用户名: 密码: 验证码:
膜式水冷壁多焊道焊接变形预测与焊接电源群控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜式水冷壁管屏是锅炉炉墙的重要构件,是热流、流体压力,炉膛烟气压力及其它载荷作用的主要承受部件,也具有提高炉膛密封性及燃料热利用率的作用。基于自主研发的3212型膜式水冷壁管屏熔化极混合气体保护焊(GMAW)焊接生产线的基础上,研究了膜式水冷壁管屏多焊道焊接变形预测技术、多焊接电源的分布机理及群控技术,并进行了工程实验研究,为多焊道焊接的工程领域提供了应用基础。论文的主要工作如下:
     1.研究了膜式水冷壁多焊道焊接过程温度场、应力应变场的分布规律。基于温度测量实验研究,修正了膜式水冷壁多焊道焊接模型。以4钢管3扁钢管屏GMAW焊接为研究对象,分析了GMAW十二焊道群焊工艺参数与焊接变形的关系,优化了焊接工艺参数。
     2.基于不同焊接工艺参数下多焊道焊缝形状的实验研究,建立了焊缝形状人工神经网络预测模型,利用遗传算法对人工神经网络预测模型进行了优化。基于焊缝形状人工神经网络预测模型,优化了3212型膜式水冷壁混合气体保护焊焊接工艺参数,并进行了实验验证。
     3.提出了基于自适应神经模糊推理系统(ANFIS)的多焊接电源优先级群控策略,研究了ANFIS优先级群控控制器的模型,分析了3212型膜式水冷壁混合气体保护焊自动焊机的多焊接电源群控系统。
     4.提出了膜式水冷壁多焊道焊接变形抑制技术,研究了多焊道焊接变形与焊接工艺参数中焊接电流、焊接电压、焊接速度的分布规律,优化了焊接工艺参数。基于自适应神经模糊推理系统的多焊道焊接变形抑制及焊缝形状保证策略研究,进行了工程应用验证。
Tube panel that sustains heat, liquid stress, gas stress and other loads is an important pressure part in the membrane wall. It can improve the thermal efficiency and airtightness. Some methods and experimental research aimed at numerical simulation of welding deformation, shape prediction of welding seam and group control of numerical welding power has been done by "3212" product line of membrane wall, which designed by our group. The main contributions of the paper are as follows:
     1. Analyzed the temperature, stress and strain during welding process. Verified the simulation model based on the test data of welding temperature from welding site. Combining with the temperature measurement test from welding site, applied the model on a typical tube panel, and optimized the parameters.
     2. Established artificial neural network prediction model based on engineering test of different welding seam and optimized it using genetic algorithm artificial neural network model. And verified the prediction model and optimization method by conducting experiments on "3212" product line.
     3. Proposed priority group control strategies and related algorithms of inverter welding power sources based on ANFIS. Simulated the strategies and algorithms as well as the multi-power welding group control system.
     4. Proposed a welding deformation suppression technology. Studied relationships between welding deformation and welding parameters of welding current, welding voltage and welding speed, and optimized welding parameter sets. Finally, Priority group control with ANFIS of multi-power welding was designed and tested according to goals of deformation of welding seam and shape assurance strategy of welding seam.
引文
[1] Preston R V, Schercliff H R, Wither P J, et al. Physically based constitutive modeling of residual stress development in welding of aluminum alloy 2024[J]. Acta Materialia, 2004, 52(17): 4973-4983.
    [2] Goldak J. Distortion and residual stress in welds: The next generation[C]. 8th International Conference on Trends in Welding Research, Canada, June, 2008.
    [3] Karlsson L. Thermal stress in welding[J]. Joumal of Thermal Stress, 1979(l): 121-153.
    [4] Leblond J B. A Theoretical and Numerical Approach to the Plastic Behaviour of Steels During Phase Tranformations[J]. Mech. Phys. Solids, 1986, 34(4): 395-409, 411-432.
    [5] Inoue T, Hagiwara Y. Fracture behavior of welded joints with HAZ under matching[C]. Proc. of the Ninth International Conrerence on Offshore Mechnatics and Arrtic Engineering, Part A, Houston, 1990: 253-260.
    [6] Masubuchi K. Prediction and control of residual stresses and distortion in welded structures. Proceedings of the international symposium on theoretical prediction in joining and welding. Osaka, Japan, 1996:71-88.
    [7] Wiesner D C S. A Summary of Recent TWI Work Relating to the Structural Integrity of Welded Structures, New-Wave of Welding and Joining Research for the 21st Century[C], Proc. of the first osaka university and TWI Joint Seminar, March 2001, Osaka Japan: 167-194.
    [8] Marco A, Ramírez, Gerardo T, John M. A comparison between different numerical formulations for welding arc representations[J]. Journal of Materials Processing Technology, 2004, 168(1): 155-156.
    [9] Sunar M, Yilbas B S, Boran K. Thermal and stress analysis of a sheet metal in welding[J]. Journal of Materials Processing Technology, 2006, 172(1): 123-129.
    [10] Dean D, Hidekazu M, Liang W. Numerical simulation of welding distortion in large structures[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196: 4613-4627.
    [11] Lindgren L E. Numerical modelling of welding[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 48-49.
    [12] Duranton P, Devaux J, Robin V. 3D modelling of multipass welding of a 316L stainless steel pipe[J]. Journal of Materials Processing Technology, 2004, 153: 457-463.
    [13] Chizari M, Hassani A, Barrett L M. Experimental and numerical study of water jet spot welding[J]. Journal of Materials Processing Technology, 2006, 34(16): 55-64.
    [14] Carmignani C, Mares R, Toselli G. Transient finite element analysis of deep penetration laser welding process in a single pass butt-welded thick steel plate[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 179(3-4): 197-214.
    [15] Nishikawa H, Serizawa H, Murakawa H. Actual application of FEM to analysis of large scale mechanical problems in welding[J]. Science and Technology of Welding and Joining, 2007, 12(2): 147-152.
    [16]唐慕尧,楼志文,芮树详,忻鼎乾.单面焊时终端裂纹的研究[J].焊接学报, 1986, 7(3): 123-132.
    [17]汪建华,戚新海,钟小敏,上田幸雄,村川英一.焊接结构三维热变形的有限元模拟[J].上海交通大学学报, 1994, 28(6): 59-65
    [18]于兴哲,赵海燕,鲁立,林建.管子对接多道焊计算效率与精度分析[J].焊接学报, 2010. 31(7): 39-42.
    [19]李军,杨建国,刘雪松,翁路露,方洪渊.随焊旋转挤压控制薄板焊件应力变形新方法[J].机械工程学报, 2010, 46(12): 81-84.
    [20]李军,杨建国,谭星,方洪渊.随焊旋转挤压控制热裂纹实验分析[J].焊接学报, 2010, 31(12): 45-48.
    [21]曾志,王立君,张涵.采用子结构与子模型结合方法的三维焊接应力变形数值模拟[J].焊接学报, 2009, 30(7): 89-93.
    [22] Yamada S, Masubuchi K. Advanced welding technology keeps Japans' high speed trains on track[J]. Welding Journal, 2000, 79(11): 48-53.
    [23] Liang R Q, Khan A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures[J]. International Journal of Plasticity, 1999, (15): 963-980.
    [24] Ravichandran G, Raghupathy V P, Ganesan N. Analysis o f temperature distribution during circum ferential welding of cylindrical and spherical components using the finite element method[J]. Computers & Structures, 1996, 59(2): 225-255.
    [25] Dhingra A K, Murphy C L. Numerical simulation of welding induced distortion in thin walled structures[J]. Science and Technology of Welding and Joining, 2005, 10(5): 528-536.
    [26] Karlsson L. Welding of dissimilar metal[J]. Welding in the World, 2005, 36(6): 125-132.
    [27] Karlsson R I, Josefson B L. Three dimensional finite element analysis of temperatures and stresses in a single-pass butt-welded pipe[J]. ASME Journal of Pressure Vessel Technology, 1990, 112: 76-84.
    [28] Zhao H Y, Lu A L. Simulation on welding process of T-joints[J]. Acta Metallurgica Sinica ,2000, 13(1): 205-211.
    [29] Michaleris P, Debiccari A. Prediction of welding distortion[J]. Welding Journal, 1997, 76(4): 173-181.
    [30] Teng T L, Chang P H. A study of residual stresses in multi-pass girth-butt welded pipes[J]. Journal of Pressure Vessels and Piping, 1997, 74(1): 59-70.
    [31] Borjesson L, Lindgren L E. Simulation of multi-pass welding with simultaneous computation of material properties[J]. Journal of Engineering Materials and Technology, 2001, 123(1): 106-111.
    [32] Jiang W, Yahiaoui K, Hall F R, et al. Finite element simulation of multi-pass welding: full three-dimensional versus generalized plane strain or axisymmetric models[J]. The Journal of Strain Analysis for Engineering Design, 2005, 40(6): 587-597.
    [33] Dong P. Residual stress analyses of a multi-pass girth weld : 3-D special shell versus axisymmetric models[J]. Journal of Pressure Vessel Technology, 2001, 123(2): 207-213.
    [34] Duranton P, Devaux J, Robin V, et al. 3D modelling of multi-pass welding of a 316L stainless steel pipe[J]. Journal of Materials Processing Technology, 2004, (153-154): 457-463.
    [35] Dean D, Murakawa H , Liang W. Numerical and experimental investigations on welding residual stress in multi-pass butt-welded austenitic stainless steel pipe[J]. Computational Materials Science, 2008, 42(2): 234-244.
    [36] Dean D, Murakawa H. Finite element analysis of temperature field, microstructure and residual stress in multi-pass butt-welded 2.25Cr-1Mo steel pipes[J]. Computational Materials Science, 2008, 43(4): 681-695.
    [37]武传松.焊接热过程数值分析[M].北京:哈尔滨工业大学出版社, 1990.
    [38]陈楚,周浩森,姚寿山.硼对低合金钢焊接热影响区韧性的影响[J].上海交通大学学报, 1984, 18(3): 51-63.
    [39]汪建华,陈楚.不同接头形状下的焊接传热计算机系统[J].焊接学报, 1990, 11(1): 57-64.
    [40]陈丙森,马维甸,苏毅.硬夹层中含有垂直裂纹的焊接接头的断裂参量研究[J].焊接学报, 1989, 10(3): 200-207.
    [41]唐慕尧,刘敏,孟繁森.环缝多层焊接头残余应力场的调整[J].西安交通大学学报, 1994, 28(7): 97-102.
    [42]孙伟红.唐慕尧.周丽霞.微合金钢焊接热影响区组织与硬度的计算机预测[J].焊接学报, 1991, 13(3): 146-154.
    [43] Rosenthal D. Mathematical theory of heat distreabution during welding and cutting[J]. Welding Journal, 1941, 20(5): 210-215.
    [44]莫春立,钱百年,国旭名.焊接热源计算模式的研究进展[J].焊接学报, 2001, 22(3): 93-96.
    [45] Senchenkov I K. Thermo mechanical model of growing cylindrical bodies made of physically nonlinear materials[J]. International Applied Mechanics, 2005(41): 1059-1065.
    [46]张建强,赵海燕,吴甦,鹿安理,蔡志鹏.焊接过程三维应力变形数值模拟研究进展[J].焊接学报, 2003, 24(5): 91-96.
    [47]邓德安,梁伟,罗宇,村川英一.采用热弹塑性有限元方法预测低碳钢钢管焊接变形[J].焊接学报, 2006, 27(1): 76-81.
    [48] Ueda Y, Yamakawa T. Analysis of thermal elastic-plastic stress and strain during welding by finite element method [J]. Transactions of Japan Welding Reasearch Institute, 1971, 2(2): 90-100.
    [49] Sunar M, Yilbas B S, Boran K. Thermal and stress analysis of a sheet metal in welding[J]. Journal of Materials Processing Technology, 2006, 172(1): 123-129.
    [50] Pankaj B, Mandal N R, Parameswaran V. Analysis of welding distortion due to narrow-gap welding of upper port plug[J]. Fusion Engineering and Design, 2010, 85(5): 780-788.
    [51] Nied H A. Finite element simulation of the upset welding process[J]. Journal of Engineering for Gas Turbines and Power, 1993, 115(1): 184-192.
    [52] Chidiac S E, Mirza F A, Wilkinson D S. Simplified welding arc model by the finite element method[J]. 1994, 53(5): 1235-1241
    [53] Tsirkas S A, Papanikos P, Pericleous K, et al. Evaluation of distortions in laser welded shipbuilding parts using local-global finite element approach[J]. Science and Technology of Welding and Joining, 2003, 8(2): 79-88.
    [54] Michaleris P, zhang L, Bhide S R, et al. Evaluation of 2D ,3D and applied plastic strain methods for predicting buckling welding distortion and residual stress[J]. Science and Technology of Welding and Joining, 2006(11): 707-716.
    [55] Ueda Y, Yuan M G. The characteristics of the source of welding residual stress (inherent strain) and its application to measurement and prediction [J]. Transactions of Japan Welding Reasearch Institute, 1991, 20(2): 119-127.
    [56] Ueda Y, Yuan M G, Mochizuki M, et al. A prediction method of welding residual stress using source of residual stress (report IV) experimental verification for prediction method of welding residual stresses in T-joints using inherent strains[J]. Transactions of Japan Welding Reasearch Institute, 1993, 22(1): 169-176.
    [57] Ueda Y, Ma N X. Measuring method of three-dimensional residual stresses with the aid of distribution functions of inherent strain(Report I) - a function method for estimating inherent strain distributions[J]. Transactions of Japan Welding Reasearch Institute, 1994, 23(1): 71-78.
    [58] Yuan M G, Ueda Y. Prediction of residual stresses in welded TI-joints using inherent strains[J]. Journal of Engineering Materials and Technology, 1996, 118(2): 229-234.
    [59] Yaghi A H, Hyde T H, Becker A A, et al. Residual stress simulation in welded sections of P91 pipes[J]. Journal of Materials Processing Technology, 2005, 167(2-3): 480-487.
    [60]马坤明,罗宇,王江超. 304L不锈钢结构焊接变形分析[J].焊接学报, 2010, 31(1): 55-58.
    [61]陈建波,罗宇,龙哲.大型复杂结构焊接变形热弹塑性有限元分析[J].焊接学报, 2008, 29(4): 69-72.
    [62]张三磊,罗宇,陈陟悠.动力机车转向架侧梁焊接变形预测[J].焊接学报, 2010, 31(10): 110-112.
    [63]徐济进,陈立功,汪建华,倪纯珍.基于固有应变法筒体对接多道焊焊接变形的预测[J].焊接学报, 2007, 28(1): 77-79.
    [64]刘俊龚,陆皓,陈俊梅.焊接残余应力的温度-组织-应力耦合分析[J].焊接学报, 2009, 30(2): 95-98.
    [65] Camilleri D, Mollicone P, Gray T GF. Computational methods and experimental validation of welding distortion models[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 2007, 221(4): 235-249.
    [66] Camilleri D, Comlekci T, Gray T GF. Computational prediction of out-of-plane welding distortion and experimental investigation[J]. Journal of Strain Analysis for Engineering Design, 2005, 40(2): 161-176.
    [67] Camilleri D, Comlekci T, Gray T GF. Thermal distortion of stiffened plate due to fillet welds omputational and experimental investigation[J]. Journal of Thermal Stresses, 2006, 29(2): 111-137.
    [68] Camilleri D, Gray T GF. Computationally efficient welding distortion simulation techniques[J]. Modeling and Simulation in Materials Science and Engineering, 2005, 13(8): 1365-1382.
    [69]鄢东洋,吴爱萍,焦好军,宁立芹,周炼钢.沟槽蒙皮结构激光焊接应力和变形的数值模拟[J].焊接学报, 2008, 29(11): 13-16.
    [70]张可荣,张建勋,黄嗣罗,邱毅强.大型厚壁筒体斜插弯管接头应力特征有限元快速预测[J].西安交通大学学报, 2010, 44(3): 68-71.
    [71]刘川,张建勋,牛靖.焊接动态拘束变形三维多体耦合数值模拟[J].机械工程学报, 2010, 46(6): 83-86.
    [72]张建勋,刘川,张林杰.焊接非线性大梯度应力变形的高效计算技术[J].焊接学报, 2009, 30(6): 107-111.
    [73]周广涛,刘雪松,闫德俊,方洪渊.顶板焊接顺序优化减小焊接变形的预测[J].焊接学报, 2009, 30(9): 109-112.
    [74]孟庆国,方洪渊,杨建国,姬书得.多焊道温度场数值模拟及其分布规律的研究[J].机械工程学报, 2005, 41(1): 124-128.
    [75] Greene T W. Controlled low temperature stress relieving[J]. Welding Journal Res. Supp. l, 1946, 11(3): 171-185.
    [76] Leggatt R H. Residual stresses in welded structures[J]. International Journal of Pressure Vessels andPiping, 2008, 85(3): 144-151.
    [77] Barber T E. Controlling residua l stresses by heat sink welding[R]. Battelle Memorial Institute, Electric Power Research Institute Report NP-2159-LD, 1981, 12.
    [78] Mollicone P. Procedural influences on non-linear distortions in welded thin-plate fabrication[J]. Thin-Walled Structures, 2008, 46(7-9): 1021-1034.
    [79] Watanable M. Control of angu lar d istortion in welding conditions in T-fillet welded joints ( Report 2. Shrinkage distortion in welded joint)[J]. Journal of the Welding Society, Japane, 1956, 25(6): 362-367.
    [80] Watanable M. Effect of welding conditions on the transverse shrinkage distortion of bead on plates(Report 1. Shrinkage distortion in welded joint)[J]. Journal of theWelding Socie ty, Japane, 1956, 25(4): 211-216.
    [81] Masubuchi K. Control of distortion and shrinkage in welding[J]. Welding Research Council Bulletin 149, 1970.
    [82] Dean D, Wei L. FEM prediction of buckling distortion induced by welding in thin plate panel structures[J]. Computational Materials Science, 2008, 43(4): 591-607.
    [83] Kmecko L, Hu D, Kovacevic R. Controlling heat input, spatter and weld penetration in GMA welding for solid freeform fabrication[C]. Solid Fr eeform Fabrication Proceedings. Austin: Beaman J Jed, 1999: 735-742.
    [84] Sattrifar I, Javadi Y. Influence of welding sequence on welding distortions in pipes[J]. International Journal of Pressure Vessels and Piping, 2008, 85(4): 265-274.
    [85]关桥,郭德伦,李从卿.低应力无变形焊接新技术-薄板构件的LSDN焊接法[J].焊接学报, 1990, 11(4): 231-237.
    [86]姚君山,张彦华,张崇显,郭德伦.有源强化传热控制薄板焊接压曲变形的研究[J].机械工程学报, 2000(9).
    [87]范成磊,方洪渊,杨建国,王霄腾,黎明.随焊冲击碾压控制焊接应力变形新方法[J].机械工程学报, 2004, 40(8): 87-90.
    [88]周广涛,刘雪松,杨建国,路浩,方洪渊.综合控制焊接变形和防止热裂纹的新方法-双向预置应力法[J].机械工程学报, 2009, 45(9): 296-300.
    [89]闫德俊,刘雪松,周广涛,方洪渊.大型底板结构焊接顺序控制变形数值分析[J].焊接学报, 2009, 30(6): 55-58.
    [90]王禹华,桂赤斌,王征.基于复合控制数字化弧焊逆变电源的仿真分析[J].焊接学报, 2007, 28(1): 109-112.
    [91] Lapedes A, Farber R. Nonlinear signal p rocessing using neural networks: p rediction and system modeling[R]. Los Alamos: Los Alamos National Laboratory, 1987: 2610-2662.
    [92] Yasuki M, Kohji T, Kohsuke T, et al. Micro-structure and strength of interface in joint of WC-40mass% Co alloy/carbon steel[J]. Funtai Oyobi Fummatsu Yakin /Journal of the Japan Society of Powder and Powder Metallurgy, 1997, 44(10): 958-962.
    [93] Yasuki M, Kohji T, Kohsuke T, et al. Effect of carbon addition on mechanical properties of WC-37mass% Fe alloy[J]. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2002, 49(3):183-188.
    [94] Sugihara G, May R M. Nonlinear Forecasting as a Way of Distinguishing Chaos from Measurement Error in Time Series [J]. Nature (S1002-0071), 1990, 334(6): 734-741.
    [95]张艳飞,董俊慧,张永志.基于自适应模糊神经网络焊接接头力学性能预测[J].焊接学报, 2007, 28(9): 5-8.
    [96]董俊慧,张艳飞,唐正魁.利用模糊神经网络技术预测焊接接头力学性能[J].焊接学报, 2008, 29(7): 29-33.
    [97] Hidekazu D, Fumihiro U, Yoshio F, et al. Effect of boundaries on strength and toughness of cemented carbides [C]. Nuclear Technology. 1975, 235-248 .
    [98] David T, Niall B, Gabriele L. Some new methods for predicting fatigue in welded joins[J]. International Journal of Fatigue, 2002, 24: 509-518.
    [99]马跃洲,马春伟,张鹏贤,陈剑虹.基于电弧声波特征的CO2焊接飞溅预测[J].焊接学报, 2002, 23(3): 19-22
    [100]冯曰海,刘嘉,殷树言,等.新型低飞溅高能量短路过渡波形控制技术[J].焊接学报, 2009, 30(8): 45-48.
    [101] Kim L S, Son J S, Kim I G, et al. A study on relationship between process variables and bead penetration for robotic CO2 arc welding[J]. Journal of Materials Processing Technology, 2003, 136: 139-145.
    [102] Anderson K, Cook G E, Barnett R J. Gas gungsten arc welding process control using artificial neural network[C]. 3rd international conference on trends in welding research. 1992, 1-5.
    [103]徐东,杨润党,王文荣,金烨.船体结构焊接变形预测与控制技术研究进展[J].舰船科学技术, 2010, 32(1): 133-136.
    [104]童莉葛,白世武,刘方明.基于BP人工神经网络的高强度管线钢焊接接头性能参数CTOD预测系统[J].焊接学报, 2007, 28(8): 96-98.
    [105]王玉,高大路,廖明夫,冯静.优化异种材料摩擦焊机工艺参数的神经网络模型[J].焊接学报, 2005, 26(4): 33-36.
    [106]熊建钢,胡强,李志远,王力群,段爱琴.深熔激光焊接数学模型研究现状[J].中国机械工程, 2003, 14(9): 803-807.
    [107]熊建钢,张伟,胡乾午,李志远,段爱琴.基于人工神经网络模型的钛合金YAG激光焊接工艺参数优化[J].应用激光, 2001, 21(4): 243-246.
    [108]于秀萍,孙华,赵希人, Alexandre Gavrilov.基于人工神经网络的焊缝宽度预测[J].焊接学报, 2005, 26(5): 17-20.
    [109]雷玉成,刘伟,程晓农.铝合金穿孔型等离子弧立焊的BP神经网络预测模型[J].焊接学报, 2002, 23(6): 41-43.
    [110]刘黎明,梁国俐,刘玉君,郑赞,张崇华,刘培晟.基于人工神经网络的船舶高强钢焊接变形分析预测[J].焊接学报, 2002, 23(1): 27-30.
    [111] Jeongick L, Kiwoan U. A comparison in a back-bead prediction of gas metal arc welding using multiple regression analysis and artificial neural network[J]. Optics and Lasers in Engineering, 2000, 34(3): 149-158.
    [112] Moon H S, Na S J. Optimum Design Based on Mathematical Model and Neural Network to Predict Weld Parameters for Fillet Joints[J]. Journal of Manufacturing Systems, 1997, 16(1): 13-23.
    [113] Nagesh D S, Datta G L. Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks[J]. Journal of Materials Processing Technology, 2002, 123(2):303-312.
    [114] Billy T, Jack P, Malcolm B. Modeling gas metal arc weld geometry using artificial neural network technology[J]. Canadian Metallurgical Quarterly, 1999, 38(1): 43-51.
    [115] Knorovsky G A, Fuerschbach P W. A CO2 Laser Weld Shape-Predicting Neural Network, in: eds S.A.David and J.M.Vitek.Section F-ICALEO[C]. Pine mountain Georgia. 1998: 232-241.
    [116] Kanti K M, Rao P S. Prediction of bead geometry in pulsed GMA welding using back propagation neural network[J]. Journal of materials processing technology, 2008, 300–305.
    [117] Kim I S, Son J S, Park C E, et al, Yarlagadda K.D.V. Prasad, A study on prediction of bead height in robotic arc welding using a neural network[J]. Journal of materials processing technology, 2002, (130-131): 229-234.
    [118] Vitek J M, Fuerschbach P W, Smartt H B, et al. Neural Network Modeling of Pulsed-Laser Weld Pool Shapes in Aluminum Alloy Welds[C]. Proceedings of the laser materials processing conference, 1998.
    [119] Takayoshi O. Development of simulation software for arc welding[J]. Journal of the Japan Welding Society, 2003, 72(6): 14-17.
    [120] Zhu Zh Y, Lin T, Chen Sh B. Guiding the welding robot to the initial welding position with visual method[J]. China Welding. 2008, 17(1): 12-17.
    [121]何建萍,孙广,张春波,吴毅雄,焦馥杰.钨极氩弧焊逆变电源系统PI控制的Simulink仿真整定[J].焊接学报, 2004, 25(5): 99-103.
    [122]盖志武,李东升,马岩,蒲春华.逆变式焊条电弧焊电源的Simulink仿真[J].焊接学报, 2002, 23(5): 31-34.
    [123]徐勤超,王春芳,王开艳,李从洋.逆变弧焊电源动态仿真及实验研究[J].青岛大学学报, 2009, 24(3): 43-46.
    [124]曾敏,曹彪,黄石生,吕小青.波控高速焊系统的仿真[J].焊接学报, 2003, 24(6): 55-59.
    [125]华学明,宋政,李芳,吴毅雄,樊勇.脉冲熔化极气体保护焊焊接电源-电弧系统建模与仿真[J].机械工程学报, 2010, 46(8): 78-82.
    [126] Chol J H, Lee J Y, Yoo C D. Simulation of dynamic behavior in a GMAW system[J]. Welding Joural, 2001, 80(10): 239-245.
    [127] Zhu Zh Q, Chen L G, Xu J N, Ni Ch Zh, He D F. Modeling and estimating for external characteristic of welding power source[J]. The International journal of advanced manufacturing technology, 2006, 29(3-4): 269-272.
    [128] Pedrazzo G, Barone C A, Rutili G. AC/DC generators with waveform control: Innovation in submerged arc welding [J]. Welding International, 2009, 23(11): 839-845.
    [129] Vincent T L. Waveform control in welding power supplies[J]. Control Systems Magazine, 2006, 26(4): 17-18.
    [130] Tusek, Janez. Influence of wire extension length on the welding process[J]. International Journal for the Joining of Materials, 1996, 8(3): 112-120.
    [131] Lee J H, Kim J H, Kim S S, Won C Y, Kim Y S, Choi S W. Harmonic reduction of CO2 welding machine using single-switch, three phase boost converter with sixth order harmonic injected PWM[C]. Korea: Institute of Electrical and Electronics Engineers Inc, 2001: 1526-1529.
    [132] Robert L. Advanced synergic inverter power-source and wire-feed system for GMA-welding with integrated quality control system[J]. Welding in the World, 1994, 34(4): 205-214.
    [133] Wu C S, Pol T T E, Rehfeldt D. A fuzzy logic system for process monitoring and quality evaluation in GMAW[J]. Welding Journal, 2001, 80(2):33-38.
    [134] Kang M J, Rhee S. Arc Stability Estimation and Control for Arc Stabilization in Short Circuit Transfer Mode of CO2 Arc Welding[J]. Science and Technology of Welding and Joining, 2001, 6(2): 95-102.
    [135] Nacey T J. Fourth generation inverters add artificial intelligence to the control of GMA welding[J]. Welding Journal, 1996, 75(5): 31-38.
    [136] Bortnyakov Y L. Microprocessor group-control systems for electric welding equipment[J]. Soviet Electrical Engineering, 1987, 58(2): 47-50.
    [137]蔡志鹏,赵海燕,吴盨.串热源模型及其在焊接数值模拟中的应用[J],机械工程学报, 2001, 37(4): 25-31.
    [138]蔡志鹏,赵海燕,鹿安理,史清宇.焊接数值模拟中分段移动热源模型的建立及应用[J].中国机械工程, 2002, 13(3): 208-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700