用户名: 密码: 验证码:
基于改进支持向量机和纹理图像分析的旋转机械故障诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机械设备不断向高速化、重载化和复杂化方向发展,人们对其运行可靠性和安全性的要求也越来越高。采用有效的模式识别方法实现机械设备的高精度智能故障诊断,对保障设备的高效运行和安全生产具有重要意义。本文以轴承和刀具为对象,围绕故障分类识别和故障特征提取这两个核心问题,重点研究基于改进支持向量机的故障分类方法和基于纹理分析的故障特征提取方法及其在工程实际中的应用。本文研究内容和成果主要体现在以下几方面:
     1)基于支持向量机的智能故障诊断方法是目前研究的热点。为克服模型参数选择随意性对支持向量机分类性能的不利影响,提出了基于人工蜂群算法优化的支持向量机故障分类方法,并将其应用于滚动轴承的智能故障诊断。该方法以分类错误率的倒数作为适应度函数,利用人工蜂群算法对支持向量机参数进行优化选择。通过UCI标准数据集验证,证明本文提出的方法兼顾了对局部最优解和全局最优解的搜索,克服了传统优化方法易陷入局部最优解的缺陷,获得了更高的识别正确率,并且在小数目分类问题上有效地降低了搜索最优参数所需的时间。将该方法应用于实测轴承故障数据实验,获得了较高的故障识别正确率。
     2)刀具磨损状态的自动识别是一种小样本条件下的模式识别问题,在特定的加工条件下只能获取非常有限的训练样本。针对这一问题,提出一种基于改进超球面支持向量机的故障分类方法,并将其应用于刀具磨损状态的自动识别。该方法提取切削力与振动信号中的多项特征,对各项特征分别进行刀具磨损量相关性分析,选择与刀具磨损变化量最相关的均值、均方根、小波系数能量以及小波系数近似熵组成特征向量。在分类器方面,考虑到各类样本的疏松程度不同,利用引力法对超球面支持向量机的决策函数进行改进,经过优化分析得到最佳分类引力公式。采用改进的超球面支持向量机作为分类器,实现了刀具磨损状态的自动识别。实验证明,在小样本学习情况下,基于改进超球面支持向量机的刀具磨损状态识别方法具有良好的学习和泛化能力,可获得较高的识别正确率。
     3)作为故障信息多维特征提取方法的基础,首先对基于支持向量机的纹理分析方法进行研究。针对纹理图像分割中的训练样本自动获取问题,提出了一种基于模糊C均值算法的支持向量机半监督图像分割方法。该方法首先采用改进的Laws能量测度法对原始图像进行特征提取,对获取的特征图像进行分块处理以获得若干窗口,采用模糊C均值算法对图像平滑区域所在窗口的特征向量进行分类并获取类别标记,将特征向量和获取的类别标记作为模糊支持向量机的训练样本,从而实现了训练样本的自动获取。进而利用训练好的模糊支持向量机对非平滑区域进行精细分类。最终将模糊C均值和模糊支持向量机的分类结果组合形成最终的分类结果图像。采用随机选取的Brodatz纹理集中的纹理图像对上述算法进行测试,得到了较高的分割正确率,从而验证了本文算法的有效性,并为下一章时频分布图二维故障特征提取算法的研究提供理论基础。
     4)特征提取对故障诊断的分类结果具有至关重要的影响。S变换得到的等高线时频图和Hilbert-Huang变换得到的Hilbert谱时频图包含了丰富的二维图像信息。在纹理图像自动分割方法的研究基础上,探讨了将图像处理领域中的纹理分析方法应用于一维信号时频分布图的故障特征提取问题。首先对灰度化的S变换等高线时频图和Hilbert谱时频图进行二维离散小波变换,利用Laws能量测度法计算各频道小波图像的灰度均方差作为能量特征并组成特征向量,从而建立了有效的从一维原始信号到二维纹理图像特征的映射模型。以支持向量机作为分类器,通过滚动轴承实测故障数据对上述方法进行验证,实验结果证明了上述特征提取算法的有效性和可行性。
     5)针对目前国内高档数控机床对状态监测与故障诊断功能的需求,研究开发网络架构下机床整机智能监测诊断试验平台。重点针对笔者开发的强耦合状态监测单元信号采集技术、远程机床状态监测与故障诊断系统软件功能以及实现二者无缝信息交互的TDNC-Connect传输协议三方面进行阐述,构建出嵌入支持向量机智能故障诊断方法的网络架构下机床整机智能监测诊断试验平台,一体化地实现高档数控机床的状态可显示、性能可预报、故障可诊断、远程可监控。最终在工程实际中验证了该平台的可靠性与有效性。
People's demand for operational reliability and safety of the mechanical equipment was higher and higher with the development of the mechanical equipment towards high speed, heavy load and complication. It was very significant for equipment's efficient operation and manufacture safety to implement high precision intelligent fault diagnosis with effective pattern recognition methods. Taking the bearing and tool as the study object, Research was carried out around the two core problem of fault classification and fault feature extraction. The key problem were the fault classification methods based on the improved support vector machine and the fault feature extraction methods based on texture analysis, and the engineering application of these methods.
     The content and results in this paper is as follows:
     1) Fault diagnosis methods based on support vector machine was the research hotspot. To overcome the adverse effects of randomicity of model parameters, a parameter optimized support vector machine was proposed, which was based on artificial bee colony algorithm, and it is applied to bearing fault diagnosis. In this method, the inverse of classification error rate is used as fitness value, and the artificial bee colony algorithm is used to optimize the penalty factor and kernel parameter of support vector machine. Through the test of UCI dataset, it is proved that the proposed method, taking both the local optimal solution search and global optimal solution search into account, overcomes the defect that traditional optimization method tends to stuck in local optimal solution, and high recognition rate is acquired. The cost time of searching optimized parameters of small number classification problem is also reduced. At last, the proposed method is used in bearing fault diagnosis experiment, and high recognition rate is acquired.
     2) Tool wear state recognition was a pattern recognition problem under the small samples condition. Only a small quantity of training samples could be acquired under the specific processing condition. To solve the problem, A tool wear state recognition method based on improved hyper-sphere support vector machine was proposed after research. In this method, features were extracted from cutting force signal and vibration acceleration signal, and through correlation analysis the ultima feature vectors were composed of the mean value, RMS, the energy value and the approximate entropy of low frequency band obtained from wavelet transform. In the aspect of classification algorithm, considering the difference of samples’distribution, gravitation method was used to improve the decision function of hyper-sphere support vector machine for acquiring the optimized classification formula. The improved hyper-sphere support vector machine was adopted as classifier to implement tool wear state automatic recognition. Prove by experiment, the proposed method based on hyper-sphere support vector machine had great generalization and learning ability, and high recognition rate could be achieved.
     3) As the basis of multi-dimension fault information feature extraction method, the texture analysis method based on support vector machine was researched. A support vector machine half-supervised machine learning method based on fuzzy C-mean algorithm objective to feature vector automatic acquirement was proposed and used in texture image segmentation. In this method, an improved Laws energy measure method was adopted as feature extraction method. Feature image was segmented into several blocks and fuzzy C-mean algorithm was adopted to classify the pixels’feature vector in smooth block and to acquire the class marks. The feature vectors and class marks were treated as the training samples of fuzzy support vector machine to implement automation of training sample acquirement. Then the trained support vector machine was used to classify the feature vectors in unsmooth block to implement the high precision texture segmentation. The final classification image was composed of the classification marks of fuzzy C-mean algorithm and fuzzy support vector machine. Some texture image from Brodatz set was chosen to test the proposed method, and high precision rate was achieved. The theoretical basis of time-frequency distribution map feature extraction algorithm in next chapter was also provided.
     4) Feature extraction played an important role in fault diagnosis classification. The time-frequency contour map by S transform and Hilbert spectrum map by Hilbert-Huang transform contained rich two-dimension information. Base on the research of texture image segmentation method in previous chapter, the fault feature extraction problem, which was about how to apply the texture analysis method in image processing field to one-dimension signal’s time-frequency distribution map feature extraction, was discussed in this chapter. Firstly, two-dimension discrete wavelet transform was applied to time-frequency contour gray image by S transform and Hilbert spectrum gray image by Hilbert-Huang transform, then Laws energy measure method was used to calculate the mean square deviation of wavelet image of every channel as the feature, then the features were composed into feature vector. As a result, an effective mapping model corresponding one-dimension signal to two-dimension texture feature was built. At last, using the support vector machine as classifier, the feature extraction method was approved effective and feasible through bearing fault diagnosis experiment.
     5) Directing towards the function requirement of condition monitoring and fault diagnosis on high-grade numerical control machine, research and development on networking numerical control machine overall unit intelligent monitoring and diagnosis experiment platform was made. The author's main work of signal acquisition technology on the strong coupling condition monitoring unit, software function of remote numerical control machine condition monitoring and fault diagnosis system and TDNC-Connect transport protocol for seamless information interaction were expounded. The purpose was constructing the networking numerical control machine overall unit intelligent monitoring and diagnosis experiment platform with support vector machine fault classifier. Through the platform the function of condition display, performance forecast, fault diagnosis and remote monitoring aiming at numerical control machine were implemented. The reliability and effectiveness of this platform was proved through engineering application.
引文
[1]杨叔子,基于知识的故障诊断技术,北京:清华大学出版社, 1993, 1~5
    [2]何正嘉,陈进,王太勇,等.机械故障诊断理论及应用,北京:高等教育出版社, 2010.1~5
    [3]周东华,叶银忠,现代故障诊断与容错控制,北京:清华大学出版社, 2000
    [4]梁芬,王改云,朱名日,远程故障诊断技术的发展及应用研究综述,机电工程, 2007, 24(8): 17~25
    [5]朱大奇,电子设备故障诊断原理与实践,北京:电子工业出版社, 2004, 1~5
    [6]谢建,何德虎,李良,基于观测器和神经网络的液压系统故障诊断方法研究,机床与液压, 2011, 39(1): 135~140
    [7]周东华,胡艳艳,动态系统的故障诊断技术,自动化学报, 2009, 35(6): 748~758
    [8] Rolf Isermann, Model-based fault-detection and diagnosis– status and applications, Annual Reviews in Control, 2005, 29: 71~85
    [9]黄元亮,钱清泉,肖腾蛟,智能故障诊断方法及其应用,计算机工程, 2010, 36(14): 150~153
    [10]何友,王国宏,陆大金等,多传感器信息融合及应用,北京:电子工业出版社, 2000, 1~5
    [11]何德虎,谢建,李良,一种基于小波特征熵的液压系统故障信号去噪方法,噪声与振动控制, 2010, 6: 171~175
    [12] Zhiyang Mao, Shuang Lu, Fault pattern recognition of rolling bearing based on K-L transformation and support vector machine, Coal Mine Machinery, 2006, 27(6): 1084~1086
    [13] Jian-Da Wu, Peng-Hsin Chiang, Yo-Wei Chang, et al, An expert system for fault diagnosis in internal combustion engines using probability neural network, Expert System with Applications, 2008, 34(4): 2704~2713
    [14] Igor Kononenko, Machine learning for medical diagnosis: history, state of the art and perspective. Artificial Intelligence in Medicine, 2001, 23(1): 89~109
    [15] Serguei V. S. Pakhomov, James D. Buntrock, Christopher G. Chute, Automating the assignment of diagnosis codes to patient encounters using example-based and machine learning techniques, Journal of the American Medical Informatics Association, 2006, 13(5): 516~525
    [16]马昕,刘长龙,张贝克,一种基于机器学习的专家系统知识获取方法,北京化工大学学报, 2008, 35(5): 89~93
    [17]李敏,何平,孟臣,螺杆泵井智能集成故障诊断专家系统研究,哈尔滨工业大学学报, 2010, 42(7): 1038~1042
    [18]蔡猛,张大发,张宇声,等,基于故障树分析的核动力装置实时智能故障诊断专家系统设计, 2010, 44: 373~378
    [19]王宇,严宏志,樊广军,谢红清,多参量状态监测与故障诊断系统数据库技术研究,计算机应用, 2007, 27(2): 431~435
    [20]刘剑,陈一超,江虹,基于规则的通用专家知识库故障诊断方法,计算机与数字工程, 2010, 38(6): 72~75
    [21]吴轲,童敏明,童紫原,等,旋转机械不平衡故障专家诊断系统的研究,煤矿机械, 2010, 31(9): 241~244
    [22]赵丙文,李锐,基于规则的轴向柱塞泵故障诊断专家系统设计与应用,制造业信息化, 2010, 10:66~69
    [23] Ruqiang Li, Jin Chen, Wu Xing, Fault diagnosis of rotating machinery using knowledge-based fuzzy neural network, Applied Mathematics and Mechanics, 2006,27(1): 99~108
    [24] Zengbing Xu, Jianping Xuan, Tielin Shi, et al, A novel fault diagnosis method of bearing based on improved fuzzy ARTMAP and modified distance discriminant technique, Expert System with applications, 2009, 36(9): 11801~11807
    [25] Antonio Sala, Thierry Marie Guerra, Robert Babuska, Perspectives of fuzzy systems and control. Fuzzy Sets and Systems, 2005, 156(3): 432~444
    [26] A. R. Rao, V. V. Srinivas, Regionalization of watersheds by fuzzy cluster analysis, Journal of Hydrology, 2006, 318(1~4): 57~79
    [27]宋政辉,税爱社,李明,基于模糊定性趋势分析的故障诊断方法研究,计算机测量与控制, 2009, 17(11): 2164~2167
    [28]李奇林,杨烈,白雅娟,基于模糊数学的通井机故障诊断专家系统,工程机械, 2010, 41: 20~24
    [29] S. Srinivasan, P. Kanagasabapathy, N. Selvaganesan, Fault diagnosis in deaerator using neural networks, Iranian Journal of Electrical and Computer Engineering, 2007, 6(1): 62~67
    [30]聂彩丽,赵晓顺,陈会莲,刘淑霞,现代农业机械故障诊断技术的发展,农机化研究, 2007, 9: 229~231
    [31] Hong Rao, Meizhu Li, Mingfu Fu, Equipment diagnosis method based on Hopfield-BP neural networks, Proceedings of International Conference on Advanced Computer Theory and Engineering, Phuket, Thailand, 2008: 20~22
    [32] Wenyu Chen, Xiaobin Wang, Shixin Sun, and Jingbo Liu. A method of remote fault diagnosis based on multilayer SOM, Proceedings of IEEE Conference on Cybernetics and Intelligent Systems, Chengdu, China, 2008: 21~24
    [33]蒋维,钟小强,陈开,李炎,基于优化的支持向量机的机械设备多故障诊断模型,计算机应用与软件, 2009, 26(1): 62~63
    [34] Y. Selaimia, H. A. Abbassi and A. Loudjani. Multi neural network based approach for dault detection and diagnosis of a DC motor. Journal of Engineering and Applied Sciences, 2006, 1(2): 143~148
    [35]焦爱红,袁力哲,陈燕生,基于AGA-BP算法的智能故障诊断技术研究,机床与液压, 2011, 39(5):121~125
    [36]曹凤才,魏秀业,潘红侠,基于动态惯性权重粒子群算法的齿轮箱故障诊断研究,太原理工大学学报, 2011, 42(2):145~149
    [37]曹龙汉,武明亮,何俊强,等,基于DE-SVM的柴油机气门故障诊断方法及应用,仪器仪表学报, 2011, 32(2):324~329
    [38]贾嵘,洪刚,武桦,等,基于IPSO优化LSSVM的水轮发电机组振动故障诊断,水利学报, 2011, 42(3):373~379
    [39]蒋静芝,孟相如,李欢,等,减法聚类-ANFIS在网络故障诊断的应用研究,计算机工程与应用, 2011, 47(8):76~79
    [40]谢志勇,基于DSP和BP神经网络的旋转机械在线故障诊断系统,仪表技术与传感器, 2011, 42(3):155~159
    [41]郝研,王太勇,基于分形理论的便携式故障诊断系统的设计与开发,仪器仪表学报, 2010, 31(2): 2742~2746
    [42] Gang Niu, Tian Han, Bo-Suk Yang, Andy Chit Chiow Tan, Multi-agent decision fusion for motor fault diagnosis, Mechanical Systems and Signal Processing, 2007, 21(3): 1285~1299
    [43]李强,王太勇,等,基于EMD和支持向量数据描述的故障智能诊断,中国机械工程, 2008, 19(22): 2178~2184
    [44] Wang. W. H., Zhou. D. H., Robust state estimation and fault diagnosis for uncertain hybrid systems, Nonlinear Analysis-Theory Methods & Applications, 2006, 65: 2193~2215
    [45] He. X., Wang. Zi. Dong., Ji. Y. D., et al, Network-based fault detection for discrete-time state-delay systems: A new measurement model, International Journal of Adaptive Control and Signal Processing, 2008, 22(5): 510~528
    [46] Bagheri. F., Khaloozaded. H., Abbaszadeh. K., Stator fault detection in induction machines by parameter estimation, using adaptive Kalman filter, Proceedings of 2007 Mediterranean Conference on Control and Automation, Tehran, 2007: 1~6
    [47] Yavuz Kilagiz, Ahmet Baran, Zerrin Yildiz, Murat Cetin, A fuzzy diagnosis and advice system for optimization of emissions and fuel consumption, Expert Systems with Applications, 2005, 28(2): 305~311
    [48] Jie Li, Shituan Shen, Research on the algorithm of avionic device fault diagnosis based on fuzzy expert system. Chinese Journal of Aeronautics, 2007, 20(3): 223~229
    [49]冯长建,丁启全,吴昭同,混合SOM和HMM方法在旋转机械升速全过程故障诊断中的应用,中国机械工程, 2002, 13(20): 1711~1715
    [50]冯惊雷,张喜斌,张恒喜,一种新型粗糙集神经网络的故障诊断方法,火力与指挥控制. 2007, 32(1): 84~87
    [51]冯志鹏,杜金莲,宋希庚,等,粗糙集与神经网络集成在故障诊断中应用研究,大连理工大学学报, 2003, 43(1): 70~76
    [52]冯志鹏,宋希庚,薛冬新,基于粗糙集与神经网络集成的内燃机故障诊断,内燃机学报, 2003, 21(1), 75~80
    [53]耿志强,朱群雄,基于粗糙神经网络的故障诊断方法研究与应用,计算机应用, 2003, 23(S2): 194~196
    [54]谭天乐,宋执环,李平,基于粗糙集的故障诊断方法,浙江大学学报, 2003, 37(1): 47~50
    [55] B. Boser, I. Guyon, V. vapnik, A training algorithm for optimal margin classifiers, Proceedings of the 5th Annual ACM Conference on Computational Learning Theory, Pittsburgh, PA, USA. ACM Press, 1992: 144~152
    [56] V. Vapnik著,张学工译,统计学习理论的本质,北京:清华大学出版社, 2000, 2~3
    [57] C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, 1995, 20(3): 273~297
    [58] N. Cristianini, J. Shawe-Tayor著,李国正,王猛,曾华军译,支持向量机导论,北京:电子工业出版社, 2004, 344~365
    [59]邓乃扬,田英杰,数据挖掘中的新方法——支持向量机,北京:科学出版社, 2004, 78~82
    [60] Hongliang Wang, Yangwen Huang, Haifei Ding, Application of support vector machine and quantum genetic algorithm in infrared target recognition, Proceedings of SPIE-The International Society for Optical Engineering, Xi'an, China, 2010: 35~40
    [61] Liu Ting, Wen Xianbin, Quan Jinjuan, Multiscale SAR image segmentation using support vector machines, Proceedings of 1st international congress on image and signal processing, 2008: 706~709
    [62] Rojas Marta, Plaza Antonio, Comparison of support vector machine-based processing chains for hyper-spectral image classification, Proceedings ofSPIE-The International Society for Optical Engineering, San Diego, USA, 2010: 781~786
    [63] Li Weihua, Liu Wen, Gear incipient fault diagnosis using graph theory and transductive support vector machine, Journal of Mechanical Engineering, 2010, 46(23): 82~88
    [64]张慧档,贺昱曜,基于混沌序列的SVM参数选择及其在笔迹鉴别中的应用,计算机应用, 2007, 27(8): 1961~1964
    [65]顾幸生,潘晔,卢胜利,基于改进支持向量机的作物叶水势软测量建模,同济大学学报(自然科学版), 2010, 38(11):1669~1674
    [66]刘智国,张雅明,林立忠,基于粒子群LSSVM的网络入侵检测,计算机仿真, 2010, 27(11):136~139
    [67]刘雷,胡秀珍,基于添加模体信息和功率谱密度的组合向量预测27类蛋白质折叠子,生物物理学报, 2010, 26(9): 823~832
    [68]印勇,王云,刘丹平,血细胞图像分割的改进MEANSHIFT方法,计算机工程与应用, 2010, 46(6): 178~184
    [69]孙宗海,杨旭华,孙优贤,基于支持向量机的模糊回归估计,浙江大学学报(工学版), 2005, 39(6): 810~813
    [70]卓蒙蒙,张晓光,毕伟,姬程鹏,基于小波包变换和支持向量机的提升机故障诊断,矿山机械, 2011, 39(1): 62~65
    [71]向昌盛,张林峰,混沌时间序列预测模型参数同步优化,计算机工程与应用, 2011, 47(1): 4~11
    [72] S. Mika, B. Sch?lkopf, A.J. Smola, Kernel PCA and denoising in feature sapces, Proceedings of Advances in Neural Information Processing System, Denver, CO, USA, 1998: 536~542
    [73] M. H. Nguyen, F. D. L. Torre, Robust kernel principal component analysis, Advances in Neural Information Processing Systems, 2008, 21: 15~19
    [74] S. Mika, G. Ratsch, J. Weston, Fisher discriminant analysis with kernels. Proceedings of Signal Processing Society Workshop on Neural Networks for Signal Processing IX, Madison, WI, USA, 1999: 41~48
    [75] G. Baudat, F.Anouar, Generalized discriminant analysis using a kernel approach, Neural Computation, 2000, 12(10): 2385~2404
    [76] M. Girolami, Mercer kernel-based clustering in feature space, IEEE Transactions on Neural Network, 2002, 13(3): 780~784
    [77]张莉,周伟达,焦李成.核聚类算法,计算机学报, 2002, 25(6): 587~590
    [78] F. R. Bach, M. I. Jordon, Kernel independent component analysis, Journal of Machine Learning Reasearch, 2002, 15(3):1~48
    [79] H. Choi, S. Choi, Kernel Isomap. Electronics Letters, 2004, 40(25):1612~1613.
    [80] H. Choi, S. Choi. Robust kernel Isomap, Pattern Recognition, 2007, 40(3): 853~862
    [81]尹传环,结构化数据核函数的研究: [博士学位论文],北京:北京交通大学, 2007
    [82]吴青,基于优化理论的支持向量机学习算法研究: [博士学位论文],西安:西安交通大学, 2009
    [83]汪廷华,支持向量机模型选择研究: [博士学位论文],北京:北京交通大学, 2009
    [84]边肇祺,张学工,模式识别(第二版),北京:清华大学出版社, 2000
    [85] C. Cortes, V. Vapnik, Support vector networks. Machine Learning, 1995, 20(3): 273~297
    [86] L. Kaufmann, Solving the quadratic programming problem arising in support vector classification, Proceedings of Advances in Kernel Methods: Support Vector Learning, 1999: 147~168
    [87]徐成贤,陈志平,近代优化方法,北京:科学出版社, 2002: 238~240
    [88]袁亚湘,孙文瑜,最优化理论与方法,北京:科学出版社, 2003:31~36
    [89] E. Osuna, R. Freund, F. Girosi, An improved training algorithm for support vector machines, Proceedings of the 1997 Workshop on Neural Networks for Signal Processing, Amelia Island, FL,1997: 276~285
    [90] T. Joachims, Making large-scale support vector machine learning practical. B. Schlkopf, C. Burges, A. Smola, Advances in kernel methods: support vector learning, Cambridge, MIT Press, 1999: 169~184
    [91] N. Takahashi, T. Nishi, Global convergence of decomposition method for support vector machines, IEEE Transactions on Neural Networks, 2006, 17(6): 1362~1369
    [92] C. C. Chang, C. W. Hsu, C. J. Lin, The analysis of decomposition methods for support vector machines, IEEE Transactions on Neural Networks, 2000, 11(4): 1003~1008
    [93] C. J. Lin, On the convergence of the decomposition method for support vector machines, IEEE Transactions on Neural Networks, 2001, 12(6): 1003~1008
    [94] C. J. Lin, A formal analysis of stopping criteria of decomposition methods for support vector machines, IEEE Transactions on Neural Networks, 2002, 13(5): 1045~1052
    [95] J. X. Dong, A. Krzyzak, C. Y. Suen, Fast SVM training algorithm with decomposition on very large data sets, IEEE Transactions on pattern analysis and machine intelligence, 2005, 27(4): 603~618
    [96] H. Qiao, Y. G. Wang, B. Zhang, A simple decomposition algorithm for support vector machines with polynomial time convergence, Pattern Recognition, 2007(40): 2543~2549
    [97]杨晓伟,路节,张广全,一种高效的最小二乘支持向量机分类器剪枝算法,计算机研究与发展, 2007, 44(7): 1128~1136
    [98]周水生,詹海生,周利华,训练支持向量机的Huber近似算法,计算机学报, 2005, 28(10): 1664~1670
    [99] J. Platt, Fast training of support vector machines using sequential minimal optimization, Advances in kernel methods: support vector learning, MIT Press, 1999: 185~208
    [100] S. S. Keerthi, S. K. Shevade, C. Bhattcharyya, K. R. K. Murthy. Improvements to Platt's SMO algorithm for SVM classifier design, Neural Computation, 2001, 13(3): 637~649
    [101] S. S. Keerthi, E. G. Gilbert, Convergence of a generalized SMO algorithm for SVM classifier design, Machine Learning, 2002, 46(1-3):351~360
    [102]周晓剑,马义中,朱嘉钢,等,求解非半正定核Huber-支持向量回归机问题的序列最小最优化算法,控制理论与应用, 2010, 32(9): 53~58
    [103]朱齐丹,张智,邢卓异,支持向量机改进序列最小优化学习算法,哈尔滨工程大学学报, 2007,28(2): 183~189
    [104]曹丽娟,王小明,训练支持向量机的并行序列最小优化方法,计算机工程, 2007, 33(18): 184~187
    [105] S. N. Ahmed, L. Huan, K. K. Sung, Incremental learning with support vector machines, Workshop on support vector machines, Stockholm, Sweden, Aug.2, 1999: 35~37
    [106] G. Cauwenberghs, T. Poggio, Incremental and decremental support vector machine learning, Advances in Neural Information Processing Systems, 2001, 13: 409~415
    [107] J. S. Ma, J. Theiler, S. Perkins, Accurate online support vector regression, Neural Computation, 2003,41(15): 2683~2703
    [108] V. Kecman, M. Vogt, On the equality of kernel adatron and sequential minimal optimization in classification and regression tasks and alike algorithms for kernel machines, European Symposium on Artificial Neural Networks, 2003: 215~222
    [109] Zhuang Wang, Slobodan Vucetic, Online training on a budget of support vector machines using twin prototype, Statistical Analysis and Data Mining, 2010, 3(3): 149~168
    [110] J. A. K. Suykens, J. Vandewalle, Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3):293~300
    [111] Gan Liang-zhi, Sun Zong-hai, Sun You-xian, Sparse least squares support vector machine, Journal of Zhejiang University, 2007,41(2): 245~253
    [112] C. F. Lin, S. D. Wang, Fuzzy support vector machines, IEEE Transactions on Neural Networks, 2002,13(2): 464~471
    [113] L. L. Wang, W. J. Long, Fuzzy data domain description using support vector machines, Proceedings of Machine Learning and Cybernetics, Hebei, China, 2003: 548~553
    [114]安金龙,王正欧,马振平,基于密度法的模糊支持向量机.天津大学学报, 2004, 37(6): 544~548
    [115] C. F. Lin, S. D. Wang, Training algorithms for fuzzy support vector machines with noisy data, Pattern Recognition Letters, 2004, 25(14):1647~1656
    [116] X. F. Zhang, L. S. Shen, A new hypersphere support vector machine algorithm, Journal of Electronics, 2006, 23(4): 55~59
    [117] G. Heo, P. Gander, Fuzzy SVM for noisy data: A robust membership calculation method, Proceedings of Fuzzy System, Korea, 2009: 731~436
    [118] Y. Z. Wang, H. Zhang, S. H. Jiang, et al, Fuzzy support vector machine based on improved possibilistic c-means clustering algorithm in kernel space, Journal of Information and Computational Science, 2010, 7(2): 585~591
    [119]秦传东,刘三阳,基于数据域描述的模糊临近支持向量机算法,系统工程与电子技术, 2011, 33(2): 449~153
    [120] L. Bottou, C. Cortes, et al, Comparison of classifier methods: A case study in handwriting digit recognition, Proceedings of International Conference on Pattern Recognition, Jerusalem , Israel,1994: 77~87
    [121] S. Knerr, L. Personnaz, G. Dreyfus, Single-layer learning revisited: A stepwise procedure for building and training a neural network, Neurocomputing: Algorithm, Architectures and Application, New York: Springer-Veerlag, 1990: 55~60
    [122] Y. Dong, Z. Xia, A two-level approach to choose the cost parameter in support vector machines, Expert Systems with Applications, 2008,34(2):1366~1370
    [123] I. Kentaro, N. Ryohei, Optimizing support vector regression hyperparameters based on cross-validation, Proceeding of International Joint Conference on Neural Networks, Portland, Oregon, 2003: 2077~2082
    [124]尹伟,章卫国,宁东方,等,基于差分进化交叉验证SVM的飞控系统传感器故障预测学习算法研究,传感器技术学报, 2008, 21(11): 1944~1950
    [125] N. E. Ayat, M. Cheriet, C. Y. Suen, Automatic model selection for the optimization of SVM kernels, Pattern Recognition, 2005, 38(10): 1733~1745
    [126]邓蕊,马永军,等,基于改进交叉验证算法的支持向量机多类识别,天津科技大学学报, 2007, 22(2): 58~62
    [127] S. Keerthi, C. Ong, M. Lee, Two efficient methods for computing leave-one-out error in SVM algorithms, Technical Report, Department of Mechanical Engineering National University of Singapore, 2000: 548~552
    [128] O. Chapelle, V. Vapnik, O. Bousquet, Choosing multiple parameters for support vector machines. Machine Learning, 2002(46): 131~159
    [129] M. W. Chang, C. J. Lin, Leave-one-out bounds for support vector regression model selection. Neural Computation, 2005(17): 1188~1222
    [130]袁玉萍,邹艳华,基于支持向量机LOO误差估计的研究,重庆科技学院学报(自然科学版), 2009, 11(4):164~166
    [131]杨辉华,王行愚,王勇,等,正则化最小二乘分类的AlignLoo模型选择方法,控制与决策, 2006, 21(1):7~13
    [132] Chen C. H., Pau L. F., Wang P. S. P., Handbook of pattern recognition and computer vision(2nd edition), Singapore: World Scientific, 1999: 207~248
    [133] Shapiro L. G., Stockman G. C., Computer Vision, Pearson Education Inc., 2001:235~247
    [134] Smith N., Pattern Recognition Engineering, New York: John wiley& Sons,1993: 388~398
    [135]章毓晋,图像分析(第2版),北京:清华出版社, 2005, 279~311, 279~280
    [136] Chen, Y. Q., M. S. Nixon, D. W. Thomas, Statistical geometrical features for texture Classification, Patten Recognition, 1995, 28(4): 537~552
    [137] Randen T., J. H. Husey, Filtering for texture classification: a comparative study, IEEE Transactions on Patten Analysis Machine Intelligence,1999, 21(4): 291~310
    [138] Unser M., M. Eden, Multiresolution feature extraction and selection for texture segmentation, IEEE Transactions on Patten Analysis Machine Intelligence, 1989, 11(7): 717~728
    [139] Ma W. Y., B. S. Manjunath, Texture-based pattern retrieval from image databases, Multimedia Tools and Applications, 1996, 2(1):35~51
    [140] Forsyth D. A., Shape from texture and integrability, Proceedings of IEEE International Conference on Computer Vision, Vancouver, Canada, 2001: 447~453
    [141] Tuceryan M, Jain A. K., Texture Analysis, handbook of pattern recognition and computer vision, Singapore: World Scientific, 1993: 235~276
    [142] R. M. Haralick, K. Shanmngan, I. Dinstein, Texture feature for image classification, IEEE Transactions on System, Man Cybernetics, 1973: 610~621.
    [143]贺晓建,王福明,基于灰度共生矩阵的纹理分析方法研究,山西电子技术, 2010, 4: 89~91
    [144]邹超,朱德森,肖力,基于模糊类别共生矩阵的纹理疵点检测方法,中国图象图形学报, 2007, 12(1): 92~97
    [145] Huang Y., Chan K., Texture decomposition by harmonics extraction from higher order statistics, IEEE Transactions on Image Processing, 2004, 13(1): 1~14
    [146]何敏,章兢,晏敏,等,基于纹理特征的回转窑熟料烧结状态分类,湖南大学学报, 2010, 39(9): 29~34
    [147] Ojala T., Pietikainen M., Unsupervised texture segmentation using feature distributions, Pattern Recognition, 1999,32(2):477~486
    [148] Monadjemi A., Towards efficient texture classification and abnormality detection, United Kingdom: University of Bristol, 2004:88~129
    [149]邹亚荣,林明森,等,基于GLCM的SAR溢油纹理特征分析,海洋通报, 2010, 29(4): 455~459
    [150] M. Tuceryan, Moment based texture segmentation, Pattern Recognition Letters, 1994, 15: 659~668
    [151] A. P. Pentland, Fractal-based description of natural scene, IEEE Transaction on Pattern Analysis and Machine Intelligence, 1984, 6: 661~674
    [152]辛斌杰,余序芳,吴兆平,应用图像分析技术自动识别织物的组织结构, 2011, 37(1): 35~42
    [153] Conci A., Proenea C. B., A system for real-time fabric inspection and industrial decision, Proceedings of the 14th International Conference on Software Engineering and knowledge Engineering, Ischia, Italy, 2002: 707~714
    [154]赵莹,胡静,黎明,等,基于分形维数的图像纹理特征表示方法,上海电机学院学报, 2011, 14(1): 39~44
    [155]杨彦从,分形理论在视频监控图像编码与处理中的应用研究:[硕士学位论文],北京,中国矿业大学, 2009: 10~11
    [156] Wen C. Y., Chou S., Liaw J. J., Textural defect segmentation using a fourier-domain maximum likelihood estimation method, Textile Research Journal, 2002, 72(3): 253~258
    [157] R. C. Dubes, A. K. Jain, S. G. Nadabar, MRF model-based algorithms for image segmentation, Proceedings of International Conference Pattern Recognition, Atlantic City, NJ , USA, 1990, 13: 808~814
    [158] Y. Kim, S. Yang, An integration scheme for image segmentation and labeling based on Markov random field model, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18: 69~73
    [159] K. Santhana, C. Rama, Multi-resolution Gauss-Markov random field models for texture segmentation, Image Processing, 1997, 6: 251~256
    [160] B. S. Manjunath, R. Chellappa, Unsupervised texture segmentation using Markov random field models, IEEE Transaction on Pattern Analysis and Machine Intelligence, 1991, 13(5): 478~482
    [161] S. Fabien, P. Wojciech, Parameter estimation in hidden Markov random fields and image segmentation, Graphical Models and Image Processing, 1997, 59(4): 205~220
    [162]尚赵伟,赵正辉,等,基于NACT和HMT模型的纹理图像检索,计算机工程, 2011, 37(3): 204~207
    [163]李凌,黎明,等,基于模糊灰度共生矩阵与隐马尔可夫模型的断口图像识别,中国图象图形学报, 2010, 15(9): 1370~1376
    [164]郭立,朱俊株,陆大虎,基于Gabor小波变换的无监督纹理图像分割,微机发展, 2000(5): 51~53
    [165] D. Dunn, W. Higgins, J. Waleley, Texture segmentation using 2-D Gabor elementary function, IEEE Transaction on Pattern Analysis and Machine Intelligence, 1994, 16: 130~149
    [166] T. Weldon, W. Higgins, J. Waleley, Gabor filter design for multiple texture segmentation. Optical Engineering, 1996, 35(10): 2852~2863
    [167] G. D. Guo, S. Z. li and K. L. Chan. Texture image segmentation using reduced Gabor filter set and mean shift clustering, Proceedings of Asian Conference on Computer Vision, Taipei, Taiwan, 2000: 198~203
    [168] T. W. Lee, M. S. Lewicki, Unsupervised image classification, segmentation, and enhancement using ICA mixture models, Image Processing, 2002, 11(3): 270~279
    [169]马文英,多光谱掌纹识别波段选择方法研究: [硕士学位论文],哈尔滨,哈尔滨工业大学, 2010: 10~12
    [170]刘金平,桂卫华,牟学民,等,基于Gabor小波的浮选泡沫图像纹理特征提取,仪器仪表学报, 2010, 31(8): 1769~1774
    [171] Mallat, G. Stephane, A theory for multi-resolution signal decomposition: the wavelet representation, IEEE Transaction on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674~693
    [172] Soo Chang Kim, Tae Jin Kang, Texture classification and segmentation using wavelet packet frame and Gaussian mixture model, Pattern Recognition, 2007(40): 1207~1221
    [173]李立轻,基于计算机视觉的织物疵点自动检测研究: [硕士学位论文],上海:东华大学, 2003: 49~62
    [174] Yang X., Pang G., Yung N., Robust fabric defect detection and classification using multiple adaptive wavelets, Proceedings of Vision, Image, and Signal Processing, Norway, 2005, 152(6):715~723
    [175]肖淑苹,陈一栋,杨建雄,基于小波变换和支持向量机的彩色纹理识别,微电子学与计算机, 2010, 27(7): 117~121
    [176]孙慧贤,基于纹理分析的视觉检测方法与应用研究: [硕士学位论文],长沙,国防科学技术大学, 2010: 13~15
    [177]刘伟,用于纹理检索的多尺度复杂性纹理描述子,电路与系统学报, 2010, 16(1): 25~31
    [178]何凯,梁然,张涛,基于小波系数相关性的纹理图像快速修补算法,天津大学学报, 2010, 43(12): 1093~1098
    [179]张周锁,李凌均,何正嘉,基于支持向量机故障分类器的参数优化研究,西安交通大学学报, 2003, 37(11): 1101~1104
    [180]胡玉霞,张洪涛,基于模拟退火算法—支持向量机的储粮害虫识别分类,农业机械学报, 2008, 39(9): 108~111
    [181]燕飞,秦世引,一种基于模拟退火的支持向量机超参数优化算法,航天控制, 2008, 26(5): 7~11
    [182]吴景龙,杨淑霞,刘承水,基于遗传算法优化参数的支持向量机短期负荷预测方法,中南大学学报(自然科学版), 2009, 40(1): 180~184
    [183]朱宁,冯志刚,王祁,基于小生境遗传算法的支持向量机分类器参数优化,南京理工大学学报, 2009, 33(1): 16~20
    [184]徐飞,徐卫亚,王珂,基于蚁群优化最小二乘支持向量机模型的边坡稳定性分析,工程地质学报, 2009(2): 253~25
    [185]吴震宇,袁惠群,蚁群支持向量机在内燃机故障诊断中的应用研究,振动与冲击, 2009, 28(3): 83~86
    [186]李绍成,左洪福,张艳彬,油液在线监测系统中的磨粒识别,光学精密工程, 2009, 17(3): 589~59
    [187]李炜,石连生,梁成龙,基于粒子群优化的VB-LSSVM算法研究辛烷值预测建模,仪器仪表学报, 2009, 30(2): 335~339
    [188]刘春波,王鲜芳,潘丰,基于蚁群优化算法的支持向量机参数选择及仿真,中南大学学报(自然科学版), 2008, 39(6): 1309~1313
    [189] D. Karaboga, An idea based on honey bee swarm for numerical optimization[R]. TECHNICAL REPORT-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department 2005
    [190] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) Algorithm, Journal of Global Optimization, 2007, 39(3): 459~171
    [191] D. Karaboga, B. Basturk, A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1): 108~132
    [192] H. T. Lin and C. J. Lin. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. http: //www. esie. ntu.edu. tw/ ~cjlin/ papers html, 2003
    [193] O. Chappele, V. Vapnik, O. Bousquet, et al. Choosing multiple parameters for support vector machine [J] . Machine Learning, 2002, 46(1):131~160
    [194] J. H. Holland. Adaptation in natural and artificial system: an introduction analysis with applications to biology [M]. USA: The University of Michigan Press, 1975
    [195] A. Colorni, M. Dorigo, V. Maniezzo. Distributed optimization by ant colonies. Proceedings of the 1st European Conference on Artificial Life, Paris, France, 1991: 134~142
    [196] J. Kennedy, R. Eberhart. Particle swarm optimization. Proceedings of IEEE International Conference of Neural Networks. Perth, Australia, 1995: 1942~1948
    [197] R.Storn, K.Price, Differential Evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report, Tr-95-012, ICSI, Berkeley.1995
    [198]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式——鱼群算法.系统工程理论与实践, 2002, 22(11): 32~38
    [199]屈梁生,何正嘉.机械故障诊断学,上海:上海科学技术出版社,1986
    [200]张昆,宋千,赫晓红,金属切削刀具磨损的监控和预报研究,中国机械工程, 1994, 5(6): 612~62
    [201] Shen Zhiqiang, He Ning, Li Liang, Application of fuzzy logic and self-organizing network to tool-wear classification, Transaction of Nanjing University of Aeronautics and Astronautics, 2009, 26(1): 9~15
    [202]徐创文,王永,罗文翠,基于模糊聚类的铣削刀具磨损状态识别研究,应用力学学报, 2009, 26(2): 218~223
    [203] Sch?lkopf B., Burges C. J., et al, Extracting support vector data for a given task, Proceedings of 1st International Conference on Knowledge Discovery and Data Mining, Montreal, Canada, 1995: 262~267
    [204] Tax D., Duin R., Data domain description by support vectors. Proceedings of European Symposium on Artificial Neural Networks, Bruges, 1999:251~256
    [205]袁胜发,褚福磊,基于引力球结构支持向量机多类算法的涡轮泵故障诊断,宇航学报, 2006, 27(4): 635~639
    [206] Tax D., Duin R., Support vector domain description, Pattern Recognition Letters, 1999(20): 1190~1199
    [207] Xing Dong, Wu Zhao-hui, Pan Yun-he, A new multiclass support vector machines, Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Tucson, Arizona, USA, 2001: 1673~1676
    [208] Vapnik V., Levin E., Cun Y. Le, Measuring the VC-dimension of a learning machine, Neural Computation, 1994
    [209]朱美琳,刘向东,陈世福,用球结构解决多分类问题,南京大学学报(自然科学版), 2003, 39(2): 153~158
    [210]邝志伟,基于多传感器信息融合的刀具状态监测研究: [硕士学位论文],南京:华南理工大学, 2003
    [211]高宏力,切削加工过程中刀具磨损的智能监测技术研究: [博士学位论文],成都:西南交通大学, 2005
    [212]高宏力,许明恒,傅攀,等,基于动态树理论的刀具磨损监测技术,机械工程学报, 2006, 42(7): 227~230
    [213]黄华,李爱平,基于小波神经网络的切削刀具磨损识别,农业机械学报, 2008, 39(8): 173~177
    [214]王海丽,马春翔,邵华,等,车削过程中刀具磨损和破损状态的自动识别,上海交通大学学报, 2006, 40 (12): 2057~2062
    [215]吴道全,万光珉,林树兴,等,金属切削原理及刀具,重庆:重庆大学出版社, 1994, 33~34
    [216]侯艳丽,基于小波变换和聚类技术的纹理分割算法研究: [硕士学位论文],开封,河南大学, 2005: 25~27
    [217] L. A. Zhdeh. The concept of a linguistic variable and its application to approximate reasoning I, II, III, Informant. Science, 1975, 8: 199~251
    [218] Braae M, et al. Fuzzy relations in a control setting. Kybernets. 1978, 7(3): 185~188
    [219] Brae M, et al, Section of parameters for a fuzzy logic controller. Fuzzy Sets System, 1979, 2(3): 185~199
    [220] Komolov S. V., Optimal control of a finite automation with fuzzy constraints and fuzzy target, Cybern, 1979, 16(6): 805~810
    [221] Zadeh L. A, Fuzzy sets, Informant Control, 1965, 8: 338~353
    [222] A.N. Thomas, N.C. Gallagher, Median filters: Some modifications and their properties, Proceedings of the Acoustics, Speech, and Signal Processing, Paris, France, 1982, 30(5): 739~746
    [223] L. Wang, D. C. He, A new statistical approach for texture analysis, Photogrammetric Engineering and Remote Sensing, 1990, 56(1): 61~66
    [224] S.S. Jiang, A. A. Sawchuk, Noise updating repeated Wiener filter and another adaptive noise smoothing filters using local image statistics. Application Optics, 1986, 25: 2326~2337
    [225] Brodatz P, Texture: A photographic album for artists and designer, 1996
    [226]刘路,王太勇,蒋永翔,等,结合FCM与SVM的纹理分割算法,计算机工程与应用, 2008, 44(33): 32~36
    [227] Liu Lu, Wang Tai-yong, Algorithm of texture segmentation combining FCM and FSVM, Proceedings of the 2nd International Conference on Intelligent Networks and Intelligent System, China, Tianjin, 2009: 294~297
    [228] Stockwell R. G., Mansinhal L., Lowep R. P., Localization of the complex spectrum: the S transform, IEEE Transactions on Signal Processing, 1996, 44: 998~1001
    [229]刘振明,顾汉明,詹凤林. S变换时频分析在隧道岩溶地震勘探解释中的应用,工程地球物理学报, 2010, (1): 50~54
    [230]占勇,基于支持向量机的电能质量分析和负荷建模研究: [博士学位论文],上海:上海交通大学, 2007
    [231]易吉良,彭建春,罗安,等,电能质量信号的改进S变换降噪方法,仪器仪表学报, 2010, (1): 32~37
    [232]王丽梅,孙丰荣,张明强,等, S变换在心肌声学造影图像降噪中的应用,计算机工程, 2009, 35(13): 216~221
    [233]邹文,贺振华,陈爱萍,等,应用高精度时频分析方法进行生物礁储层预测,石油天然气学报, 2009, (1): 53~58.
    [234] K. I. Laws, Texture energy measures. Proceedings of Image Understanding Workshop, Los Angeles, USA, 1979: 47~51
    [235]张新,潘文勇,雷新华,等,改进的子波反褶积在天然气水合物地震资料处理中的应用,现代地质, 2010, (3): 501~505
    [236]孙鹤泉,浅谈数学变换在海洋技术中的应用,海洋技术, 2006, (1): 58~93
    [237] Sun Hequan, Wang yongxue, Peng jingping, Hilbert Transform Applied to the Separation of Waves, China Ocean Engineering, 2002, 16(2): 239~248
    [238]张淑梅,宋维堂,王辉,环境污染时生物种群的控制问题,哈尔滨师范大学自然科学学报, 2003, (4): 39~41
    [239]易伟建,段素萍,基于Hilbert-Huang变换的框架结构非线性地震响应分析,动力学与控制学报, 2007, (3): 249~254
    [240]鞠萍华,秦树人,秦毅,丁志宇,多分辨EMD方法与频域平均在齿轮早期故障诊断中的研究,振动与冲击, 2009, (5): 97~101
    [241] S. Rice, Mathematical analysis of random noise, Bell System Technology Journal, 1994, (23): 21~32
    [242]于德介,陈军圣,杨宇,等,机械故障诊断的Hilbert-Huang变换方法,北京:科学出版社, 2006
    [243] N.E.Huang, Z.Shen, S.R.Long, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London, A, 1998, 454: 903~995
    [244] I. Magrin-Chagnolleon, G. Richard, Empirical mode decomposition based time-frequency attributes, Proceedings of the 69th SEG meeting, Houston, USA, 1999: 251~256
    [245] Zhang Pan, Wang Taiyong, Wan Jian, Development of portable data-acquisition and signal analysis instrument based on ARM and DSP, Proceedings of International Conference on Digital Manufacturing and Automation, Zhangjiajie, China, 2010: 548~551
    [246]王太勇,何慧龙,邓学欣et al.,基于Ewf保护的Xpe操作系统的开发与应用,同济大学学报:自然科学版, 2006, 34 (3): 410~413
    [247]王太勇,邓辉,何慧龙et al.,应用Xpe的开放式故障诊断系统的开发与实现,振动.测试与诊断, 2006, 26 (1): 15~18
    [248]魏红军,金振华,卢青春,基于嵌入式Pc的车载数据采集系统开发,武汉理工大学学报:交通科学与工程版, 2006, 30 (3): 369~372

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700