用户名: 密码: 验证码:
基于宏模型技术的MEMS系统级仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微纳加工技术与集成电路制造工艺的不断发展与兼容,出现了CMOS-MEMS等多种新型集成制造工艺,使得MEMS产业从早期生产单个的MEMS器件发展到目前以片上系统(System on Chip, SOC)或者片内封装系统(System in Package, SiP)为代表性的,能实现MEMS功能结构器件与集成电路混合信号处理单元集成的复杂系统。MEMS中元器件的高集成度与系统功能的多样化要求面向MEMS的计算机辅助设计工具能够对MEMS整体行为进行快速建模和仿真分析。结构化设计思想的形成则使面向MEMS的系统级设计技术得到了长足的发展,目前应用基于MEMS宏模型技术的系统级设计工具来获得整个系统的行为特性已成为研究热点。本文结合目前MEMS系统中结构与电路单元的高度集成化与功能日趋复杂化的发展现状,重点针对MEMS多能量域耦合等非线性特点,主要做了以下研究工作:
     基于结构力学等基本理论,利用解析法建立了线性梁、非线性梁、刚性平板、弹性平板、静电间隙、静电梳齿、“V”形驱动器等常用MEMS规则结构的解析宏模型。将自建宏模型利用MAST硬件语言描述,可放入到CoventorWare软件ARCHITECT模块中的模型元件库。利用自建的模型元件与商业软件元件库中提供的结构和电路元件,设计并优化了一种片内集成拉伸测试结构,系统级仿真结果与有限元模型相比较表明建立的解析模型精度较高。
     提出了一种利用精化Arnoldi算法生成Krylov子空间,基于传递函数矩匹配原理在Krylov子空间上进行投影从而生成MEMS数值宏模型的方法。与传统Arnoldi方法相比精化投影方法能够提高对系统相关矩阵特征值的求解精度,相当于能更加准确的逼近系统传递函数的极点,得到的降阶模型精度更高,同时此方法还可以提高Krylov子空间降阶模型的有效阶数范围。利用Krylov子空间法建立了电热驱动微夹钳的电热结构耦合宏模型,仿真和实验结果表明了宏模型的有效性。
     提出了一种新的求解MEMS非线性动力问题的MOR-PIM方法。将基于Krylov子空间投影等模型降阶方法(Model Order Reduction, MOR)应用于精细积分法(Precise Integration Method, PIM)中,通过对指数矩阵的降阶处理,提高精细积分法的计算与存储效率,使精细积分算法更适用于多自由度变系数强非线性、非保守MEMS动力学系统,为MEMS系统级仿真方法提供新思路。
     根据MEMS CAD结构化的思想,结合精化Arnoldi算法和MOR-PIM方法,提出并开发了MEMS_DUT系统级仿真平台。整个过程以VC++6.0编译器为平台,通过对有限元软件ANSYS的二次开发建立器件有限元模型,利用封装MATLAB语言降阶算法得到的动态链接库对MEMS器件进行降阶以获取器件宏模型。将器件宏模型嵌入到系统级仿真平台仿真器Simulink中进行系统级仿真,来实现模拟分析整个系统的动态特性。
     利用MEMS_DUT仿真平台,对电热驱动的片内集成微拉伸测试结构,电热驱动和静电驱动的片内集成疲劳弯曲测试结构等进行了系统级仿真,验证了本平台系统级仿真分析的整个流程以及在效率和准确性等方面的性能。最后对精化Arnoldi降阶算法以及系统级仿真平台MEMS DUT需要进一步完善和改进的内容提出了若干建议。
With the appearance of CMOS-MEMS and other various new integrated manufacturing process for the continuous development and compatibility between the micro-nanofabrication technology and integrated circuit manufacturing process, the focus of MEMS production has changed from the early research of individual MEMS device to the current complex system integrated with functional structure of MEMS devices and circuits for mixed-signal processing unit, such as System on Chip (SOC) and System in Package (SIP) representatively. Rapid modeling and simulation on the overall behavior of MEMS devices by computer-aided design tools for MEMS are required for high integration and system functional diversification of MEMS components, and MEMS-design technology inspired by idea of structural designing achieves a significant development. System-level simulation methods based on macromodel which can get behavior characteristic of MEMS have become a famous research field specific to the across multiple coupled energy domains. Aiming at the requirements of fast system-level modeling and simulation as well as the characteristics of multiple energy domains interaction, research works in this paper are presented as follows:
     Analytical macromodels for linear beam, nonlinear beam, rigid plate, flexible plate, electrostatic gap, electrostatic comb, "V" shaped drive and other common regular structure for MEMS are established using the analytical method based on the basic theory of structural mechanics. Macromodels are described by MAST hardware language and put into the model library of ARCHITECT module in the CoventorWare software. An on-chip tensile testing structure is designed and optimized by the combined use of the self-built component models and the library structure and circuit elements in commercial software, achieving a high model accuracy according to system-level simulation results.
     A refined approach producing MEMS numerical macromodels is proposed by generating the iterative Krylov subspace using a refined Arnoldi algorithm, and project polycondensing the degree of freedom (DOF) of the original system equations described by the state space method in the Krylov subspace based on the transfer function moment matching principle. Compared with traditional methods, the refined approach improves approximation accuracy of the system matrix eigenvalues equivalent to a more accurate approximation to the poles of the system transfer function, obtaining a reduced-order model accuracy. Finite element reduced-order macromodel for V-shaped driven electrothermal microgripper is achieved using this method, and simulation results show that accuracy meets with general requirement. A new Model Order Reduction- Precise Integration Method (MOR-PIM) method for the solution of nonlinear dynamic problems in MEMS area is provided. Model Order Reduction method based on Krylov subspace projection is applied to the precise integration method to enhance its computing and storage efficiency by reduced-order processing the index matrix, therefore precise integration algorithm is more suitable for the nonlinear and non-conservative dynamical systems with multi-degree of freedom and variable coefficients, offering new ideas to system-level simulation.
     MEMS_DUT platform for system-level simulation is developed according to MEMS CAD structural idea. Finite element model (FEM) of the device developed secondary by ANSYS software is transformed to macromodel after reduced-order processing by the dynamic link library with MATLAB language of reduced-order algorithm encapsulated on the platform of VC++6.0 compiler throughout the whole flow, and dynamic characteristic of MEMS system is performed by the system-level simulation of macromodel built by embedding in Simulink which is the system-level simulation platform emulator.
     Finally, the on-chip tensile testing structures actuated by electrothermal V-shape beam and fatigue testing structures actuated by electrothermal and electrostatic methods respectively are system-level simulated on the MEMS_DUT simulation platform to verify the whole flow and the performance for accuracy and efficiency of the MEMS_DUT platform. And several advices about improving model order reduction algorithm and optimizing the system-level simulation tool has been proposed.
引文
[1]Bustillo J M, Howe R T, Muller R S, et al.Surface micromachining for micro-electromechanical System [J]. Proceedings of The IEEE,1998,86(8),1552-1574.
    [2]Kovacs G T A, Maluf N I, Petersen K E. Bulk micromachining of silicon [J]. Proceedings of the IEEE,1998,86(8),1536-1551.
    [3]Becker E W, Ehrfeld W, Hagmann P, et al. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process) [J]. Microelectronic Engineering,1986,4(1):35-56.
    [4]王立鼎,罗怡.中国MEMS的研究与开发进程[J].仪表技术与传感器,2003,1:1-3.
    [5]Feynman R P. There's plenty of room at the bottom, an invitation to enter a new field of physics [R]. USA,1959.
    [6]Petersen K E. Silicon as a mechanical material [J]. Proceedings of the IEEE,1982,70(5):420-457.
    [7]Fan L S, Tai Y C, Muller R S. IC-processed electrostatic micro-motors [C]. IEEE international electronic devices meeting,1988,666-669.
    [8]为国译.国际半导体技术发展路线图(ITRS)2009年版综述(2)[J].中国集成电路,2010,3:24-28.
    [9]Yole Development. Status of the MEMS industry 2010 report [R]. France,2010.
    [10]王立鼎,褚金奎,刘冲等.中国微纳制造研究进展[J].机械工程学报,2008,44(11):2-12.
    [11]李连喜.21世纪初科学发展趋势[M].北京:科学出版社,1996.
    [12]Computational science:Ensuring America's Competitiveness:President's information technology advisory committee [R].USA,2006.
    [13]高世桥,刘海鹏.微机电系统力学[M].北京:国防工艺出版社,2008.
    [14]Eringen A C. Linear theory of nonlocal elasticity and dispersion of plane waves [J]. I J Engi-eering Science,1972,10(5):425-435.
    [15]Nix W, Gao H. Indentation size effects in crystalline materials:a law for strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids,1998,46(3):411-425.
    [16]傅卫平,方宗德.微系统动力学中的若干非线性问题[J].力学进展,2002,32(1):17-25.
    [17]余隽,唐祯安,魏广芬.微电子机械系统中微尺度热物性研究进展[J].机械强度,2001,23(4):465-470.
    [18]Tzou D Y. Macro-tomicroscale heat transfer. The Lagging Behavior, Series in Chemical and Mechanical Engineering [M]. USA:Taylor&Francis,1996.
    [19]Aluru N R, White J. An efficient numerical technical for electromechanical simulation of complicated microelectromechanical structures [J]. Sensors and Actuators,1997,58(1):1-11.
    [20]Senturia S D, Aluru N, White J. Simulating the behavior of MEMS devices:Computational methods and needs [J]. IEEE Computational Science & Engineering,1997,4(1):30-43.
    [21]Aluru N R, White J. A multilevel Newton method for mixed-energy domain simulation of MEMS [J]. Journal of Microelectromechanical Systems,1999,8(3):299-307.
    [22]Lemkin M, Boser B E. A Three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics [J]. IEEE J. Solid-State Circuits,1999, SC-34: 456-468.
    [23]Senturia S D. CAD challenges for microsensors,microactuators,and microsystems [J]. Proceedings of the IEEE,1998,86(8):1611-1626.
    [24]Zhou N, Clark J V, Pister K S J. Nodal simulation for MEMS design using SUGAR v0.5 [C]. International Conference on Modeling and Simulation of Microsystems Semiconductors, Sensors and Actuators,1998:308-313.
    [25]Vandemeer J E. Nodal design of actuators and sensors [R]. Technical report:University of Carnegie Mellon,1998.
    [26]张海霞,郭辉,肖志勇,等.MEMS CAD系统IMEE的研究和开发[J].微纳电子技术,2003,(Z1):98-101.
    [27]常洪龙,苑伟政,马炳和.微机电系统集成设计方法与实现技术[J].中国机械工程,2004,15(10):72-76.
    [28]齐东周,褚金奎,关乐.MEMS降阶宏模型仿真平台研究[J].微计算机信息,2009,25(3):185-187.
    [29]孙道恒,马海阳,李文望.基于Krylov子空间法的MEMS降阶建模与仿真[J].机械工程学报,2004,40(5):58-61.
    [30]朱俊华,周兆英,叶雄英.微型机电系统的计算机辅助设计系统简介[J].仪表技术与传感器,2000,01:1-4.
    [31]孟为民,李伟华,黄庆安.MEMS的设计方法与系统模拟[J].传感器技术,2001,20(10):57-60.
    [32]Tilmans H A C. Equivalent circuit representation of electromechanical transducers:I. lumped-parameter dystems [J]. Journal of Micromechanics and Microengineering,1996,6(1): 157-176.
    [33]关乐,褚金奎,王晓东等.系统级设计方法及其在力学特性集成测试中的应用[J].传感技术学报,2006,19(5):1313-1318.
    [34]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [35]Gabby L D. Computer aided macromodeling for MEMS [D]. Massachusetts Institute of Technology, Cambridge, MA,1998.
    [36]Gabbay L D, Mehner J E, Senturia S D. Computer-aided generation of nonlinear reduced-order dynamic macromodels. Part I. non-stress-stiffened case [J]. Journal of Microelectromechanical Systems,2000,9(2):262-269.
    [37]Mehner J E, Gabbay L D, Senturia S D. Computer-aided generation of nonlinear reduced-order dynamic macromodels. Part II. stress-stiffened case [J]. Journal of Microelectromechanical Systems,2000,9(2):270-278.
    [38]Bennini F, Mehner J, Dotzel W. Computational methods for teduced order Modeling of coupled domain simulations [C]. Germany:Proceedings of the International Conference on Solid-State Sensors and Actuators:Transducers Munich,2001:260-263.
    [39]Nayfeh A H, Younis I M. A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping [J]. Journal of Microeletromechanical Systems,2004,14:170-181.
    [40]Rosenberg R M, Atkinson C P. On the natural modes and their stability in nonlinear two degrees of freedom systems [J]. Journal of Applied Mechanics,1959,26:377-385.
    [41]Shaw S W, Peirre C. Nonlinear normal modes and invariant manifolds [J]. Journal of Sound and Vibration,1991,150(1):170-173.
    [42]Westby E R, Fjeldly T A. Nonlinear analytical reduced-order models for MEMS [C]. San Juan, PR:Proceedings of the International Conference on Modeling and Simulation of Microsystems, 2002:150-153.
    [43]Xie W C, Lee H P, Lim S P. Nonlinear dynamic analysis of MEMS switches by nonlinear modal analysis [J]. Nonlinear Dynamics,2003,31:243-256.
    [44]Jolliffe I T. Principal component analysis [M]. New York:Springer-Verlag Inc,1986.
    [45]Hung E S, Senturia S D. Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulations runs [J]. Journal of Microelectromechanical Systems,1999,8:280-289.
    [46]Liang Y C, Lee H P, Lim S P, et al. Proper orthogonal decomposition and its applications part I: Theory [J]. Journal of Sound and Vibration,2002,252:527-544.
    [47]Liang Y C, Lin W Z, Lee H P, et al. Proper orthogonal Ddecomposition and its applications, part Ⅱ. Model reduction for MEMS dynamical analysis [J]. Journal of Sound and Vibration,2002, 256(3):515-532.
    [48]Lin W Z, Lee K H, Lim S P, et al. Proper orthogonal decomposition and component mode synthesis in macromodel generation for the dynamic simulation of a complex MEMS device [J]. Journal of Micromechanics and Microengineering,2003,13:646-654.
    [49]Guyan R J. Reduction of stiffness and mass matrices [J]. Journal of American Institute of Aeronautics and Astronautics,1965,3:380-381.
    [50]Moore B C. Principal component analysis in linear system:controllability, observability and model reduction [J]. IEEE Transactions on Automatic Control,1981,26(1):17-31.
    [51]Li J R. Model Reduction of large linear systems via low rank system gramians [D]. Massachusetts Institute of Technology,2000.
    [52]Datta B N. Numerical methods for linear control systems [M]. Elsevier Incorporation,2004.
    [53]Liu Y, Anderson B D O. Singular perturbation approximation of balanced systems [C]. Tampa, Florida:Proc. IEEE CDC,1989:1355-1360.
    [54]Kung S Y. Optimal Hankel-Norm model reductions:scalar systems [C]. San Francisco:Joint Automat Contr Conf,1980.
    [55]Antoulas A C, Sorensen D C. Approximation of large-scale dynamical systems:an overview [J]. International Journal of Applied Mathematics and Computational Science,2001,11(5): 1093-1121.
    [56]Serkan G.Projection methods for model reduction of large-scale dynamical systems [D]. Rice University, ECE Department,2002.
    [57]Arnoldi W E. The principle of minimized iterations in the dolution of the matrix eigenvalue problem [J]. Quart Appl Math,1951,9:17-29.
    [58]Lanczos C. An iteration method for the dolution of the eigenvalue problem of linear differential and integral operators [J]. Journal of Research of the National Bureau of Standards,1950,45: 255-282.
    [59]Bechtold T, Rudnyi E B, Korvink J G. Automatic order reduction of thermo-electric models for MEMS:Arnoldi versus Guyan [C]. Smolenice, Slovakia:Proceedings of the Fourth International Conference on Advanced Semiconductor Devices and Microsystems,2002:333-336.
    [60]Wang F, White J. Automatic model order reduction of a microdevice using the arnoldi approach [C]. Anaheim, CA:Proceedings of the International Mechanical Engineering Congress and Exposition,1998:527-530.
    [61]Bai Z, Bindel D, Clark J V, et al. New numerical techniques and tools in Ssugarfor 3D MEMS simulation [C]. Hilton Head Island, SC:Proceedings of the International Conference on Modeling and Simulation of Microsystems,2001:31-34.
    [62]Clark J V, Bindel D, Kao W, et al. Addressing the needs of Ccomplex MEMS design [C]. Las Vegas, NV:Proceedings of the International Conference on Micro Electro Mechanical Systems, 2002:204-209.
    [63]Srinivasan V, Jog A, Fair R B. Scalable macromodels for microelectromechanical systems [C]. Hilton Head Island, SC:Proceedings of the International Conference on Modeling and Simulation of Microsystems,2001:72-75.
    [64]Freund R W. Krylov-subspace methods for reduced-order modeling in vircuit dimulation [J]. Journal of Computational and Applied Mathematics,2000,123:395-421.
    [65]Feldmann P, Freund R. Efficient linear crcuit analysis by Pade approximation via the Lanczos Process [C]. IEEE Trans. Computer-Aided Design,1995:639-649.
    [66]Grimme E J. Krylov projection methods for model reduction [D]. Urbana-Champaign:University of Illinois,1997.
    [67]Gugercin S. Projection methods for model teduction of large-scale dynamical systems [D]. Houston:Rice University,2003.
    [68]Gugercin S. An Iterative SVD-Krylov based method for model reduction of large-scale dynamical systems [C]. Proceedings of the 44th IEEE Conference on Decision and Control,2005: 5905-5910.
    [69]Chen J, Kang S M. Model-order reduction of weakly nonlinear MEMS devices with Taylor series expansion and Arnoldi process [C]. Lansing, MI:Proceedings of the IEEE Midwest Symposium on Circuits and Systems,2000:248-251.
    [70]Rewienski M, White J. A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices [C]. IEEE Trans, on CAD of IC Systems,2003,22:155-170.
    [71]Phillips J R. Projection-based approaches for model reduction of weakly nonlinear, time-varying systems [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2003,22(2):171-187.
    [72]Shi G Y, Hu B, Shi C-J R. On symbolic model order reduction [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2006,25(7):1257-1272.
    [73]Feng L H, Rudnyi E B, Korvink J G. Preserving the film coefficient as a parameter in the compact thermal model for fast electro-thermal simulation [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2005,24(12):1838-1847.
    [74]Saber MAST language reference manual [M]. USA:Synopsys, Inc,2004.
    [75]Qi Jing. Modeling and simulation for design of suspended MEMS [D]. Carnegie Mellon University,2003.
    [76]普齐米尼斯基.矩阵结构分析理论[M].北京:国防工业出版社,1974.
    [77]铁摩辛柯,古地尔.弹性理论[M].北京:高等教育出版社,1990.
    [78]Que L, Park J S, Glanchiandani Y B. Bent-beam electrothermal actuators Part 1, Single beam and cascaded devices [J]. J. Microelectromech. Syst.,2001,63(5):247-254.
    [79]褚金奎,郝秀春,关乐,王立鼎.柔性电热镍微夹钳结构设计及加工测试研究[J].大连理工大学学报,2007,47(3):363-367.
    [80]张永宇.V型电热硅微致动器性能及其应用研究[D].上海:上海大学,2006.
    [81]苏才钧,吴昊,郭占社等.微构件材料力学性能测试方法[J].实验力学,2005,20(3):123-129.
    [82]Srikar V T, Spearing S M.A. Critical review of microscale mechanical testing methods used in the design of microelectromechanical systems [J]. Society for Experimental Mechanics,2003, 43(3):238-247.
    [83]Nagel L W. SPICE2:A computer program to simulate semiconductor circuits, ERL-M520 [D]. Berkeley:University of California,1975.
    [84]Gildenblat G, Li X, Wu W, et al. PSP:An advanced surface-potential-based MOSFET model for circuit simulation [J]. IEEE Trans. Electron Dev.,2006,53(9):1979-1993.
    [85]Hestenes M R, Stiefel E. Methods of conjugate gradients for solving linear systems [J]. J Res Nat Bur Stand,1952,49:409-436.
    [86]Axelsson O. Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations [J]. Linear Algebra Appl,1980,29:1-16.
    [87]Young D M, Jea K C. Generalized conjugate gradientacceleration of nonsymmetriable methods [J]. Linear Algebra Appl,1980,34:159-194.
    [88]Eisentat S C, Elman H C, SchultzM H. Variational iterative methods for nonsymmetric systems of linear equations [J]. SIAM J Numer Anal,1983,20:345-357.
    [89]Saad Y, Schultz M H. GMRES:a generalized minimal residual algorithm for solving nonsymmetric linear systems [J]. SIAM J Sci Stat Comput,1986,7:856-869.
    [90]Nachtigal N M, Reichel L, Refethen L N. A hybrid GMRES algorithm for nonsymmetric linear systems [J]. SIAM J Matrix Anal Appl,1992,13:796-825.
    [91]Morgan R B. A restarted GMRES method augmented with eigenvectors [J]. S IAM J Matrix Anal Appl,1995,16:1154-1171.
    [92]Zhong B J. Implemetat ion of the hybrid GMRES algorithm using Householder transformations [J].Transactions of Nanjing University of Aeronatuics &Astronautics,1997,14:146-152
    [93]Sad Y. The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems [J]. SIAM J Numer Anal,1982,19:485-506.
    [94]Clint M. Jennings A. The evaluation of eigenvalue and eigenvectors of real symmetric matrices by simultaneous iteration [J]. The Computer Journal,1970,13(1):76-80.
    [95]Sleijpen G L G, Van der Vorst H A. A Jacobi-davidson iteration method for linear eigenvalue problems [J]. SIAM J Matrix Anal. Appl.,1996,17:401-425.
    [96]Pillage L T, Rohler R A. Asymptotic waveform evaluation for timing snalysis [J]. IEEE Transactions on ComPuter-Aided Design of Integrated Cireuits and Systems,1990,9(4): 352-366.
    [97]Odabasioglu A, Celik M. PRIMA:passive reduced-order interconnect macromodeling algorithm [J]. IEEE Trans. Computer-Aided Design,17(8):645-654.
    [98]Freund R W. SPRIM:Strueture-preserving redueed-order interconnect macromodeling [C]. Proceedings dofd IEEE/ACM International Conference on Computer-Aided Design,2004:80-87.
    [99]Bai Z J, Su Y F. Second-order Krylov subspace and arnoldi Procedure [J]. Journal of Shanghai University,2004,8(4):378-390.
    [100]Lehoucq R B, Sorensen D C. Deflation techniques for an implicitly restarted Arnoldi iteration [J]. SIAM journal on matrix analysis and applications,1996,17(4):789-821.
    [101]Jia Z X. Refined iterative algorithms based on Arnoldi's process for large unsymmetric eigenproblems [J]. Linear Algebra Appl.1997,259:1-23.
    [102]Jia Z X. A refined iterative algorithm based on the block Arnoldi process for large unsymmetric eigenproblems [J]. Linear Algebra Appl.1998,270:171-189.
    [103]Jia Z X. A class of new projection methods for non-Hermitian matrix eigenproblems [C]. Beijing and New York:Proceedings of the third China-Japan seminar on numerical mathematica, Academic press,1998:82-92.
    [104]Jia Z X. Composite orthogonal projection methods for large eigenproblems [J]. Science in China (Series A),1999,42:577-585.
    [105]Jia Z X, Stewart G W. An analysis of the Rayleigh-Ritz method for approximating eigenspaces[J]. Mathematics of Computation,2001,70(234):637-647.
    [106]Jia Z X.A refined subspace iteration algorithm for large sparse eigenproblems [J]. Applied Numerical Mathematics,2000,32(1):35-52.
    [107]Jia Z X. Some theoretical comparisons of refined Ritz vectors and Ritzvectors [J]. Science in China series A-Mathematics,2004,47:222-233.
    [108]Jia Z X. The refined harmonic Arnoldi method and an implicitly restarted refined algorithm for computing interior eigenpairs of large matrices [J]. Applied Numerical Mathematics,2002,42(4): 489-512.
    [109]Jia Z X. Some numerical methods for large unsymmetric eigenproblems [D]. Germay: Department of Mathematics, University of Bielefeld,1994.
    [110]Antoulas A C, Sorenson D C, Gugercin S. A survey of model reduction methods for Large-Scale systems [J]. Contemporary Mathematics,2001,280:193-219.
    [111]Bai Z J. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems [J]. Applied Numerical Mathematics,2002,43(1-2):9-44.
    [112]郝秀春,褚金奎,王立鼎,关乐.电热微夹钳的热效应分析和数值模拟[J].中国机械工程,2005,16(14):1269-1272.
    [113]ANSYS Theory Reference [M]. USA:ANSYS Inc,1999.
    [114]Rudnyi E B, Lienemann J, Greiner., et al. MorANSYS:Generating compact models directly from ANSYS models [C]. Nanotech:Technical Proceedings of the 2004 Nanotechnology Conference and Trade Show,2004.
    [115]Getreu I, Behavioral modelling of analog blocks using the SABER dimulator [C]. Proceedings on Microwave Circuits and Systems,1989,977-980.
    [116]Zhong W X, Williams F W. A precise time step integration method [J]. Journal of Mechanical Engineering Science,1994,208,427-430.
    [117]林家浩,沈为平,宋华茂.结构非平稳随机响应的混合型精细积分[J].振动工程学报,1995,8(2):127-135.
    [118]Gu Y X, Chen B S, Zhang H W, et al. Precise time-integration method with dimensional expanding for structural dynamic equations [J], AIAA Journal,2001,39,2394-2399.
    [119]张森文,曹开彬.计算结构动力响应的状态方程直接积分法[J].计算力学学报,2000,17(1):94-97.
    [120]Hochbruck M, Lubich C. On Krylov subspace approximations to the matrix exponential operator [J]. SIAM Journal on Numerical Analysis,1997,34(5):1911-1925.
    [121]Fung T C, Chen Z L. Krylov precise time-step integration method [J]. International journal for numerical methods in engineering,2006,68:1115-1136.
    [122]张洪武.关于动力分析精细积分算法精度的讨论[J].力学学报,2001,33(6):847-852
    [123]刘勇,沈为平.精细时程积分中状态转换矩阵的自适应算法[J].振动与冲击,1995,2:82-85.
    [124]汪梦甫,周锡元.结构动力方程的高斯精细时程积分法[J].工程力学,2004,21(4):13-16.
    [125]齐东周.基于降阶宏模型的MEMS系统级仿真平台研究[D].大连:大连理工大学,2008.
    [126]Duff I S, Grimes R G, Lewis J G. The rutherford-boeing sparse matrix collection [C]. Oxon: Department for Computation and Information, Atlas Centre,1997.
    [127]王世香.精通MATLAB接口与编程[M].北京:电子工业出版社.2007.
    [128]Chu J K, Zhang D Q. Mechanical characterization of thermal SiO2 micro-beams through tensile testing [J]. Journal of Micromechanics and Microengineering,2009,19(9):950-960.
    [129]Zhang D Q, Chu J K. Mechanical characterization of electroplated Ni films by micro-tensile Testing [J]. Chinese Journal of Mechanical Engineering,2009,22(4):557-561.
    [130]Gao J L, Guan L, Chu J K. Determining the Young's modulus of SU-8 negative photoresist through tensile testing for MEMS applications [C].6th International Symposium on Precision Engineering Measurements and Instrumentation,2010,7544-7548.
    [131]北京大学MEMS国家重点实验室.两层多晶硅表面牺牲层标准工艺流程介绍及设计规则[R].北京,2004.
    [132]贾仲孝,陈桂芝.解大规模非对称矩阵特征问题的精化Arnoldi方法的一种变形[J].数值计算与计算机应用,2003,2:101-110.
    [133]Kahn H, Ballarini R, Heuer A H. Surface Oxide Effects on Static Fatigue of Polysilicon MEMS [C]. Materials Research Society, symposium J,2002:J3.4.
    [134]Muhlstein C L, Stach E A, Ritchie R O. A Reaction-Layer Mechanism for the Delayed Failure of Micron-Scale Polycrystalline Silicon Structural Films Subjected to High-Cycle Fatigue Loading [J]. Acta Materialia 50,2002:3579-3595.
    [135]Kahn H, Ballarini R, et al. Fatigue Failure in Polysilicon Not Due to Simple Stress Corrosion Cracking [J]. Science 298,2002:1215-1218.
    [136]Sitaraman. I, Tamal M, and Gary K F.Multi-Mode Sensitive Layout Synthesis of Microresonators [C].Proc. of the 1998 Int. Conf. on Modeling and Simulation of MicrosystemsSemiconductors, Sensors and Actuators (MSM'98),1998.
    [137]Gary K F. Simulation of Microelectromechanical Systems [D]. University of California at Berkeley,1994.
    [138]Tang W C. Electrostatic comb drive for resonant sensor and actuator applications [D]. University of California at Berkeley,1990.
    [139]GEMAC Inc.HT133 evaluation circuit for capacitive sensorsd [Z].2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700