用户名: 密码: 验证码:
基于修正压力场理论的钢筋混凝土结构受剪承载力及变形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土构件的抗剪机理是一个非常复杂的问题,至今已经有100多年的研究历史。迄今为止,国内外提出的钢筋混凝土结构剪切破坏分析方法主要有:桁架理论、极限平衡理论、统计分析法(经验方法)、断裂力学方法和非线性有限元方法等。桁架理论包括经典45桁架模型、改进的桁架模型、压力场理论、修正压力场理论、扰动应力场理论、软化桁架理论、桁架—拱理论等,其中20世纪80年代加拿大多伦多大学从力学模型角度提出的修正压力场理论开辟了一条解决钢筋混凝土构件受剪问题的新途径,已经得到国际上的广泛认可,并成为加拿大规范和美国桥梁设计规范抗剪设计方法的基础。
     近几十年来,除了对钢筋混凝土构件受剪承载力不断进行研究外,钢筋混凝土偏心受压构件(如柱或剪力墙)在地震作用下的荷载-变形性能也一直是不断研究的课题。水平荷载下柱端产生的水平变形包括弯曲变形、柱端钢筋滑移引起的变形和剪切变形。国内外已经提出了很多研究模型,其中修正压力场理论是描述钢筋混凝土板或梁柱节点荷载-剪切变形性能的经典理论模型,很多研究者用该理论的分析结果研究柱或剪力墙等构件的荷载-剪切变形关系。
     本文在修正压力场理论的基础上,对钢筋混凝土构件受剪承载力和变形进行了研究,主要包括以下内容:
     1.在修正压力场理论基础上做了进一步研究,提出沿受弯构件斜裂缝表面平均剪应力的计算公式,并考虑混凝土构件的尺寸效应提出抗剪强度的简化计算公式。与所收集的国内外无腹筋梁的512个试验结果的比较表明,采用本文提出的斜裂缝表面平均剪应力公式按修正压力场理论及按本文简化公式计算的受剪承载力与试验结果的变异性很小,可用于无腹筋混凝土梁的抗剪分析和设计。
     2.由于修正压力场理论忽略了受压区承担的剪力,所计算的构件受剪承载力偏小。本文在修正压力场理论的基础上,根据钢筋混凝土受弯构件的剪切破坏机理,考虑上部受压区混凝土和下部受拉区骨料咬合力及箍筋共同提供受剪承载力,提出截面的受剪承载力计算方法以及简化的设计方法。与所收集的国内外有腹筋梁的275个试验结果的比较表明,采用本文方法计算的受剪承载力与试验结果的符合较好,可用于钢筋混凝土梁的抗剪分析。
     3.为得到轴向荷载及水平荷载作用下钢筋混凝土柱的荷载-变形曲线,本文利用简化的修正压力场理论描述剪切特性以及符合平截面假定的弯曲理论描述弯曲特性,并认为柱端产生的总水平变形由弯曲变形、剪切变形和钢筋滑移产生的变形组成,提出了一种分析轴向荷载及水平荷载作用下钢筋混凝土柱荷载-变形的新方法,可模拟钢筋混凝土柱弯曲破坏、弯剪破坏和剪切破坏的过程。最后将荷载-变形计算结果与15根矩形柱低周反复荷载试验结果进行了对比分析。研究表明,按本文方法计算的荷载-变形计算结果与滞回曲线的外包线基本一致,可用于轴向荷载和水平荷载作用下钢筋混凝土柱的荷载-变形性能的分析。
     4.采用修正压力场单元和本文推导的沿裂缝面骨料咬合力平均剪应力公式,研究了钢筋混凝土剪力墙荷载-变形性能的分析方法。分析中单元刚度采用割线刚度,结合平面矩形单元的增量方法编制了计算程序,得到了钢筋混凝土矩形截面剪力墙的荷载-变形曲线,与搜集的10片剪力墙试验结果相比较吻合较好。该方法可用于预测钢筋混凝土剪力墙、深梁等构件从开始加载至最大承载力的非线性性能。
For reinforced concrete members, shear failure mechanism is a complex issue. It is not yet fully understood. To this day, many shear analysis methods for reinforced concrete have been developed, including truss theory, limit equilibrium theory, statistical method, fracture mechanics method and nonlinear finite element method. Truss theory includes classical 45-degree truss model, improved truss model, compression field theory, modified compression field theory, disturbed stress field theory, softened truss theory, truss-arch theory and so on. In these theories, modified compression field theory, MCFT, developed in 1980s based on the research of Michael P Collins and his co-workers at the University of Toronro has opened up a new way of resolving the shear of reinforced concrete structures, and have been widely recognized by the international community so far. This theory has been used in the Canadian codes and the American codes.
     The past research has been primarily focused on estimation of the maximum lateral load capacity of reinforced concrete columns or shear wall rather than the load-deformation relation, which includes flexure, bond-slip and shear deformation components. Nevertheless, the effect of transverse loading, e.g., as in an earthquake, on reinforced concrete column or shear wall behavior has been an attractive topic of research for the last few decades. In recent decades, a few of theoretical models presented continuous monotonic lateral load-shear displacement response for RC panels or beam-columns on basis of mechanical fundamentals were developed, e.g. MCFT. Many researchers used analysis results of this theory to develop simplified lateral load-shear deformation response envelops of reinforced concrete compressive members.
     In this paper, a further research was made based on the modified compression field theory. The detailed works listed as follows:
     1. A further research on reinforced concrete beams without stirrups was made based on the MCFT. An expression of the average shear stress across the crack was derived and a simplified equation of shear strength considering the size effect in shear was developed. The obtained equations were verified with extensive sets of experimental data from different source (512data in total). It was found that the variation coefficients of ratio of shear strength calculated using the derived average shear stress across the crack based on modified compression field theory and simplified expressions to test data is small. Thus, it is suitable for shear analysis and design of reinforced concrete beams without stirrups.
     2. The shear capacity of RC members calculated by MCFT was underestimated due to ignortion of the shear carried by concrete in compression zone. According to shear failure mechanism of reinforced concrete members, a further research on reinforced concrete beams with stirrups was made based on the MCFT. A general method and its simplified method of the shear capacity considering the shear contribution of concrete in compression, shear stress transmitted across crack interface, and stirrups based on shear failure mechanism of reinforced concrete member were developed and verified with extensive sets of experimental data from different source (275 data in total). It was found that consistency between shear strength calculated using the derived expressions and test data were well. So it is suitable for shear analysis of reinforced concrete beams.
     3. To model lateral load-deformation relationship for reinforced concrete columns subjected to combined action of axial load and lateral load, a new method is developed using MCFT to model shear behavior and conventional section analysis to model flexure behavior, and considering the total lateral deformation of a column at its ends is comprised of deformations due to flexure and shear. The lateral load-deformation courses of reinforced concrete column failing in flexure, flexure-shear and shear can be presented in this method. Finally, the proposed model is compared with 15 rectangular columns from various low-cycle reverse loading tests. In general, the model predicted the lateral load-deformation response envelop reasonably well, so it can be used in lateral load-deformation analysis for reinforced concrete columns subjected to combined action of axial load and lateral load.
     4. The finite element procedure herein is made to reflect the nonlinear behavior of reinforced concrete shear wall by adopting the stress-strain formulations of the MCFT. In this method, aggregate interlock force along crack is calculated by proposed average shear stress formula. Such analysis is based on a secant stiffness formulation and utilizes only the lowest order finite elements (rectangular elements). The obtained lateral load-deformation response by this procedure has yielded excellent agreement with experimental results. This method can be used to predict the nonlinear behavior of shear wall, deep beams and other components up to the maximum shear strength.
引文
[1]AASHTO LRFD-1994. AASHTO LRFD Bridge Design Specifications[S].1st ed., Washington, D.C.: American Association of State Highway Transportation Officials,1994
    [2]AASHTO LRFD-2007. AASHTO LRFD Bridge Design Specifications[S]. Washington, D.C.: American Association of State Highway Transportation Officials,2004
    [3]CSA.1994. Design of concrete structures [S]. Rexdale:Standard CAN/CSA A23.3-94, Canadian Standards Association,1994
    [4]CSA A23.3-04. Design of concrete structures[S]. CSA Committee A23.3, Mississauga:Canadian Standards Association,2004
    [5]CSA.2000. Canadian highway bridge design code (CHBDC) [S]. Toronto:Standard CAN/CSA-S6-00, CSA International,2000
    [6]MTO 1993. Ontario highway bridge design code (OHBDC) [S]. Downsview:Ministry of Transportation Ontario (MTO),1993
    [7]贡金鑫,魏巍巍,胡家顺.中美欧混凝土结构设计[M].北京:中国建筑工业出版社,2007
    [8]贡金鑫,魏巍巍,赵尚传.现代混凝土结构基本理论及应用[M].北京:中国建筑工业出版社,2009
    [9]Ritter W. Die bauweise hennebique [J]. Schweizerische Bauzei-tung,1899,33(7):59-61.
    [10]Morsch E. Der eisenbetonbau-seine theorie und anwendung (Reinforced concrete construction-theory and application) [M].5th Edition, Wittwer, Stuttgart,1920, V.1, Part 1.
    [11]Morsch E. Der eisenbetonbau-seine theorie und anwendung [M].5th Edition, Wittwer, Stuttgart,1922, V.1, Part 2.
    [12]Withey M O. Tests of plain and reinforced concrete series of 1906 [J]. Bulletin of the University of Wisconsin, Engineering Series,1907,4(1):1-66.
    [13]Withey M O. Tests of plain and reinforced concrete series of 1907 [J]. Bulletin of the University of Wisconsin, Engineering Series,1908,4(2):1-66.
    [14]Talbot A N. Tests of reinforced concrete beams:resistance to web stresses series of 1907 and1908. Bulletin 29, University of Illinois Engineering Experiment Station, Urbana,111,1909
    [15]ASCE-ACI Commottee 445. Recent approaches to shear design of structural concrete [J]. Journal of Structural Engineering,1998,124(12):1375-1417
    [16]ACI 318-08. Building code requirements for reinforced concrete [S]. American Concrete Institute, 2008
    [17]Lampert P, Thurlimann B. Ultimate strength and design of reinforced concrete beams in torsion and bending. IABSE,1971,31-1:107-131.
    [18]Kupfer H. Erweiterung der Morsch schen fachwerkanalogie mit hilfe des prinzips vom minimum der formanderungsarbeit (Generalization of Morsch's truss analogy using the principle of minimum strain energy). Comite Euro-International du Beton, Bulletin d'Information, CEB, Paris,1964,40:44-57.
    [19]Caflisch R, Krauss R, Thurlimann B. Biege-und schub-versuche and teilweise vorgespannten betonbalken [R]. Serie C., Bericht 6504-3, Institut fur Baustatik, ETH, Zurich,1971
    [20]Thurlimann B, Marti P, Pralong J, Ritz P, Zimmerli B. Vorlesung zum bortbildungs kurs fur bauingenieure [R]. Institute fur Bautecknik und Konstruktion, ETH, Zurich,1983
    [21]CEB-FIP Model Code 1990 [S]. CEB(Comite Euro-International du Beton):CE Bull. July,1991
    [22]EN 1992-1-1:2004. Design of concrete structures-Part 1:General rules and rules for buildings [S]. CEN 2004
    [23]Schlaich J, Schafer I, Jennewein M,1987, Towards a consistent design of structural concrete [J]. Journal of the Prestressed Concrete Institute,32(3):74-150.
    [24]Wagner H. Ebene blechwandtrager mit sehr dunnem stegblech (Metal beams with very thin webs). Zeitschrift fur Flugtechnik und Motorloftschiffahr,20 (8-12), Berlin,1929
    [25]Baumann T. Zur frage der netzbewehrung von flachen trag-werken (On the problem of net reinforcement of surface structures) [J]. Bauingenieur,1972,47(10):367-377.
    [26]Mitchell D, Collins M P. Diagonal compression field theory-a rational model for structural concrete in pure torsion [J]. ACI JOURNAL, Proceedings,1974,71:396-408.
    [27]Collins M P. Toward a rational theory for RC members in shear [J]. Journal of Structural Division, ASCE,1978,104(4):649-666.
    [28]Collins M P, Vecchio F J, Mehlhorn G. An international competition to predict the response of reinforced concrete panels [J]. Canadian Journal of Civil Engineering(Montreal),1985,12(3):626-644.
    [29]Vecchio F J, Collins M P. The response of reinforced concrete to in-plane shear and normal stresses [R]. Publication No.82-03, Department of Civil Engineering, University of Toronto, Canada,1982
    [30]Vecchio F J, Collins M P. The modified compression field theory for reinforced concrete elements subjected to shear [J]. ACI Journal,1986,83(2):219-231.
    [31]Vecchio F J. Nonlinear finite element analysis of reinforced concrete membranes [J]. ACI Structural Journal,1989,86(1):26-35
    [32]Vecchio F J, Collins M P. Predicting the response of reinforced concrete beams subjected to shear using modified compression field theory [J]. ACI Structural Journal,1988,85(3):258-268
    [33]Bhide S B, Collins M P. Influence of axial tension on the shear capacity of reinforced concrete members [J]. ACI Structural Journal,1989,86(5):570-581.
    [34]Belarbi A, Hsu T T C. Constitutive laws of reinforced concrete in biaxial tension-compression [R]. Research Report UHCEE 91-2, University of Houston, Tex,1991
    [35]Belarbi A, Hsu T T C. Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete [J]. ACI Structural Journal,1994,91(4):465-474.
    [36]Belarbi A, Hsu T T C. Constitutive laws of softened concrete in biaxial tension-compression [J]. ACI Structural Journal,1995,92(5):562-573.
    [37]Pang X-B D, Hsu T T C. Behavior of reinforced concrete membrane elements in shear [J]. ACI Structural Journal,1995,92(6):665-679.
    [38]Hsu T T C. Unified theory of reinforced concrete [M]. CRC Press, Boca Raton, Fla,1993
    [39]Pang X-B D, Hsu T T C. Constitutive laws of reinforced concrete in shear [R]. Res. Rep. UHCEE 92-1, Department of Civil and Environmental Engineering, University of Houston, Tex,1992.
    [40]Pang X-B D, Hsu T T C. Fixed-angle softened-truss model for reinforced concrete [J]. ACI Structural Journal,1996,93(2):197-207.
    [41]Zhang L X. Constitutive laws of reinforced membrane elements with high-strength concrete [D]. PhD dissertation, Department of Civil and Environmental Engineering, University of Houston, Tex,1995
    [42]Vecchio F J. Disturbed stress field model for reinforced concrete:formulation [J]. Journal of Structural Engineering,2000,126(9):1070-1077
    [43]Vecchio F J. Disturbed stress field model for reinforced concrete:implementation [J]. Journal of Structural Engineering,2001,127(1):12-20
    [44]Vecchio F J, Lai D, Shim W, Ng J. Disturbed stress field model for reinforced concrete: implementation [J]. Journal of Structural Engineering,2001,127(4):350-358
    [45]Kani G N J. The riddle of shear failure and its solution [J]. ACI Journal, Proceedings,1964,61(4): 441-467.
    [46]Fenwick R C, Paulay T. Mechanisms of shear resistance of concrete beams [J]. Journal of Structural Division, ASCE,1968,94(10):2325-2350.
    [47]Taylor H P J. The fundamental behaviour of reinforced concrete beams in bending and shear [C]. Shear in Reinforced Concrete, SP-42, American Concrete Institute, Farmington Hills, Mich.,1974
    [48]Hamadi Y D, Regan P E. Behaviour in shear of beams with flexural cracks [J]. Magazine of Concrete Research,1980,32(1):67-77.
    [49]Chana P S. Investigation of the mechanism of shear failure of reinforced concrete beams [J]. Magazine of Concrete Research,1987,39(12):196-204.
    [50]Reineck K-H. Model for structural concrete members without transverse reinforcement [R]. IABSE Colloquium Structural Concrete, IABSE Report, IABSE, Zurich,62,1991b
    [51]Kazemi M T, Broujerdian V. Reinforced concrete beams without stirrups considering shear friction and fracture mechanics [J]. Canadian Journal of Civil Engineering,2006,33(2):161-168
    [52]M6rsch E. Concrete-steel construction [M]. McGraw-Hill, New York. (English translation by E. P. Goodrich),1909
    [53]ASCE-ACI Committee 326. Shear and Diagonal Tension [J]. ACI JOURNAL, Proceedings,1962a, 59(1):1-30.
    [54]ASCE-ACI Committee 326. Shear and Diagonal Tension [J]. ACI JOURNAL, Proceedings,1962b, 59(1):277-344.
    [55]ASCE-ACI Committee 326. Shear and Diagonal Tension [J]. ACI JOURNAL, Proceedings,1962c, 59(1):352-396.
    [56]Clark A P. Diagonal tension in reinforced concrete beams [J]. ACI Journal,1951,48(2):145-156
    [57]Zsutty T C. Shear strength prediction for separate categories of simple beams tests [J]. ACI Journal, Proceedings,1971,68(2):138-143.
    [58]Bazant Z P, Kim J-K. Size Effect in Shear Failure of Longitudinally Reinforced Beams [J]. ACI Journal, Proceedings,1984,81(5):456-468.
    [59]Bazant Z P, Kazemi M T. Size effect on diagonal shear failure of beams without stirrups [J]. ACI Structural Journal,1991,88(3):268-276
    [60]Kim J K, Park Y D, Eo S H. Size effect in concrete specimens with dissimilar initial cracks [C]. Size effect in concrete structures, proceedings of Japan Concrete Institute International Workshop, ed by Mihashi H, Okamural H and Bazant Z P,1993
    [61]Kim W, White R N. Shear-critical cracking in slender reinforced concrete beams [J]. ACI Structural Journal,1999,96(5):757-765
    [62]Broujerdian V. Size effect on shear strength of reinforced concrete beams [D]. Master Science Thesis, Department of Civil Engineering, Sharif University of Techology, Tehran, Iran,2004
    [63]Bentz E V. Empirical modeling of reinforced concrete shear strength size effect for members without stirrups [J]. ACI Structural Journal,2005,102(2):232-241
    [64]龙建昌.钢筋混凝土梁的抗剪强度[R].《工程结构科学研究报告》,中国科学院工程力学研究所,1963
    [65]施岚青,高永健.钢筋混凝土简支梁抗剪强度实验报告[R].《工程结构科学研究报告文集之二》,清华大学土建系,1964
    [66]TJ 10-74.钢筋混凝土结构设计规范[S].1974
    [67]抗剪强度计算研究组.钢筋混凝土梁的抗剪强度计算[R].《钢筋混凝土结构研究报告选集》,中国建筑工业出版社,1977
    [68]李寿康,喻永言.钢筋混凝土简支梁考虑剪跨比的抗剪强度计算[J].同济大学学报,1978:81-93
    [69]同济大学工程结构研究室.钢筋混凝土简支梁考虑剪跨比的抗剪强度计算[R].清华大学土木与环境工程系,山西省建筑科学研究所
    [70]谢育良等.集中荷载下无腹筋钢筋混凝土约束梁的抗剪强度[J].建筑结构学报,1983,3(2):21-35.
    [71]陈文钦,牛绍仁,秦文械.集中荷载下钢筋混凝土约束梁抗剪强度的试验研究[J].1984:57-84
    [72]卫纪德.集中荷载作用下有腹筋约束梁的抗剪强度[J].哈尔滨建筑工程学院学报,1985,3:16-31
    [73]赵光仪,吴佩刚,应宏善.集中荷载作用下钢筋混凝土连续梁抗剪强度的研究[J].建筑技术通讯(建筑结构),1985,(4):2-10.
    [74]王玉起.集中荷载下无腹筋简支矩形截面钢筋混凝上梁的抗剪强度[J].天津大学学报,1985:88-96
    [75]郁峰.钢筋混凝土连续梁的抗剪性能[J].同济大学学报,1986,14(1):41-50
    [76]卫纪德,付有仓等.集中荷载作用下钢筋混凝土伸臂梁的抗剪强度[J].建筑结构学报,1987,7(2):43-53.
    [77]袁国干,杨健.钢筋混凝土连续梁抗剪强度研究[J].中国公路学报,1999,12:31-39
    [78]Hillerborg A, Modeer M, Petersson, P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement and Concrete Research,1976,6:773-782.
    [79]Bazant Z P, Oh B H. Crack band theory for fracture of concrete [J]. RILEM,1983,16(93):155-177.
    [80]Remmel G. Zum zug-und schubtragverhalten von bauteilen aus hochfestem beton. DAfStb, H.444, Beuth, Berlin,1994
    [81]Ngo D, Scordelis A C. Finite element analysis of reinforced concrete beam [J]. ACI Journal,1967, 64(3):152-163.
    [82]Adeghe L N. A finite element model for studying reinforced concrete detailing problems [D]. PhD thesis, Department of Civil Engineering, University of Toronto,1986.
    [83]Stevens N J, Uzumeri S M, Collins M P. Analytical modelling of reinforced concrete subjected to monotonic and reversed loading [R]. Publication No.87-1, Department of Civil Engineering, University of Toronto, Jan.1987.
    [84]Cook, William D, Mitchell, Denis. Studies of disturbed regions near discontinuities in reinforced concrete members [J]. ACI Structural Journal,1988,85(2):206-216
    [85]GB 50010-2002.混凝土结构设计规范[S].北京:中国建筑工业出版社,2002
    [86]Baker A L L. Ultimate load theory apllied to the design of reinforced and prestressed concrete frames [R]. London:Concrete Publications Ltd,1956
    [87]Sawyer H A. Design of concrete frames for two failure states [R]. Proceedings of the International Symposium on the Flexural Mechanics of Reinforced Concrete. Miami:ASCE-ACI,1964
    [88]Corley W G. Rotational capacity of reinforced concrete beams [R]. Bulletin D108. Skokie,Ill.: Portland Cement Association, Research and Development Laboratories,1966
    [89]Priestley M J N, Park R. Strength and ductility of concrete bridge columns under seismic loading [J]. ACI Structural Journal 84,1987
    [90]Priestley N, Seible F, Calvi G. Seismic design and retrofit of bridges[M]. New York:John Wiley and Sons,1996
    [91]Sezen H. Seismic behavior and modeling of reinforced concrete building columns [D]. PhD thesis, University of California-Berkeley, Berkeley, CA,2002
    [92]Sezen H, Moehle J P. Seismic tests of concrete columns with light transverse reinforcement [J]. ACI Structural Journal,2006,103(6):842-849.
    [93]Otani S, Sezen M A. Behavior of multistory reinforced concrete frames during earthquakes [R]. Structural Research Series No.392. University of Illinois, Urbana,1972
    [94]Lehman D E, Moehle J P. Seismic performance of well-confined concrete bridge columns [R]. Report No. PEER-1998/01. Pacific Earthquake Engineering Research Center, University of California, Berkeley, Dec,2000
    [95]Alsiwat J M, Saatcioglu M. Reinforcement anchorage slip under monotonic loading [J]. Journal of Structural Engineering. ASCE,1992,118(9):2421-2438.
    [96]Eligehausen R, Popov E P, Bertero V V. Local bond stress-slip relationship of a deformed bar under generalized excitations [R]. Report No.UCB/EERC 83/23. Earthquake Engineering Research Center, University of California, Berkeley, Oct,1983
    [97]Hawkins N M, Lin I J, Jeang F L. Local bond strength of concrete for cyclic reversed loadings. Bond in Concrete. Applied Science Publishers, London,1982
    [98]Filippou F C, Popov E P, Bertero V V. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints [R]. Report No. UCB/EERC 83/19, University of California-Berkeley, Berkeley, CA,1983
    [99]Soroushian P, Choi K-B. Analytical evaluation of straight bar anchorage design in exterior joints [J]. ACI Structural Journal,88(2):161-168.
    [100]Lowes L N, Moehle J P, Govindjee S. A concrete-steel bond model for use in finite element modeling of reinforced concrete structures [J]. ACI Structural Journal,2004,101(4):501-511.
    [101]Saatcioglu M, Alsiwat J M, Ozcebe G. Hysteretic behavior of anchorage slip in R/C members [J]. Journal of Structural Engineering, ASCE,1992,118(9):2439-2458.
    [102]ACI Committee 408. Suggested development, splice, and standard hook provisions for deformed bars in tension (ACI 408.1R-79) [R]. American Concrete Institute, Farmington Hills, MI,1979,3 pp.
    [103]Pochanart S, Harmon T. Bond-slip model for generalized excitation including fatigue [J]. ACI Materials Journal,1989,86(5):465-474.
    [104]Hsu T T C. Softened truss model for shear and torsion [J]. ACI Structural Journal,1988,85(6): 624-635.
    [105]Hsu T T C, Zhu R R H. Softened membrane model for reinforced concrete elements in shear [J]. ACI Structural Journal,2002,99(4):460-469.
    [106]Ozcebe G, Saatcioglu M. Hysteretic shear model for reinforced concrete members [J]. Journal of Structural Engineering,1989,115(1):132-148.
    [107]Lee D H, Elnashai A S. Seismic analysis of RC bridge columns with flexure-shear interaction [J]. Journal of Structural Engineering, ASCE,2001,127(5):546-553.
    [108]Pincheira J A, Dotiwala F S, D'Souza J T. Seismic analysis of older reinforced concrete columns [J]. Earthquake Spectra,1999,15(2):245-272.
    [109]Mostafaei H, Kabeyasawa T. Axial-shear-flexure interaction approach for reinforced concrete columns [J]. ACI Struct. J.,2007,104(2):218-226
    [110]Sezen H. Shear deformation model for reinforced concrete columns [J]. Structural Engineering and Mechanics,2008,28(1):39-52
    [111]Gerin M, Adebar P. Accounting for shear in seismic analysis of concrete structures [C]. Proceeding of the 13th World Conference on Earthquake Engineering, Vancouver, August. Paper No.1747,2004
    [112]Panagiotakos T B, Fardis M N. Deformations of reinforced concrete members at yielding and ultimate [J]. ACI Structural Journal,2001,98(2):135-148.
    [113]Priestley M J N, Ranzo G, Benzoni G, Kowalsky M. Yield displacement of circular bridge columns [R]. Fourth CalTrans Research Workshop, Sacramento, California, July,1996.
    [114]Elwood K J, Moehle J P. Axial capacity model for shear-damaged columns [J]. ACI Structural Journal,2005,102(4):578-587.
    [115]Ousalem H, Kabeyasawa T A, Tasai Y. Axial load collapse of reinforced concrete columns under seismic loading [C].13th World Conference on Earthquake Engineering, Aug.,2004, Paper No. 1233.
    [116]Collins M P, Mitchell D, Adebar P, Vecchio F J. A general shear design method [J]. ACI Structural Journal,1996,93(1):36-45
    [117]Mitchell D, Collins M P. Diagonal compression field theory-a rational model for structural concrete in pure torsion [J]. ACI Journal,1974,71(8):396-408
    [118]Adebar P, Collins M P. Shear strength of members without transverse reinforcement [J]. Canadian Journal of Civil Engineering,1996,23(1):30-41.
    [119]Bentz E C, Collins M P. Development of the 2004 canadian standards association (CSA) A23.3 shear provisions for reinforced concrete [J]. Canadian Journal of Civil Engineering,2006,33(6):521-534
    [120]Bentz E C, Vecchio F J, Collins M P. Simplified modified compression field theory for calculating shear strength of reinforced concrete elements [J]. ACI Structural Journal,2006,103(4):614-624
    [121]Michael P, Collins E C, Bentz E G, Sherwood L X. An adequate theory for the shear strength of reinforced concrete structures [J]. Magazine of Concrete Research,2008,60(9):635-650
    [122]Walraven J C, Reinhardt H W. Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subjected to shear loading [R]. Heron,26(1A):68,1981
    [123]Aoyagi Y, Yamada K. Strength and deformation characteristics of reinforced concrete shell elements subjected to in-plane forces [C]. Proceedings, Japanese Society of Civil Engineers, Tokyo,331: 167-190,1983
    [124]Kollegger J, Mehlhorn G. Biaxial tension-compression tests on reinforced concrete panels [R]. Forschungsberichte aus dem Fachgebeit Massivbau, No.6, Gesamthochschule Kassel, Kassel, West Germany,1988
    [125]Schlaich J, Schafer I, Jennewein M. Towards a consistent design of structural concrete [J]. Journal of the Prestressed Concrete Institute,1987,32(3):74-150.
    [126]Kirschner U, Collins M P. Investigating the behaviour of reinforced concrete shell elements [R]. Publi cation No.86-09, Department of Civil Engineering, University of Toronto, Canada,1986
    [127]Bhide S B, Collins M P. Influence of axial tension on the shear capacity of reinforced concrete members [J]. ACI Structural Journal,1989,86(5):570-581.
    [128]Shirai S, Noguchi H. Compressive deterioration of cracked concrete [C]. Proceedings, ASCE Structural Congress 1989:Design, Analysis, and Testing, ASCE, New York,1989
    [129]Collins M P, Porasz A. Shear design for high-strength concrete [C]. Proceedings, Workshop on Design Aspects of High-Strength Concrete, Comite Euro-Inter national du Beton Bulletin d'Information. CEB, Paris,193,1989
    [130]Stevens N J, Uzumeri S M, Collins M P. Reinforced concrete subjected to reversed cyclic shear-experiments and constitutive model [J]. ACI Structural Journal,1991,88(2):135-146.
    [131]Marti P, Meyboom J. Response of prestressed elements to in-plane shear [J]. ACI Structural Journal, 1992,89(5):503-514.
    [132]Vecchio F J, Collins M P, Aspiotis J. High-strength concrete elements subjected to shear [J]. ACI Structural Journal,1994,91(4):423-433.
    [133]Vecchio F J, Collins M P. Compression response of cracked reinforced concrete [J]. Journal of Structural Engineering, ASCE,1993,119(12):3590-3610.
    [134]Collins M P, Mitchell D. Prestressed concrete structures [M]. Prentice Hall, Engewood Cliffs, N J, 1991
    [135]Esmaeily-GH A, Xiao Y. Seismic behavior of bridge columns subjected to various loading patterns [R]. California:Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2002
    [136]Nakamuram H, Higai T. Evaluation of shear strength of RC beam section based on extended modified compression field theory [J]. Concrete Library of Japan Society of Civil Engineers,1995, (25):93-105
    [137]Bentz E C. Empirical modeling of reinforced concrete shear strength size effect for members without stirrups [J]. ACI Structural Journal,2005,102(2):232-241.
    [138]Walraven J, Lehwalter N. Size effects in short beams loaded in shear [J]. ACI Structural Journal, 1994,91(5):585-593
    [139]Bazant Z P, Kazemi M T. Size effect on diagonal shear failure of beams without stirrups [J]. ACI Structural Journal,1991,88(3):268-276
    [140]ASCE-ACI Committee 426. The shear strength of reinforced concrete members [J]. Journal of Structural Division, ASCE,1973,99(6):1091-1187.
    [141]Reineck K-H. Ultimate shear force of structural concrete members without transverse reinforcement derived from a mechanical model [J]. ACI Structural Journal,1991c,88(5):592-602.
    [142]Mattock A H. Shear tansfer in concrete having reinforcement at an angle to the shear plane [C]. Shear in Reinforced Concrete, V.1, SP-42, American Concrete Institute, Farmington Hills, Mich.,1974
    [143]Kani M W, Huggins M W, Wiltkopp, P. F. Kani on shear in reinforced concrete [M]. Department of Civil Engineering, University of Toronto, Canada,1979
    [144]Evans R H, Marathe M S. Microcracking and stress-strain curves for concrete in tension [C]. Materials and Structures, Research and Testing, RILEM, Paris,1968,1(1):61-64.
    [145]Gopalaratnam V S, Shah S P. Softening response of plain concrete in direct tension [J]. ACI Journal, Proceedings,1985,82(3):310-323.
    [146]Reinhardt H W, Cornelissen H A W, Hordijk D A. Tensile tests and failure analysis of concrete [J]. Journal of Structural Engineering, ASCE,1986,112(11):2462-2477.
    [147]Kani G N J. How safe are our large reinforced concrete beams. ACI Journal, Proceedings,1967,64, (3):128-141.
    [148]Shioya T, Iguro M, Nojiri Y, Akiyama H and Okada T. Shear strength of large reinforced concrete beams, fracture mechanics:application to concrete [C]. ACI SP-118, American Concrete Institute, Detroit,309,1989
    [149]Bazant Z P. Fracturing truss model:size effect in shear failure of reinforced concrete [J]. Journal of Engineering Mechanics,1997,123(12):1276-1288
    [150]Bazant Z P, Kim J-K. Size effect in shear failure of longitudinally reinforced beams [J]. ACI Journal, Proceedings 1984,81(5):456-468.
    [151]Al-Nahlawi K A, Wight J K. Beam analysis using concrete tensile strength in truss models [J]. ACI Structural Journal,1992,89(3):284-289.
    [152]Muttoni A, Schwartz J. Behaviour of beams and punching in slabs without shear reinforcement [C]. Proceedings of the IABSE Colloquium, Stuttgart, Germany,62,1991
    [153]Muttoni A, Ruiz M F. Shear strength of members without transverse reinforcement as function of critical shear crack width [J]. ACI Structural Journal,2008,105(2):163-172
    [154]Bazant Z P, Yu Q. Designing against size effect on shear strength of reinforced concrete beams without stirrups [R]. Str. Engrg. Report, No.03-6/A446d, Northwestern University,2003
    [155]Bazant Z P, Yu Q. Size effect in fracture of concrete specimens and structures:New problems and progress [C]. Fracture Mechanics of Concrete Structures (Proc., FraMCoS-5,5th Int. Conf. on Fracture Mech. Of Concrete and Concr. Structures, Vail, Colo.), V.C. Li, K.Y. Leung, Willam, K.J., and Billington, S.L., eds., IA-FraMCoS,1,2004
    [156]Zsutty T C. Beam shear strength prediction by analysis of existing data [J]. ACI Journal,1968, 65(11):942-951
    [157]Okamura H, Higai T. Proposed design equation for shear strength of reinforced concrete beams without web reinforcement [C]. Proceedings of Japanese Society of Civil Engineers,1980,300: 131-141
    [158]Niwa J, Yamada K, Yokozawa K, Okamura M. Reevaluation of the equation for shear strength of RC-beams without web reinforcement [J]. Translated from Proceedings, Japan Society of Civil Engineering,1986,5(372):1986-1988.
    [159]Karim S R, Javier F and Michael F. New shear strength prediction for concrete members using statistical and interpolation function techniques [C].8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability. PMC 2000-279
    [160]ASCE-ACI 445. Summary of the evaluation of the proposals for the quick fix for reinforced concrete members without transverse reinforcement [R]. Reported by Subcommittee ACI-445F of ACI Committee 445 on Shear and Torsion, American Concrete Institute, Farmington Hills, Mich,2003
    [161]ACI 446. ACI 446 proposal for ACI 318 update for size effect of beam depth in shear design of reinforced concrete beams without shear reinforcement [R]. Reported bu Subcommittee ACI 446B of ACI Committee 446 on Fracture Mechnics, American Concrete Institute, Farmington Hill, Mich, 2005
    [162]NS 3473 E. Norwegian Standard.Norwegian Council for Building Standization [S].4 th edition,1992
    [163]JSCE. Standard specification for design and construction of concrete structures, part 1:design [S]. Japan Society of Civil Engineers, Tokyo,1986
    [164]Zararis P D, Papadakis G. Diagonal shear failure and size effect in RC beams without web reinforcement [J]. Journal of Structural Engineering, ASCE,2001,127(7):773-742.
    [165]Zararis P D, Zararis L P. Shear strength of reinforced concrete beams under uniformly distributed loads [J]. ACI Structural Journal,2008,105(6):711-719.
    [166]Lubell A, Sherwood E, Bentz E C, Collins M P. Safe shear design of large, wide Beams [J]. Concrete International,2004,26(1):66-78
    [167]中国建筑科学研究院.钢筋混凝土构件试验数据集-85年设计规范背景资料续编[M].北京:中国建筑工业出版社,1985
    [168]Kupfer H, Mang R and Karavesyroglou M. Ultimate limit state of the shear zone of reinforced and prestressed concrete girders-an analysis taking aggregate interlock into account [J]. Bauinggenieur, 1983,58:143-149 (In German)
    [169]Choi K K, Park H G, Wight J K. Unified shear strength model for reinforced concrete beams-Part I: Development [J]. ACI Structural Journal,2007,104(2):142-152.
    [170]Ramirez J and Breen J. Evaluation of a modified truss model approach for beams in shear [J]. ACI Structural Journal,1991,88(5):562-571
    [171]周氐,康清梁,童保全.现代钢筋混凝土基本理论[M].上海:上海交通大学出版社,1989
    [172]Bresler B, Pister K S. Strength of concrete under combined stresses [J]. Journal of ACI,1958
    [173]Zararis P D. Shear strength and minimum shear reinforcement of reinforced concrete slender beams. ACI Structural Journal,2003,100(2):203-214.
    [174]Setzler E J, Sezen H. Model for the lateral behavior of reinforced concrete columns Including shear deformations [J]. Earthquake Spectra,2008,24(2):493-511
    [175]Moehle J P. Displacement-based design of RC structures subjected to earthquakes [J]. Earthquake Spectra,1992,8(3):403-428
    [176]Mostafaei H, Vecchio F J, Kabeyasawa T. Deformation capacity of reinforced concrete columns [J]. ACI Structural Journal,2009, (2):187-195
    [177]Sezen H, Setzler E J. Reinforcement slip in reinforced concrete columns [J]. ACI Structural Journal, 2008,105(3):280-289.
    [178]Park R, Paulay T. Reinforced concrete structures [M]. John Wiley & Sons, Inc., New York,1975.
    [179]CEB. Comite Euro-International du Beton. Design manual, cracking and deformations [S]. International system of unified standard codes of practice for structures,158, E,1985.
    [180]Elwood K. Shake table tests and analytical studies on the gravity load collapse of reinforced concrete frames [D]. Ph.D. Dissertation, University of California, Berkeley,2002.
    [181]Elwood K J, Moehle J P. Evaluation of existing reinforced concrete columns [C].13th World Conference on Earthquake Engineering, Aug., Paper No.579,2004
    [182]Lynn A C. Seismic evaluation of existing reinforced concrete building columns [D]. Ph.D. Dissertation, University of California, Berkeley,308 pp,2001
    [183]Moehle J P, Elwood K J, Sezen H. Gravity load collapse of building frames during earthquakes [C]. ACI SP-197. Behavior and Design of Concrete Structures for Seismic Performance. American Concrete Institute. Farmington Hills, Michigan,2002
    [184]ASCE-ACI Committee 426. Suggested revisions to shear provisions for building codes [R]. American Concrete Institute, Farmington Hills, Mich.1978
    [185]Aschheim M and Moehle J P. Shear strength and deformability of reinforced concrete bridge columns subjected to inelastic cyclic displacement [R]. Earthquake Engineering Research Center, Report No. UCB/EERC-92/04,1992
    [186]ATC/MCEER (2003). Recommended LRFD guidelines for the seismic design of highway bridges [R]. Multidisciplinary Center for Earthquake Engineering Research Report No. MCEER-O3-SPO3, ATC-49,2003
    [187]NZS 3101. Concrete structures standard [S]. Standards Association of New Zealand, Wellington, NZ, 1995
    [188]Japan Road Association. Design specifications of highway bridge [M]. Tokyo, Japan,1996
    [189]FEMA 356. Prestandard and commentary for the seismic rehabilitation of buildings [S].2000
    [190]Saenz L P. Discussion of equation for the stress-strain curve of concrete by Desayi and Krishman [J]. Journal of the American Concrete Institute,1964,61(9):1229-1235.
    [191]Kupfer H, Gerstle K H. Behavior of concrete under biaxial stresses [J]. ASCE Journal of Engineering Mechanics,1973,99(4):853-866
    [192]Darwin D, Pecknold D A. Nonlinear biaxial stress-strain law for concrete [J]. ASCE Journal of Engineering Mechanics,1977,103(2):229-241
    [193]Taylor A W, Kuo C, Wellenius K, Chung D. A summary of cyclic lateral load tests on rectangular reinforced concrete columns [R]. National Institute of Standards and Technology Report NISTIR 5984,1997.
    [194]Lynn A C, Moehle J P, Mahin S A, Holmes W T. Seismic evaluation of existing reinforced concrete building columns [J]. Earthquake Spectra,1996,12(4):715-739.
    [195]Sezen H. Seismic behavior and modeling of reinforced concrete building columns [D]. Ph.D. Dissertation, University of California, Berkeley,2002,345 pp.
    [196]Nagasaka T. Effectiveness of steel fiber as web reinforcement in reinforced concrete columns [J]. Transactions of the Japan Concrete Institute,1982,4:493-500.
    [197]Imai H, Yamamoto Y. A study on causes of earthquake damage of izumi high school due to Miyagi-Ken-Oki earthquake in 1978 [J]. Transactions of the Japan Concrete Institute,1986,8: 405-418.
    [198]Ohno T, Nishioka T. An experimental study on energy absorption capacity of columns in reinforced concrete structures [J]. Proceedings of the JSCE, Structural Engineering/Earthquake Engineering, 1984,1(2):137-147.
    [199]Gill, W D, Park R, Priestley M J N. Ductility of rectangular reinforced concrete columns with axial load [R]. Report 79-1, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand,1979.
    [200]Soesianawati M T, Park R, Priestley M J N. Limited ductility design of reinforced concrete columns [R]. Report 86-10, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand,1986.
    [201]Esaki F. Reinforcing effect of steel plate hoops on ductility of R/C square columns [C]. Proc.,11th World Conf. on Earthquake Engineering, Pergamon, Elsevier Science, New York, No.196,1996.
    [202]Kanda M, Shirai N, Adachi H, Sato T. Analytical study on elasto-plastic hysteretic behaviors of reinforced concrete members [J]. Transactions of the Japan Concrete Institute,1988,10:257-264. (Specimens 85STC-3 and 85PDC-3 only)
    [203]Tanaka H, Park R. Effect of lateral confining reinforcement on the ductile behavior of reinforced concrete columns [R]. Report 90-2, Department of Civil Engineering, University of Canterbury, 1990.
    [204]Azizinamini A, Johal L S, Hanson N W, Musser D W, Corley W G. Effects of transverse reinforcement on seismic performance of columns-a partial parametric investigation [R]. Project No. CR-9617, Construction Technology Laboratories, Skokie, Illinois,1988.
    [205]Umehara H, Jirsa J O. Shear strength and deterioration of short reinforced concrete columns under cyclic deformations [R]. PMFSEL Report No.82-3, Department of Civil Engineering, University of Texas at Austin, Austin Texas,1982.
    [206]Ang B G. Seismic shear strength of circular bridge piers [D]. PhD thesis, Department of Civil Engineering, University of Canterbury, Christchurch,1985
    [207]Mau S T, Hsu T T C. Shear behaviour of reinforced concrete framed wall panels with vertical loads [J]. ACI Structural Journal,1987,84(3):228-234
    [208]Hsu, T T C, Mo Y L. Softening of concrete in torsional members-theory and tests [J]. ACI Journal, Proceedings,1985,82(3):290-303
    [209]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].同济大学出版社,1996年12月.
    [210]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社,1993
    [211]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998
    [212]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005年3月.
    [213]Yang T Y. Finite Element Structural Analysis [M]. Prentice-Hall, Inc., Englewood Cliffs,1986, 543pp
    [214]Weaver W J, Johnston P R. Finite Elements for Structural Analysis [M]. Prentice-Hall, Inc., Englewood Cliffs,1984
    [215]Cervenka, Vladimir. Constitutive model for cracked reinforced concrete [J]. ACI Journal, Proceedings,1985,82(6):877-882
    [216]American Society of Civil Engineers. Finite element analysis of reinforced concrete [M]. New York, 1982,545pp
    [217]Vecchio F J. Reinforced concrete membrane element formulations [J]. Journal of Structural Engineering, ASCE,1990,116(3):730-750
    [218]Cervenka V, Gerstle K H. Inelastic analysis of reinforced concrete panels, Pan I:theory [J]. International Association of Bridge and Structural Engineering, Publications,1971,31(11):31-45.
    [219]Salonikos T, Kappos A, Tegos A, Penelis G. Cyclic load behaviour of low slenderness reinforced concrete walls:design basis and test results [J]. ACI Structural Journal,1999,96(4):649-660.
    [220]Lefas I, Kotsovos M, Ambraseys N. Behavior of reinforced concrete structural walls:strength, deformation caracteristics, and failure mechanism [J]. ACI Structural Journal,1990,87(1):23-31.
    [221]Hidalgo P A, Ledezma C, Jordan R M. Seismic behavior of squat reinforced concrete shear walls [J]. Earthquake Spectra,2002,18(2):287-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700