):49-64
    184. Adiletta G, Guido A R, Rossi C. Nonlinear dynamics of a rigid unbalanced rotor in journal bearings. Part Ⅰ:Theoretical analysis. Nonlinear Dynamics,1997,14:57-87
    185. Adiletta G, Guido A R, Rossi C. Nonlinear dynamics of a rigid unbalanced rotor in journal bearings. Part Ⅱ:experimental analysis. Nonlinear Dynamics,1997,14: 157-189
    186. Deepak J C, Noah S T. Experimental verification of sub-critical whirl bifurcation of a rotor supported on a fluid film bearing. Transactions of the ASME Journal of Tribology,1998,120:605-609
    187.徐忠.离心式压缩机原理[M].北京:机械工业出版社,1990
    188.姚红良.故障旋转机械动力学及诊断技术中若干问题的研究[D].沈阳:东北大学,2006
    189. R.Gasch. Vibration o f large turbo-rotors in fluid-film bearings on elastic foundation [J]. Journal of sound and vibration,1976,47 (1):53-73
    190.余光伟.多平衡轴齿轮—轴承—转子系统耦合振动的有限元分析[D].上海:上海大学,1999
    191.钟一谔,何衍宗,王正,等.转子动力学[M].北京:清华大学出版社,1987
    192.徐龙详.高速旋转机械轴系动力学设计[M].长沙:国防工业出版社,1993
    193. Yamamoto T, Ishida Y. Linear and Nonlinear Rotor dynamics-A Modern Treatment with Applications [M]. New York:John Wiley & Sons Inc.,2001.
    194. Van Leer B, Tai C H, Powell K G. Design of optimally smoothing multistage schemes for the Euler equations. AIAA Paper[J],1989,89-1933.
    195. Fischer K,Thoma D.Investigation of the flow conditions in a centrifugal pump[J]. Trans ASME,1932,54:141~153
    196. Nicholas J. C., Gunter E. J. and Allaire P. E. Stiffness and damping coefficients for the five-pad tilting-pad bearing, ASLE,1979,22 (2):113-124
    197. Lund, J. w. Spring and damping coefficients for the tilting-pad journal bearing, ASLE,1964,7,342-352
    198.陈魁.试验设计与分析[M].北京:清华大学出版社,2005
    199. Wachel J. C. Rotordynamic instability filed problems, Rotordynamic instability problems in high-performance turbomachinery, NASA Conference publication 2250, Texas A&M University,1982,1-19.
    200.美国石油协会标准API617-2002(石油、化学和气体工业用轴流、离心压缩机及膨胀机-压缩机)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700