用户名: 密码: 验证码:
钢筋混凝土细长柱结构精细化分析模型及动力二阶效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当结构承受竖向荷载时,已变形的结构或杆件中会产生P-Δ和P -δ两类二阶效应。人们对细长柱的静力二阶效应研究较多,但对动力二阶效应的研究则相对较少,且大都限于P-Δ效应的研究。本文针对钢筋混凝土细长柱精细化模型和动力二阶效应进行了一些探讨和研究,主要内容如下。
     论文基于柔度法理论和纤维模型,建立了能精确考虑P-Δ效应和P -δ效应的新单元模型,且实现了P-Δ效应和P -δ效应的分离计算,从而为采用同一单元模式研究动力二阶效应规律及P -δ效应对P-Δ效应的影响提供了可能。通过数值验证和对比分析,该精细化分析模型准确、高效。
     建立了考虑梁柱节点剪切变形的拉—压杆模型,提出了考虑梁柱节点核心区剪切变形的新方法,该方法能全面反映梁柱节点区的受力机理。通过与试验结果及其他方法得到的节点核心区剪应力应变关系曲线进行对比,本论文提出的定参方法与试验结果更接近。
     在单质点体系的动力二阶效应研究部分,本论文首先推导了同时考虑P-Δ和P -δ效应的侧向刚度折减系数计算公式;提出了考虑动力二阶效应的通用反应谱法和规范反应谱法,通过数值计算,验证了理论公式的可靠性和准确度;同时,分析了P -δ效应在静力和动力分析下在整体二阶效应中所占的比重,明确了动力二阶效应与静力二阶效应的区别及影响因素,除稳定系数外,结构周期和地震动的频谱特性等都对动力二阶效应有显著影响;论文将竖向地震动对结构水平响应的影响视为变轴力对水平地震响应的影响,建立了在水平和竖向地震动同时作用下考虑结构二阶效应的运动方程,通过参数分析明确了竖向地震动对动力二阶效应的影响因素;论文研究了不同非线性程度引起的动力二阶效应大小,分析了材料非线性对结构动力二阶效应的影响,探讨了采用折减刚度来考虑材料非线性影响的可能性;最后,本论文还设计了5组试件,完成了不考虑和考虑二阶效应的静力推覆试验、单独水平地震作用和水平、竖向地震同时作用下的振动台试验,通过对试验结果的分析,验证了理论公式的准确性。
     在多质点体系的动力二阶效应研究部分,针对现有程序和规范中考虑结构二阶效应的方法,分析了其存在的问题,特别是对考虑二阶效应的等效水平力方法和“虚柱法”进行了讨论;本论文从理论上说明了无论静力还是动力分析,都可以采用虚柱法来近似地考虑剪切型或弯曲型结构的P—Δ效应;并提出了两种考虑动力二阶效应的简化方法(振型分解反应谱法和底部剪力法),与数值计算结果对比表明,这两种方法是可行的和合理的。
Under vertical loading, two categories of second-order effects exist in deformed structure, i.e. P -Δeffect and P -δeffect. There are many studies on static second-order effects; however, the researches towards dynamic second-order effects are less concerned, in addition, the related studies are limited to P -Δeffect aspect. This paper has inquired into the refined analysis models of RC slender column structure and dynamic second-order effects. The main contents are as follow.
     According to flexibility method theory method and fiber model, a new refined model has been established, which not only accurately evaluates P -Δeffect and P -δeffect but also realizes separate calculations of them. As a result, it is entirely possible to study on the law of dynamic second-order effects and the influence from P -δeffect on P -Δeffect through using same element model. And the refined model is proved accurate and efficient by numerical validation and comparative analysis.
     The strut-and-tie model has been introduced due to the shear deformation of beam-column joint, and a new method has been put forward which shows the transferring shear force mechanism of beam-column joint core. The paper has compared the shear stress-strain relationship curves of beam-column joint core resulted from other methods with those from experimental results, it finds that the results based on the new method is more closed to the experimental results.
     In the part of studies on the dynamic second-order effects of SDOF system are carried out step by step: firstly, in the light of structures’P -Δeffect and P -δeffect, the calculation formula for reduction coefficient of lateral stiffiness is deduced under horizontal earthquake loading. Based on these, the formulas of general and standard response spectrum with dynamic second-order effects were offered, the reliability and accuracy of theoretical formula were validated by numerical calculation. Secondly, the proportion of P -δeffect accounts for second-order effects is achieved through static and dynamic analyses, the distinction between static and dynamic second-order effects and the factors influencing the two are confirmed, and structural period and frequency spectrum characteristic of ground motion have significant impacts on the two except stability factors. Thirdly, the impact of vertical ground motion on structures’horizontal response is regarded as that of varied-axial-force on horizontal seismic response in this paper, the motion equation in which structural second-order effects is counted has been established as horizontal and vertical earquake take effect simultaneously, the factors of vertical ground motions influencing structural dynamic second-order effecs have been figured out by parametric analysis. Fourthly, the different degrees of material nonlinear on dynamic second-order effects were investigated; furthermore, the possibility of adopting stiffness reduction to assess the impact of material nonlinear was discussed. Finally, 5 groups of specimens have been designed; plate loading test with and without second-order effects and shaking table test under horizontal earquake or horizontal and vertical earthquake in combination have been completed, the results indicate that the methods for considering the dynamic second-order effects are appropriate and accurate.
     In the part of study on dynamic P -Δeffect of MDOF system, the problems existing in the methods of designed programs and criterions considering P -Δeffect are analyzed, particularly, the method of equivalent horizontal force regarding second-order effect and“fictitious column”method are discussed. This paper is theoretically showed that the fictitious column method can be used to calculate the P -Δeffect of shearing and flexural structure approximately in static and dynamic analyses; moreover, the two simplified methods with P -Δeffect were presented: modal analysis response spectrum method and equivalent base shear method, the two methods are proved practical and reasonable by comparing the calculated numerical results.
引文
[1] Tezcan S. S and Mahapatra B. C. Tangent stiffness matrix for space frames [J]. Journal of the Structural Division, ASCE, 1969, 95(6): 1257-1270.
    [2] Chu K. H. and Rampatstreiter R. H. Large deflection buckling of space frames [J]. Journal of the Structural Division, ASCE, 1972, 98(12): 2701-2722.
    [3]陆念力,张宏生.计及二阶效应的一种变截面梁精确单元刚度阵[J].工程力学, 2008, 25(12): 60-64.
    [4]夏拥军,陆念力.梁杆结构二阶效应分析的一种新型梁单元[J].工程力学, 2007, 24(7): 39-43.
    [5] Torkamani M. A. M. and Sonmez M. Inelastic large deflection modeling of beam-column [J]. Journal of Structural Engineering, ASCE, 2001, 127(8): 876-887.
    [6] Ambrisi A. D. and Filippou F. C. Correlation studies on an RC frame shaking-table specimen [J]. Earthquake Engineering and Structural Dynamics, 1997, 26: 1021-1040.
    [7]吕西林,卢文生.纤维杆元模型在框架结构非线性分析中的应用[J].力学季刊, 2006, 27(1): 14-22.
    [8]陈乾,吕志涛.钢筋混凝土框架的非线性全过程分析新法[J].东南大学学报, 1992, 22(5): 66-74.
    [9]李国强,沈祖炎.钢框架弹塑性静动力反应的非线性分析模型[J].建筑结构学报, 1990, 11(2): 51-59.
    [10] K Kitayama, S Otani , H Aoyama. Development of design criteria for RC Interior Beam-column joints, design of beam-column joints for seismic resistance[R]. Sp-123, ACI, Detroit, 1991, 145 - 165.
    [11] T Paulay, R Park, MJ N Priestley. Reinforced concrete beam-column joints under seismic actions[J ]. ACI Journal, 1978, 25.
    [12] R. PARK. A Summary of Results of Simulated Seismic Load Tests On Reinforced Concrete Beam-Column Joints, Beams and Columns with Substandard Reinforcing Details, Journal of Earthquake Engineering, 2002, 6(2).
    [13] Fumio KUSUHARA, Keiko AZUKAWA. Tests of Reinforced Concrete Interior Beam-Column Joint Subassemblage With Eccentric Beams. 13th World Conference on Earthquake Engineering, Canada, 2004.
    [14]傅剑平,游渊,白绍良.钢筋混凝土抗震框架节点传力机构分析[J].重庆建筑大学学报, 1996, 02.
    [15]傅剑平,张川,白绍良.钢筋混凝土抗震框架节点各机构传递剪力的定量分析[J].建筑结构学报, 2005, 01.
    [16]傅剑平,张川,陈滔,白绍良.钢筋混凝土抗震框架节点受力机理及轴压比影响的试验研究[J].建筑结构学报, 2006, 06.
    [17] Hitoshi Shiohara, New Model for Shear Failure of RC Interior Beam-Column Connections [J]. Journal of Structural Engineering, ASCE, 2001, 127 (2): 0152–0160.
    [18] M. YOUSSEF, A. GHOBARAH. Modeling of RC Beam-Column Joints and Structural Walls[J]. Journal of Earthquake Engineering, 2001, 5(1) .
    [19] Laura N. Lowes, Arash Altoontash. Modeling Reinforced-Concrete Beam-Column Joints Subjected to Cyclic Loading[J]. Journal of Structural Engineering, 2003, 129(12).
    [20] Nilanjan. Mitra. An Analytical Study of Reinforced Concrete Beam-column Joint Behavior under Seismic Loading [D]. Department of Civil & Environmental Engineering, University of Washington, Seattle, 2007.
    [21] Vecchio, F. J. , and Collins, M. P. The modified-compression field theory for Reinforced concrete elements subjected to shear[J]. ACI Journal, 1986, 83(22).
    [22] J. A. Yura. The Effective Length of Columns in Unbraced Frames[J]. Engineering Journal of Structural Engineering, AISC, 1971.
    [23] Emilio Rosenblueth. Slenderness Effects in Buildings[M]. Journal of the Structural Division, ASCE, 91(1), 1965.
    [24] L. K. Stevens. Elastic Stability of Practical Multistory Frame[J]. Proceedings of the Institution of Civil Engineers, 1967.
    [25] Lai, S. -M. A. . Geometric non-linearity in multistory frames[D]. Department of Civil Engineering, University of Alberta, Edmonton, Canada, 1981.
    [26] Lai, S. -M. A. , MacGregor, J. G. , and Hellesland, J. . Geometric nonlinearities in non-sway frames[J]. Journal of Structural Engineering, ASCE, 1983, 12(12).
    [27] Shu-Ming A. Lai, James G. MacGregor. Geometric nonlinearities in unbraced multistory frames[J]. Journal of Structural Engineering, ASCE, 1983, 109(11): 2528-2545.
    [28]徐培福,肖从真.高层建筑混凝土结构的稳定设计[J].建筑结构, 2001, 31(8): 69-72.
    [29]梁启智,谢理.框—剪结构的二阶效应[J].建筑结构学报, 1986, 5.
    [30]叶文洪,梁启智.考虑二阶效应时框—剪结构的简化分析[J].工程力学, 1999, 16(1): 26-34.
    [31]刘滨,包世华.高层筒体结构的整体及二阶位移的分析[J].建筑结构学报, 1990, 11(1): 1-9.
    [32]陆铁坚,余志武,李芳.高层筒体结构整体稳定及二阶位移分析的改进条元法[J].计算力学学报, 2006, 23(1): 29-33.
    [33]辛克贵,钱良忠.高层筒体结构的整体稳定及二阶位移分析[J].清华大学学报(自然科学版), 2003, 43(10): 1386-1389.
    [34]王建东,包世华.高层筒体结构的二阶分析[J].工程力学, 1995, 12(3): 31-38.
    [35]包世华,龚耀清.超高层建筑空间巨型框架的水平力和重力二阶效应分析新方法[J].计算力学学报, 2010, 27(1): 40-46.
    [36]聂国隽,仲政.框架结构P ?Δ效应分析的微分求积单元法[J].力学季刊, 2004, 25(2): 195-200.
    [37]魏巍,朱爱萍,刘毅,白绍良.考虑P ?δ效应的钢筋混凝土框架柱设计方法[J].建筑结构学报, 2006, 27(5): 64-71.
    [38]李新荣,秦文钺,白绍良.两端不等偏心距钢筋混凝土柱二阶效应试验研究[J].重庆建筑大学学报, 2000, 22(5): 41-46.
    [39]王志军.钢筋混凝土铰支柱和框架柱二阶效应及稳定问题研究[D].重庆建筑大学博士学位论文. 1996.
    [40]程光均,于海洋,白绍良,武建华.钢筋混凝土框架挠曲侧移二阶效应的整体考虑[J].建筑结构, 2006, 36(7): 44-46.
    [41]王志军,白绍良,蒲心诚,魏巍.高强混凝土有侧移柱剪力分配和二阶效应试验研究[J].重庆建筑大学学报增刊, 2000, 22: 102-108.
    [42]王志军,白绍良,高晓莉.对钢筋混凝土偏压杆件偏心距增大系数中截面曲率修正系数的讨论[J].重庆建筑大学学报, 1999, 5.
    [43]白绍良,魏巍,刘毅.考虑钢筋混凝土框架整体二阶效应规律的改进η? l0法[J].重庆建筑大学学报, 2005, 5.
    [44]童岳生,童申家,童润家.框架柱弯矩挠曲及侧移二阶效应的考虑[J].建筑结构, 2002, 32(5): 62-64.
    [45]童岳生,童申家.有侧移钢筋混凝土框架柱纵向挠曲二阶效应的分析[J].建筑结构, 2005, 35(9): 57-61.
    [46] Regina Gaiotti and Bryan Stafford Smith. P-Delta analysis of building structures[J]. Journal of Structural Engineering, ASCE, 1989, 115(4): 755-770.
    [47] Nixon, D. , Beaulieu, D. , and Adams, P. F. Simplified second order frame analysis[J]. Can. J. Civ. Engrg. , 1975, 2(4): 602-605.
    [48] LeMessurier, W. J. A practical method of second order analysis[J]. AISC, Engrg. J. , 1977, 14(2): 49-67.
    [49] Rutenberg, A. A direct P-delta analysis using standard plane frame computer programs [J]. Comput. Struct. , 1981, 14(1-2): 97-102.
    [50] Rutenberg, A. Simplified P-Delta analysis for asymmetric structures[J]. ASCE, Journal of the Structural Division, 1982, 9(108): 1995-2013.
    [51] Christoph ADAM, Luis F. IBARRA, Helmut KRAWINKLER. Evaluation of P-Delta effects in non-deteriorating MDOF structures from equivalent SDOF systems [J]. The 13th World Conference on Earthquake Engineering Vancouver, B. C. , Canada, 2004, August 1-6.
    [52] Aschheim, M, Montes, E. H. The representation of P-delta effects using yield point spectra [J]. Engineering Structures, 2003, 25: 1387-1396.
    [53]爱德华·L·威尔逊.结构静力与动力分析(第四版)[M].北京:中国建筑工业出版社, 2006.
    [54]刘毅钢筋混凝土结构二阶效应及设计方法的研究[D].重庆大学硕士学位论文. 2007.
    [55]中华人民共和国建设部. JGJ3-2002.高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社, 2002.
    [56]李松.混凝土规范二阶效应条文修订的讨论及剪力墙刚度折减系数验证[D].重庆大学硕士学位论文. 2010.
    [57] Jenning P. C. and Huid R. Collapse of yielding structures under earthquake[J]. J. Engrg. Mesh, ASCE, 1968, 94(5): 1045-1065.
    [58] Sun CK, Berg GV, Hanson RD. Gravity effect on single degree inelastic system[J]. J. Engrg Engineering and Structural Dynamic, 1987: 635-651.
    [59] Bernal D. Amplification factors for nonlinear dynamic P ?Δeffects in earthquake analysis[J]. Earthquake Engineering and Structural Dynamic, 1987, 15: 635-651.
    [60] Bernal D. P-delta effects and instability in the seismic response of buildings[R]. Department of Civil Engineering, Northeastern University, Boston, Mass. , Report No. CE-91-15, 1990.
    [61] Hyo-Gyoung Kwaka, Jin-Kook Kimb. P ?Δeffect of slender RC columns under seismic load[J]. Engineering Structures, 2007, 29: 3121-3133.
    [62] Darren Vian and Michel Bruneau. Experimental investigation of P-Delta effects to collapse during earthquakes [R]. University at Buffalo, State University of New York, 2001.
    [63] MacRae GA. P ?Δeffects on single-degree-of-freedom structures in earthquakes[J]. Earthquake Spectra. , 1994, 10(3): 539–68.
    [64] Tremblay R, Duval C, Leger P. Effects of hysteretic models and ground motion characteristics on seismic p-delta strength amplification factors[J]. Stability and Ductility of Steel Structures, 1997, SDSS 97: 311-318.
    [65] Tremblay R. , Duval C. and Leger P. Effects of viscous damping models, hysteretic models and ground motion characteristics on seismic P-delta strength amplification factors[J]. In Stability and ductility of steel structures, 1998, 103-118.
    [66]童根树,赵永峰.动力P ?Δ效应对地震力调整系数的影响[J].浙江大学学报(工学版), 2007, 41(1): 120-125.
    [67]李创第,邹万杰,黄天立,李暾,陈俊忠.结构在水平与竖向地震同时作用的非平稳响应[J].土木工程学报, 2005, 38(6): 25-31.
    [68]李宏男.结构多维抗震理论与设计方法[M].北京:科学出版社, 1998.
    [69] Williamson E. B. Evaluation of damage and P ?Δeffects for systems under earthquake excitation[J]. Journal of structural Engineering, ASCE, 2003, 129: 1036-1046.
    [70] Button MR, Cronin CJ, Mayes RL. Effect of vertical motion on seismic response of highway bridges[J]. Journal of Structural Engineering, 2002, 126(10): 1196-202.
    [71] Saadeghvaziri MA, Foutch DA. Dynamic behavior of RC highway bridges under the combined effect of vertical and horizontal earthquake motions[J]. Earthquake Engineering and Structural Dynamic, 1991, 20: 1341-1360.
    [72] Khairy H, Machida A. Vertical of component of earthquake motion and inelastic response of RC piers[R]. IABSE Reports, 1998, 79: 247-252.
    [73]谈臻.高耸烟囱结构在竖向和水平地震作用下的抗震性能分析[D].同济大学硕士学位论文. 2007.
    [74]任耀辉.烟囱竖向地震作用下抗震性能分析[D].西安建筑科学大学硕士学位论文. 2008.
    [75]陈健云,周晶,马恒春,朱彤.高耸烟囱结构竖向地震响应的模型试验研究及分析[J].建筑结构学报, 2005, 26(2): 87-93.
    [76]江哲.竖向地震下高桥墩单质点体系二阶效应研究[D].重庆大学硕士学位论文. 2010.
    [77]郑延银,赵惠麟.高层钢结构巨型框架体系的二阶效应位移实用计算[J].东南大学学报(自然科学版), 2002, 32(5): 794-798.
    [78]郑延银,朱慧,赵惠麟.钢框架—支撑体系二阶效应分析的高效非迭代方法[J].工业建筑, 2001, 3: 62-64.
    [79] Zheng T. Y, Ma H, Dong J, et al. A simplified model of braced steel frames in tall building considering second-order effects[J]. Proceedings of Sixth Pacific Structural Steel Conference C. Beijing: Seismological Press, 2001: 184-189.
    [80]赵钦.多重抗侧力结构体系二阶效应及串并联模型[D].浙江大学博士学位论文. 2010.
    [81]刘小花.多高层钢框架二阶效应侧移限值合理取值的研究[D].湖南大学硕士学位论文. 2008.
    [82]郑延银.考虑P ?Δ效应的巨型钢框架结构实用分析[J].南京工业大学学报, 2002, 24(5): 61-64.
    [83] Wilson E L, EERI M, Habibullah A. Static and dynamic analysis of multi-story buildingP-Delta effects. Earthquake Spectra, 1987, 3(2).
    [84] Paulay T. A consideration of P ?Δeffects in ductile reinforced concrete frames[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1978, 11(3): 151-160.
    [85] Montgomery C. J. Influence of P ?Δeffects on seismic design[J]. Canadian Journal of Civil Engineering, 1981, 8: 31-43.
    [86] Tremblay R. , Cote B. , Leger P. An evaluation of P ?Δamplification factors in multistory steel moment resisting frames[J]. Canadian Journal of Civil Engineering, 1999, 26: 535-548.
    [87] NRCC. National building code of Canada(NBCC). 11th ed. Canadian Commission on Building and Fire Codes, National Research Council of Canada, Ottawa, Ont, 1995.
    [88] BSSC. Recommended provisions for seismic regulations for new buildings and other structures. Composite Draft Copy of March. National Earthquake Hazard Reduction Program, Building Seismic Safety Council, Washington, D. C. , 1997.
    [89] Gupta A, Krawinkler H. Dynamic P-Delta effects for flexible inelastic steel structures[J]. Journal of Structural Engineering, ASCE, 2000, 126(1): 145-154.
    [90]朱杰江,吕西林,容柏生.高层混凝土结构重力二阶效应的影响分析[J].建筑结构学报, 2003, 24(6): 38-43.
    [91]周太全,戴国亮.考虑二阶效应高层建筑结构地震反应分析[J].工程抗震, 2003, 4: 16-20.
    [92]陈礼建. P ?Δ效应对高层高耸结构地震反应影响的研究.工程抗震, 2001, 4: 3-7.
    [93]彭玉斌. P ?Δ效应对抗震框架非弹性动力反应影响的初步分析[D]. ,重庆大学硕士学位论文. 2003.
    [94]翟长海,孙亚民,谢礼立.考虑P ?Δ效应的等延性位移比谱[J].哈尔滨工业大学学报, 2007, 39(10): 1513-1516.
    [95]童申家,童岳生.水平地震力作用下框架结构二阶效应影响分析[J].工业建筑, 2000, 30(8): 17-20.
    [96]童申家,童岳生.风荷载及竖向荷载作用下框架的侧移二阶效应[J].建筑结构, 2006, 36(7): 41-43.
    [97] Remo Magalhaes de Souza. Forced-based finite element for large displacementinelastic analysis of frames [D]. University of California, Berkeley, 2000.
    [98] Spacone E. , Ciampi V. and Filippou F. C. . Mixed formulation of nonlinear beam finite element [J]. Computer & Structure, 1996, 58(1): 71-83.
    [99]张勇.水平地震下高桥墩单质点体系二阶效应研究[D].重庆大学硕士学位论文. 2010.
    [100]陈滔,黄宗明.基于有限单元柔度法的材料与几何双重非线性空间梁柱单元[J].计算力学学报, 2006, 23(5): 524-528.
    [101]陈滔,黄宗明.基于有限单元柔度法的钢筋混凝土空间框架非弹性地震反应分析[J].建筑结构学报, 2004, 25(2): 79-84.
    [102] HUS TTC. Unified theory of reinforced concrete [M]. Florida: CRC Press, Inc, 1993.
    [103]王田友,苏小卒,方江生,拉—压杆模型方法在钢筋混凝土框架节点计算中的应用研究[J].土木工程学报, 2007, 40(11): 36-40.
    [104] Chun S C, Hong S G. Strut-and-tie models for headed bar development in C-C-Tnodes [J]. ACI, Structural Journal, 2009, 106(2): 123-131.
    [105]皮天祥.钢筋混凝土剪力墙小跨高比连梁抗震性能试验和设计方法研究[D].重庆大学博士学位论文, 2008.
    [106]傅剑平.钢筋混凝土框架节点抗震性能与设计方法研究[D].重庆大学博士学位论文, 2002.
    [107]宋孟超.钢筋混凝土梁柱节点核心区模型化方法研究[D].重庆大学硕士学位论文, 2008.
    [108] Mander J. B. , Friestley M. J. N and Park R. Theoretical stress-strain model for confined concrete [J]. ASCE, Journal of Structural Division, 1988, 114(8): 1804-1826.
    [109] Vecchio F. J. and Collins M. P. The modified compression field theory foe reinforced concrete elements subjected to shear [J].
    [110]中华人民共和国建设部. GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社, 2010.
    [111]大崎顺彦.地震动的谱分析入门[M].北京:地震出版社, 1980.
    [112]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社, 1999.
    [113]樊剑,吕超,张辉.地震波时频特征及与结构地震响应的关系[J].工程力学, 2010, 27(6): 98-105.
    [114]陈健云,李静,周晶,林皋.地震动时频谱对小拱坝非线性响应的影响[J].振动工程学报, 2003, 16(2): 207-211.
    [115] Wang Junjie, Fan Lichu, Qian Shie, Zhou Jing. Simulations of non-stationary frequency content and its importance to seismic assessment of structures [J]. Earthquake Engineering and Structural Dynamics, 2002, 31(10): 993-1005.
    [116]贺秋梅.近场竖向地震动随机特性研究[D].北京工业大学硕士学位论文. 2006.
    [117]吴健,高孟潭.场地相关设计反应谱特征周期的统计分析[J].中国地震, 2004, 20(3): 263-268.
    [118]张永康.高层建筑体系竖向地震作用下的动力特性研究[D].西北工业大学硕士学位论文. 2005.
    [119]贾俊峰,欧进萍.近断层竖向地震动峰值特征[J].地震工程与工程振动, 2009, 29(1): 44-49.
    [120]李恒,秦小军.竖向与水平向地震动加速度反应谱比特性分析[J].地震工程与工程振动, 2010, 30(1): 8-14.
    [121] Papazoglou A J, Elnashai A S. Analytical and field evidence of the damaging effect of vertical earthquake ground motion[J]. Earthquake Engineering and Structural Dynamics, 1996, 25: 1191-1137.
    [122] Ambraseys N N, Douglas J. Near-field horizontal and vertical earthquake ground motions [J]. Soul Dynamics and Earthquake Engineering, 2003, 23(1): 1-18.
    [123]佘师和.竖向地震反应谱[J].哈尔滨建工学院学报, 1982, 2: 26-39.
    [124]胡聿贤.地震工程学[M].北京:地震出版社, 1988.
    [125]周正华,周雍年,卢滔等.竖向地震动特征研究[J].地震工程与工程振动, 2003, 23(3): 25-29.
    [126]高跃春,林淋.房屋抗震设计的竖向地震动反应谱研究[J].黑龙江工程学院学报(自然版), 2006, 20(3): 23-25.
    [127]林淋.竖向地震动特征分析[D].中国地震局工程力学研究所硕士学位论文. 2005.
    [128]耿淑伟,陶夏新.地震动加速度反应谱竖向分量与水平分量的比值[J].地震工程与工程振动, 2004, 24(5): 33-38.
    [129]徐龙军,谢礼立.竖向地震动加速度反应谱特性[J].地震工程与工程振动, 2007, 27(6): 17-23.
    [130]张硕英,张剑霄.多层框架结构竖向地震反应的反应谱分析法[J].西安建筑科技大学学报, 1996, 28(4): 454-458.
    [131]吴晓涵,骆剑峰,马莉.竖向地震作用下混凝土框架结构抗震性能研究[J].结构工程师, 2006, 22(6): 37-43.
    [132]冯丽娟,肖从真,徐自国,李跃林.悬挑结构竖向地震作用分析及设计要点[J].土木工程学报, 2008, 41(3): 65-70.
    [133]王秀英,聂高众,王登伟.汶川地震诱发滑坡与地震动峰值加速度对应关系研究[J].岩石力学与工程学报, 2010, 29(1): 82-89.
    [134] Bozorgnia Y. , Niazi M. Distance scaling of vertical and horizontal response spectra of the Loma Prieta Earthquake[J]. Journal of Earthquake Engineering and Structural Dynamics, 1993, 22: 695-707.
    [135] Bozorgnia Y. , Niazi M. , Campbell K. W. Characteristics of free-field vertical ground motion in the 1994 Northridge Earthquake[J]. Earthquake Spectra, 1995, 11(4): 515-525.
    [136]傅赣清,李丽娟.竖向地震作用下框筒结构整体稳定分析[J].建筑结构学报, 2001, 22(3): 27-30.
    [137]梁启智,傅赣清.筒中筒结构在竖向地震作用下的整体稳定分析[J].华南理工大学学报(自然科学版), 2000, 28(1): 60-64.
    [138]钱培风.竖向地震力[J].地震工程与工程振动, 1983, 3(2): 44-54.
    [139]王常峰,陈兴冲.竖向地震动对桥梁结构地震反应的影响[J].振动与冲击, 2007, 26(6): 31-35.
    [140]陈乐育.高耸结构在竖向地震作用下的动力反应分析[D].西安建筑科技大学硕士学位论文. 2007.
    [141]刘季,何立民,佘师和.结构竖向地震作用的研究[J].哈尔滨建筑工程学院学报, 1986, 2: 14-27.
    [142]刘季,何立民.高耸结构与高层建筑的竖向地震作用[J].建筑结构学报, 1988, 2: 1-12.
    [143]贾燕翔.多层与高层建筑竖向地震作用性能研究[D].西北工业大学硕士学位论文, 2003.
    [144]许波,刘征. MatLab工程数学应用[M].北京:清华大学出版社, 2000.
    [145]张晋.采用MATLAB进行振动台试验数据的处理[J].工业建筑, 2002, 2(32): 28-30.
    [146]陈奎孚,张森文.半功率点法估计阻尼的一种改进[J].振动工程学报, 2002, 2 (15): 151-155.
    [147]胡广书.数字信号处理—理论、算法与实现[M].北京:清华大学出版社, 1997.
    [148]李云贵.混凝土结构二阶效应分析.未公开发表的研究报告, 2006.
    [149] ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318 R-08)[S]. American Concrete Institute, Detroit, 2008.
    [150]中华人民共和国建设部. GB50010-2010.混凝土结构设计规范[S].北京:中国建筑工业出版社, 2010.
    [151]陈滔.基于有限单元柔度法的钢筋混凝土框架三维非弹性地震反应分析[D].重庆大学博士学位论文. 2003.
    [152]陈滔,黄宗明.基于有限单元柔度法和刚度法的几何非线性空间梁柱单元比较研究[J].工程力学, 2005, 22(3): 31-38.
    [153] Al-Gahtani H J. Exact stiffness for tapered members[J]. Journal of Structural Engineering, 1996, 122(10): 1234-1239.
    [154] Anil K. Chopra.结构动力学:理论及其在地震工程中的应用(第2版)[M].北京:高等教育出版社, 2005.
    [155]孙广俊,李爱群.关于结构振型参与系数和振型贡献的分析[J].防灾减灾工程学报, 2009, 5(29): 485-490.
    [156]史铁花,韦承基.振型分解法中合理振型数的确定[J].建筑科学, 2002, 18(2): 29-31.
    [157]李国强,李杰,苏小卒.建筑结构抗震设计[M].北京:中国建筑工业出版社, 2002.
    [158]邹洪波,黄尚安.结构水平地震作用计算中的振型影响探讨[J].四川建筑科学研究, 2002, 28(1): 40-41.
    [159]卢红霞,李刚.多高层建筑顶部附加地震作用系数研究[J].建筑结构增刊, 2010, 40(4): 123-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700