用户名: 密码: 验证码:
交流电弧炉电弧模型研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在电弧炉运行过程中,由于电弧电阻的非线性,导致线路中的电流波形发生畸变,产生谐波;在熔化期内,由于电弧弧长的剧烈波动,造成线路中的电流随机变化,导致无功功率对电网产生强烈冲击,从而引起电网的电压波动和闪变。特别是近些年来,随着电弧炉容量和功率的不断增大,电弧炉对电网的危害日益严重。建立精确、实用的电弧模型,对于研究和解决由电弧炉引起的供电系统电能质量问题有着重要的实际意义。同时,精确、实用的电弧模型也为建立电弧炉电极系统模型奠定了基础。电极系统是电弧炉炼钢的关键环节,它是一个具有高度非线性、时变性、耦合严重和随机干扰强的系统。电极系统工作不稳定将导致吨钢电耗增加,炼钢效率下降,并且影响电网的电能质量。利用电极系统模型可以研究性能优越的电极控制算法。本文以40吨交流电弧炉为研究背景,对交流电弧炉电弧模型的建立、模型参数的确定及模型应用进行了研究。
     针对已有的电弧模型缺乏通用性且物理意义不明确等问题,首先研究了电弧的阻抗特性,给出了操作电抗大于短路电抗的原因。根据能量守恒定律和相关的电弧物理知识,以电弧电导作为状态变量,电弧瞬时电流和弧长作为输入量,建立一个用非线性微分方程描述的交流电弧炉电弧时域模型。
     针对电弧模型参数难以确定的问题,通过机理分析,推导出了电弧模型参数的变化范围。在模型参数变化范围内,采用自适应变异差分进化算法辨识电弧模型参数值,有效地提高了辨识的速度和精度。通过与校验数据进行对比,证明了所提出参数确定方法的正确性。
     针对电弧炉引起的电能质量问题,将供电系统模型与新建的电弧模型相结合,建立了电弧炉电气系统模型。在此基础上,对电能质量问题进行仿真分析;通过与实测数据进行对比,表明新的电弧模型既可用于谐波分析,又可用于电压波动和闪变的研究。以改善电能质量为目标,将晶闸管控制电抗器(TCR)和固定电容器(FC)配套使用,设计了TCR+FC型静态无功补偿装置(SVC),仿真结果表明所设计方案的有效性。
     为了研究电弧炉电极系统模型,首先建立液压系统模型。通过液压缸活塞位移与电弧长度之间的关系,将液压系统模型与电气系统模型相连接,构建了电极系统模型。将整个电极系统模型作为被控对象,结合电弧炉冶炼进程特点,并考虑电极系统自身特性以及变论域模糊控制和死区导致的稳态误差问题,设计了变论域模糊积分复合控制器。通过仿真和现场实际应用,证明所设计的控制器是合理的,也说明所建立的电弧模型可以用于电极系统模型及控制研究中。
In the operation of electric arc furnace, the electric arc resistance being typically nonlinear in its nature is responsible for the load current distortion and the production of harmonics which are detrimental to the power supply system. In the melting stage, the voltage fluctuations and flicker as a result of quick changes in the reactive power consumption are connected with random variations of the load current which are mainly caused by arc length acute fluctuations. Especially in recent years, as the further increasing of electric arc furnace power input ratings and capacity, so do these power quality problems as a result of this progress. Therefore, it is necessary to develop an accurate and easy-to-use electric arc model for the purpose of minimizing these large power quality problems on the electrical network. Meantime, this accurate and easy-to-use electric arc model can lay a foundation for the development of electrode system model for the electric arc furnace. The electrode sysem that is a key link of electric arc furnace steelmaking is a highly nonlinear, time-varying, serious-coupling and strong-random-disturbance system and its unstable operation can absolutely lead to the increase of power consumption per ton steel, the reduction of steelmaking efficiency and the impact of power quality. Furthermore, the more advanced control algorithm can be investigated by utilizing the electrode system model. These studies on the electric arc model of alternating current electric arc furnace, parameter determination and model applications are carried out by taking the 40t alternating current electric arc furnace as the research background in this dissertation.
     Aiming at these problems about the lack of universal electric arc model and the indefinite physical meaning, the impedance characteristic of electric arc is analyzed initially and the main cause that the operating reactance is more than the short circuit reactance in the electric arc furnace operation is obtained. Afterwards, a new time domain electric arc model of electric arc furnace in the form of a nonlinear differential equation is developed on the basis of the energy conservation and the electric arc physical knowledge, which takes the arc conductance as state variable and the arc instantaneous current plus arc length as input.
     According to the question that parameters in the electric arc model are difficult to determine, the variation range of model parameters is derived from mechanism analysis and then the adaptive mutation differential evolution algorithm is applied to estimate the value of model parameters by using the actual data on the basis of the above mentioned variation range. The proposed determination method, compared with the measurements taken from field, is validated.
     In the light of these problems on power quality aspects introduced by the electric arc furnace, the electrical system model that is composed of the power supply system model and three electric arc models is put forth. Then, these power quality problems of electrical network can be simulated and analyzed by means of the electrical system model. Based on the comparison of simulation results with actual recorded data, the conclusion can be easily drawn that the new electric arc model may be used effectively to study harmonics, the voltage fluctuations and flicker. In order to take precaution against these power pollution problems, the compensation scheme is put forward for the load compensation using thyristor controlled reactor (TCR) and fixed capacitor (FC) type static var compensator (SVC) device. The simulation results demonstrate the effectiveness of this presented scheme.
     In order to investigate the electrode system model, the hydraulic system model is built firstly. By using the relation between the piston displacement and arc length, the electrode system model can be established, which consists of three hydraulic system models and the electrical system model. The complete electrode system model can be considered as controlled object and the fuzzy-integral compound controller based on variable universe is designed because of the various control performance requirements of electrode regulation in the different metallurgical stages, the controlled object's own characteristics and the steady state error caused by the variable universe fuzzy control and deadzone. Based on the simulation results and practical applications, the developed controller may be proved to be reasonable. It also indicates the new electric arc model can be useful for the electrode system model and control.
引文
1. Cen Yongguan, Zhang Guofu. Technical development of EAF for steelmaking during recent years[J]. Shanghai Metals,1998,20(3):9-14.
    2. 姜茂发,金成姬.国内外电弧炉炼钢技术现状与发展趋势[C].全国工业炉暨电热学术会议,2000,13-21.
    3. 刘润藻.大型超高功率电弧炉炼钢综合节能技术研究[D].沈阳:东北大学,2006.
    4.梁正敏.高阻抗电弧炉[J].工业加热,2001,(3):21-24.
    5.傅杰.发展现代电炉炼钢促进我国钢铁工业可持续发展[J].冶金管理,2008,(2):56-58.
    6. 傅杰.中国现代电炉的昨天、今天和明天[J].冶金管理,2005,(12):45-50.
    7. 傅杰,柴毅忠,毛新平.中国电炉炼钢问题[J].钢铁,2007,42(12):45-50.
    8. 李士琦,刘润藻,李峰,孙彦辉.电弧炉炼钢技术现状及发展[J].中国冶金,2004,(2):12-15.
    9.刘润藻,郁健,高金涛,陈煜.电弧炉炼钢节能技术的发展[J].工业加热,2007,36(6):5-7.
    10.李峰.电弧炉炼钢高效化研究及能量利用评价[D].北京:北京科技大学,2006.
    11.黄行.导电横臂在电弧炉上的应用[J].冶金能源,1996,15(6):29-31.
    12.余杨,赵渭康.电炉导电横臂技术的发展趋势[J].冶金设备,1999,(3):46-47.
    13. Muller H G, Patuzzi A A, Nix E H. DC electric arc furnace for economical melting processes[J]. Metallurgical Plant and Technology International,1993,16(6):44-49.
    14.王广连,申景霞,孙永喜,王学利,王新权.现代电弧炉高效低耗炼钢技术在我国的应用与发展[J].莱钢科技,2008,(5):8-13.
    15.赵沛,蒋汉华.钢铁节能技术分析[M].北京:冶金工业出版社,1999,135-136.
    16. Rymarchyk N J, Paules J R. Electric furnace lance maintenance-a critical process[J]. Iron & Steelmaker,1996,23(3):79-82.
    17. Reichel J, Szekely J. Mathematical models and experimental verification in the decarburization of industrial scale stainless steel melts[J]. Iron & Steelmaker,1995,22(5): 41-48.
    18. Thomson M J, Evenson E J, Kempe M J, Goodfelloe H D. Control of greenhouse gas emissions from electric arc furnace steelmaking:evaluation methodology with case studies[J]. Ironmaking and Steelmaking,2000,27(4):273-279.
    19.王超,袁守谦.电弧炉泡沫渣分析探讨[J].工业加热,2006,35(3):61-64.
    20. Pretorius E B, Carlisle R C. Foamy Slag Fundamentals and Their Practical Application to Electric Furnace Steelmaking[J]. Iron & Steelmaker,1999,26(10):79-88.
    21. Shver V, Coburn M, Cohn M. New technology for oxygen introduction in the electric arc furnace[J]. Iron & Steelmaker,2003,30(5):27-32.
    22.阎立懿,肖玉光.偏心底出钢电弧炉冶炼工艺[J].工业加热,2005,34(3):48-52.
    23.赵小凌.国外电弧炉底吹技术的发展[J].钢管,1995,(5):12-15.
    24.姜茂发,李连福.电弧炉底吹技术开发的现状[J].钢铁研究,1994,(5):46-49.
    25.倪俊.现代电弧炉炼钢技术的发展[J].工业加热,2003,31(1):24-28.
    26.李振洪.康斯迪电炉与废钢预热[J].冶金能源,2006,25(4):37-40,43.
    27.肖英龙,王怀宇.电弧炉用废钢预热技术[J].宽厚板,1998,4(2):28-30.
    28.曹先常.电弧烟气预热回收利用技术进展及其应用[C].第4届中国金属学会青年学术年会论文集,2008,418-422.
    29. Herin H H, Busbee T. Consteel process in operation at Florida steel [J]. Iron & Steelmaker, 1996,23(2):43-46.
    30.张路,温德松,孙开明.现代电弧炉热装铁水实践与再认识[J].天津冶金,2008,(5):43-46.
    31.赵文林.电弧炉炼钢[M].北京:冶金工业出版社,1996,3-4.
    32.徐匡迪,洪新.电炉短流程回顾和发展中的若干问题[J].中国冶金,2005,15(7):1-8.
    33. Ushio M, Szekely J, Chang C W. A mathematical modeling of flow field and heat transfer in high-current arc discharge[J]. Ironmaking and Steelmaking,1981,6(1):279-286.
    34. Szekely J, Mckelliget J, Choudhary M. Heat transfer fluid flow and bath circulation in electric arc furnace and DC plasma furnaces[J]. Ironmaking and Steelmaking,1983,10(4): 169-179.
    35. Mckelliget J W, Szekely J. A mathematical model of the cathode region of a high intensity carbon arc[J]. Journal of Physical D:Applied Physics,1983,16(6):1007-1022.
    36. Hu Wanping, Lavers J D. Coupled electro-thermal-flow model for very long electric arcs[J]. IEEE Transactions on Magnetics,1997,33(2):1726-1729.
    37. Alexis J, Ramirez M, Trapaga G. Modeling of heat transfer from an electric arc-a simulation of heating Part I[C]. Proceedings of the 57th electric furnace conference,1999, 279-287.
    38. Ramirez M, Trapaga G. Mathematical modeling of a DC electric arc—Dimensionless representation of a DC arc[J]. ISIJ International,2003,43(8):1167-1176.
    39. Ramirez M, Trapaga G. Mathematical modeling of a direct current electric arc:Part Ⅰ. Analysis of the characteristics of a direct current arc[J]. Metallurgical and Materials Transactions,2004,35(2):363-372.
    40. Ramirez M, Trapaga G, Garduno-esquivel J. Mathematical modeling of a direct current electric arc:Part Ⅱ. Dimensional representation of a direct current arc[J]. Metallurgical and Materials Transactions,2004,35(2):373-380.
    41. Larsen H L, Saevardottir G, Bakken J A. Improved channel arc model for high-current AC arcs[C]. Proceedings of the 5th European Conference on Thermal Plasma Process, 1995,837-844.
    42. Larsen H L, Bakken J A. Modeling of industrial AC arcs[J]. Journal of temperature material processes,1999,1(1):1-15.
    43. Larsen H L, Saevardottir G, Bakken J A. Simulation of AC arcs in the silicon metal furnace[C]. Proceedings of the 54th electric furnace conference,1996,157-168.
    44. Carpinelli G, Dimanno M, Verde P, etc. AC and DC arc furnaces:a comparison on some power quality aspects[C]. Proceeding of IEEE Power Engineering Society Summer Meeting,1999,499-506.
    45. Dugan R C. Simulation of Furnace System[J]. IEEE Trans. on Ind. Application,1980, 16(5):783-791.
    46. Zheng Tongxin, Makram E B, Girgis A A. Effect of different arc furnace models on voltage distortion[C]. Proceedings of the 8th International Conference on Harmonics and Quality of Power,1998,1079-1085.
    47. Varadan S, Makram E B, Girgis A A. A new time domain voltage source model for an arc furnace using EMTP[J]. IEEE Trans. on Power Delivery,1996,11(3):1685-1691.
    48. Zheng Tongxin, Makram E B. An adaptive arc furnace model[J]. IEEE Transactions on Power Delivery,2000,15(3):931-939.
    49.钱峰,顾建军,李凯,等.电弧炉模型分析与评价[J].冶金动力,2006,(6):1-4.
    50. Montanari G C, Loggini M, Cavallini A, et al. Arc-furnace model for the study of flicker compensation in electrical networks [J]. IEEE Trans. on Power Delivery,1994,9(4): 2026-2033.
    51. Cavallini A, Montanari G C, Pitti L, et al. ATP simulation for arc-furnace flicker investigation[J]. European Transactions on Electrical Power Engineering,1995,5(3): 165-172.
    52. Tang Le, Kolluri S, Mcgranaghan M F. Voltage flicker prediction for two simultaneously operated AC arc furnaces[J]. IEEE Trans. on Power Delivery,1997,12(2):985-992.
    53. Garcia-Cerrada A, Garcia-Gonzalez P, Collantes R. Comparison of thyristor-controlled reactors and voltage-source inverters for compensation of flicker caused by arc furnaces[J]. IEEE Trans. on Power Delivery,2000,15(4):1225-1231.
    54. Ramos B N, Parga J L Dec. An EMTP study of flicker generation and transmission in power systems due to the operation of an AC electric arc furnace[C]. Ninth International Conference on Harmonics and Quality of Power,2000,942-947.
    55. Mahmoud A A, Stahlhut R D. Modeling of a resistance regulated arc furnace [J]. IEEE Transactions on Power Apparatus and Systems,1985, PAS-104(1):58-66.
    56. Etminan S, Kitchin R H. Flicker meter results of simulated new and conventional TSC compensators for electric arc furnaces[J]. IEEE Trans. on Power Delivery,1993,8(3): 914-919.
    57. El-Saady G. Adaptive static VAR controller for simultaneous elimination of voltage flickers and phase current imbalances due to arc furnaces loads[J]. Electric Power Systems Research,2001,58(3):133-140.
    58. Chen C S, Chuang H J, Hsu C T, Tseng S M. Stochastic voltage flicker analysis and its mitigation for steel industrial power systems[C].2001 IEEE Porto Power Tech Proceedings,2001,92-96.
    59. Guan J L, Gu J C, Wu C J. A novel method for estimating voltage flicker[J]. IEEE Trans. on Power Delivery,2005,20(1):242-247.
    60.刘小河.电弧炉电气系统的模型、谐波分析及电极调节系统自适应控制的研究[D].西安:西安理工大学,2000,8-11.
    61.刘小河,程少庚,苏文成.电弧炉系统的谐波分析研究[J].电工技术学报,1994,9(1):21-26.
    62. Petersen H M, Koch R G, Swart P H, Van Heerden, R. Modelling arc furnace flicker and investigating compensation techniques[C]. IAS'95. Conference Record of the 1995 IEEE Industry Applications Conference,1995,1733-1740.
    63. Acha E, Semlyen A, Rajakovic N. A harmonic domain computational package for nonlinear problems and its application to electric arcs[J]. IEEE Trans. on Power Delivery, 1990,5(3):1390-1397.
    64. Wu Ting, Song Wennan, Zhang Yao. A new frequency domain method for the harmonic analysis of power systems with arc furnace[C]. Fourth International Conference on Advances in Power System Control, Operation and Management,1997,552-555.
    65. Ozgun O, Abur A. Development of an arc furnace model for power quality studies[C]. 1999 IEEE Power Engineering Society Summer Meeting,1999,507-511.
    66.王育飞,潘艳霞,姜建国.基于MATLAB的交流电弧炉随机模型与仿真[J].高电压技术,2008,34(5):973-977.
    67. Ozgun O, Abur A. Flicker study using a novel arc furnace model[J]. IEEE Trans. on Power Delivery,2002,17(4):1158-1163.
    68.宁远中,梁颖,吴吴.电弧炉的混合仿真模型[J].四川大学学报,2003,37(1):85-89.
    69.王晶,束洪春,林敏,陈学允.用于动态电能质量分析的交流电弧炉的建模与仿真[J].电工技术学报,2003,18(3):53-58.
    70. Mayordomo J G, Asensi R, Beites L F, et al. A frequency domain arc furnace model for harmonic power flows under balanced condition[C].7th International Conference on Harmonics and Quality of Power,1996,419-427.
    71. Cox M D, Mirbod A. A new static VAR compensator for an arc furnace[J]. IEEE Transactions on Power Systems,1986, PWRS-1(3):110-120.
    72. King P E, Nyman M D. Modeling and control of an electric arc furnace using a feedforward artificial neural network[J]. Journal of Applied Physics,1996,30(3): 1872-1877.
    73.李强,陈兵,刘军等.高阻抗电弧炉神经网络预估模型设计[C].第四届国际智能控制和自动化大会,2002,2551-2555.
    74. Sadehiam A R, Lavers J D. Application of adaptive fuzzy logic systems to model electric arc furnaces[C].18th International Conference of the North American Fuzzy Information Processing Society,1999,854-858.
    75. Tseng K J, Wang Yaoming, Vilathgamuwa D M. An experimentally verified hybrid Cassie-Mayr electric arc model for power electronics simulation [J]. IEEE Transactions on Power Electronics,1997,12(3):429-436.
    76. Tseng K J, Wang Yaoming. Dynamic electric arc model for electronic circuit simulation[J]. Electronics Letters,1996,32(8):705-707.
    77. Mokhtari H, Hejri M. A new three phase time-domain model for electric arc furnaces using MATLAB[C]. Proceedings Asia Pacific Conference and Exhibition of the IEEE-Power Engineering Society on Transmission and Distribution,2002,2078-2083.
    78. Guardado J L, Maximov S G, Melgoza E. An improved arc model before current zero based on the combined Mayr and Cassie arc models[J]. IEEE Trans. on Power Delivery, 2005,20(1):138-142.
    79. Rafael Collantes-Bellido, Tomas Gomes. Identification and modelling of a three phase arc furnace for voltage disturbance simulation[J]. IEEE Trans. on Power Delivery,1997, 12(4):1812-1817.
    80.王永宁,许伯强,李和明.电弧炉电气系统谐波电流仿真研究[J].华北电力大学学报,2005,32(1):28-31.
    81. O'Neill-Carrillo E, Heydt G T, Kostelich E J, et al. Nonlinear deterministic modeling of highly varying loads[J]. IEEE Trans. on Power Delivery,1999,14(2):537-542.
    82. Gilsoo J, Wang W, Heydt GT, et al. Development of enhanced electric arc furnace models for transient analysis[J]. Electric Power Components and Systems,2001,29(11): 1061-1074.
    83. Carpinelli G, Iacovone F, Russo A, et al. Chaos-based modeling of DC arc furnaces for power quality issues[J]. IEEE Trans. on Power Delivery,2004,19(4):1869-1876.
    84.王丰华,金之俭,朱子述.基于混沌理论和神经网络的直流电弧炉电弧电压的建模和预测研究[J].高电压技术,2006,32(6):12-16.
    85. Wang Fenghua, Jin Zhijian, Zhu Zishu. Modeling and prediction of electric arc furnace based on neural network and chaos theory[C]. Second International Symposium on Neural Networks,2005,819-826.
    86. Wang Fenghua, Jin Zhijian, Zhu Zishu, et al. Modeling the DC electric arc furnace based on chaos theory and neural network[C]. Proceedings of 2005 IEEE Power Engineering Society General Meeting,2005,2503-2508.
    87. Task Force on Harmonics Modeling and Simulation. Modeling devices with nonlinear voltage-current characteristics for harmonic studies [J]. IEEE Transactions on Power Delivery,2004,19(4):1802-1811.
    88. Bergmen K. System design characteristics and experience from operation EAF's with high arc voltages[C]. Electric Furnace Conference Proceedings,1988,283-288.
    89.李京社;武骏;李士琦;季淑娟.现代交流电弧炉电气运行合理化的研究[J].炼钢,1999,15(6):40-43.
    90.武骏,李士琦,王海润.炼钢交流电弧炉工作电抗模型[J].北京科技大学学报,1999,31(5):440-443.
    91.吴益新,葛芦生,汪玉林.基于阻抗模型电弧炉供电系统分析与仿真[J].安徽工业大学学报,2006,23(3):302-305.
    92. Hultin L. The electric arc-now more stable than ever[C]. Electric Furnace Conference Proceedings,1988,203-208.
    93.孙彦辉,王立平,王成喜等.交流电弧炉炼钢过程谐波状况的实测研究[J].钢铁,2004,39(3):20-22.
    94.南條敏夫.直流电弧炉的电弧现象[M].北京:冶金工业出版社,1998,22-30,216-217.
    95.李新福.低压电器电弧仿真研究[D].天津:河北工业大学,2004,16-18.
    96.王其平.电器电弧理论[M].北京:机械工业出版社,1991,4-11,167.
    97.王丰华.电弧炉建模研究及其应用[D].上海:上海交通大学,2006,99-102.
    98.王琰,毛志忠,李妍,田慧欣.一种新的电弧炉电弧时域模型[J].东北大学学报,2009,30(4):487-490.
    99.陆安定.功率因数与无功补偿[M].上海:上海科学普及出版社,2004,1-2.
    100.王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1998,23-26.
    101.孙彦辉.高阻抗电弧炉炼钢过程电气运行研究[D].北京:北京科技大学,2002,60-64.
    102.南條敏夫.炼钢电弧炉设备与高效益运行[M].北京:冶金工业出版社,2000,67-68.
    103.Phillips R L. Theory of the non-stationary arc column[J]. British Journal of Applied Physics,1967,18(1):65-78.
    104.过增元,赵文华.电弧和热等离子体电弧和热等离子体[M].北京:科学出版社,1986,67-68.
    105.Ramakrishnan S, Stokes A D, Lowke J J. An approximate model for high-current free-burning arcs [J]. J. Phys. D:Appl. Phys.,1978,11(16):2267-2280.
    106.Lowke J J. Simple theory of free-burning arcs[J]. J. Phys. D:Appl. Phys.,1979,12(11): 1873-1886.
    107.Ramakrishnan S, Stokes A D, Lowke J J. An approximate model for high-current free-burning arcs[C]. Electric Energy Conference,1978,150-155.
    108.Lowke J J. A simple theory of free-burning arcs[C]. Electric Energy Conference,1978, 147-149.
    109.Lowke J J. A simple theory of free-burning arcs[C]. Proceedings of the ⅩⅢth International Conference on Phenomena in Ionized Gases,1977,519-520.
    110.Emanuel A E, Orr J A. An improved method of simulation of arc voltage-current characteristic[C]. IEEE Proceedings of the 9th International Conference on Harmonics and Quality of Power,2000,148-154.
    111.王仁甫.电弧现象模型的发展[J].高压电器,1991,(4):39-46.
    112.Widl W, Kirchesch P, Egli W. Use of integral arc models in circuit breaker testing and development[J]. IEEE Trans. on Power Delivery,1988,3(4):1685-1691.
    113.Campbell J H, Kershaw D D, Schultz H E. Characteristics and applications of high frequency fluorescent lighting[J]. Transactions of the Illuminating Engineering Society, 1953,48(2):95-103.
    114.尚振球,汪瑶同.电弧黑盒模型参数的准确确定方法[J].高压电器,1994,(1):33-35.
    115.熊翔葆.麦也尔电弧数学模型参数的数值计算及麦氏模型的校正[J].华东交通大学学报,1989,(2):75-80.
    116.Wang Yan, Mao Zhizhong, Li Yan, Tian Huixin, Feng Lifeng. Modeling and Parameter Identification of an Electric Arc for the Arc Furnace [C]. Proceedings of IEEE International Conference on Automation and Logistics,2008,740-743.
    117.尚振球.描写电弧动态特性的通用黑盒模型及其参数的确定[J].高压电器,1987,(2):14-17.
    118.王琰,毛志忠,田惠欣,李妍,黄盛华.基于自适应变异差分进化算法的电弧时域模型[J].仪器仪表学报,2009,30(3):554-558.
    119.吴旭光,徐德民.水下自主航行器动力学模型—建模和参数估计[M].西安:西北工业大学出版社,1998,63-64.
    120.Latham D J. A channel model for long arcs in air[J]. Physics of Fluids,1980,23(8): 1710-1715.
    121.花皑,梁正敏.炼钢电弧炉的电气设备[M].北京:机械工业出版社,1987:19-21.
    122.王琰,毛志忠,李妍,袁平,田慧欣.交流电弧炉电弧功率软测量模型[J].工业加热,2009,38(2):38-40,52.
    123.郭茂先.工业电炉[M].北京:冶金工业出版社,2002:75-76.
    124.周王民,马戎.基于FNN的电弧炉炉况判断系统研究[J].测控技术,2007,26(3):46-49.
    125.袁平.电弧炉冶炼过程先进控制方法的研究与应用[D].沈阳:东北大学,2006,86-92.
    126.Raisz D. Sakulin M. Renner H. Tehlivets Y. Recognition of the operational states in electric arc furnaces[C]. Proceedings of 2000 International Conference on Harmonics and Quality of Power,2000,475-480.
    127.贺博,林辉,符强.交流污闪电弧动态特征探究[J].中国电机工程学报,2006,26(21):177-182.
    128.王顺晃,郑保元,张俊杰.电炉炼钢过程电极升降智能复合控制[J].北京科技大学学报,1995,17(6):561-566.
    129.黄敏,颜学锋,钱锋.差分进化算法的性能分析及其动力学模型参数估计[J].计算机与应用化学,2007,24(4):445-447.
    130.Rainer S, Price K. Differential Evolution-A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces[J]. Journal of Global Optimization,1997,11(4): 341-359.
    131.Mayer D G, Kinghom B P. Differential evolution-an easy and efficient evolutionary algorithm for model optimization[J], Agricultural Systems,2005, (83):315-328.
    132.颜学峰,余娟,钱锋.自适应变异差分进化算法估计软测量参数[J].控制理论与应用,2006,23(5):744-748.
    133.赵永胜,丛培建,赵正聪.交流信号采集离散计算公式[J].测控技术与仪器仪表,2007,(10):75-77.
    134.Alexis J, Ramirez M, Trapaqa G, Jonsson, P. Modeling of a dc electric arc furnace—heat transfer from the arc[J]. ISIJ International,2000,40 (11):1089-1097.
    135.刘小河,赵刚,于娟娟.电弧炉非线性特性对供电网影响的仿真研究[J].中国电机工程学报,2004,24(6):30-34.
    136.陈立新,杨光宇.电力系统分析[M].北京:中国电力出版社,2005:39-40.
    137.Paiva R P. Modelling and control of an electric arc furnace[D]. Sweden:Lund Institute of Technology,1996,37-39.
    138.陈磊.电弧炉电气系统的建模与谐波分析[D].沈阳:东北大学,2008,5-6.
    139.国家电力公司发输电运营部.电力工业技术监督标准汇编(电能质量监督)[M].北京:中国电力出版社,2003:85-90.
    140.王育飞,潘艳霞,姜建国.基于MATLAB的交流电弧炉随机模型与仿真[J].高电压技术,2008,34(5):973-977.
    141.杨永昌,杨端,王凯.快速傅立叶变换算法及其实现技术[J].邢台职业技术学院学报,2006,23(3):36-38.
    142.翁利民,田智萍.电弧炉的电压闪变及其抑制对策[J].冶金动力,2002,(1):1-4.
    143.许树楷,宋强,刘文华,童陆园.配电系统大功率交流电弧炉电能质量问题及方案治 理研究[J].中国电机工程学报,2007,27(19):93-98.
    144.李俊,彭涨,谢良德.大容量电弧炉对电网影响及其防范措施[J].湖北电力,2007,31(1):19-20.
    145.王育飞,陈飞,葛芦生.电弧炉引起的电压波动估算与仿真[J].工业加热,2003,33(6):39-41.
    146.刘轩.交流电弧炉对电压波动和闪变的影响[J].冶金动力,2007,(1):6-9.
    147.肖湘宁.电能质量分析与控制[M].北京:中国电力出版社,2004:110-117.
    148.鉴庆之.电弧炉对电能质量影响及改进技术应用[J].山东电力技术,2005,(2):46-48.
    149.吴杰.大型电弧炼钢炉SVC方案设计及其实际效果[J].电网技术,2003,27(1):76-79.
    150.梁丽.电弧炉无功补偿控制系统的研究[D].沈阳:东北大学,2008,35-56.
    151.吕晓东,刘小河.电弧炉电极调节器对电网电压波动影响的仿真研究[J].中国电机工程学报,2006,26(7):95-99.
    152.刘小河,张道成.电弧炉电极调节系统的离散时间自适应控制研究[J].系统仿真学报,2004,16(4):634-636.
    153.Hauksdottir A S, Soderstrom T, Thorfinnsson Y P, Gestsson A. System identification of a three-phase submerged arc ferrosilicon furnace[J]. IEEE Transactions on Control System Technology,1995,3(4):377-387.
    154.Lang Ziqiang, Gu Xingyuan, Bao Yuan. Modeling and identification of electrode position controller in electric arc furnace[C]. International Conference on Control,1991,434-439.
    155.Billings S A, Boland F M, Nicholson H. Electric arc furnace modeling and control[J]. Automatica,1979,15(2):137-148.
    156.Janabi-Sharifi F, Jorjani G, Hassanzaseh I. Using adaptive neuro fuzzy inference system in developing an electrical arc furnace simulator[C]. Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2005, 1210-1215.
    157.King P E, Nyman M D. Modeling and control of an electric arc furnace using a feedforward artificial neural network[J]. Journal of Applied Physics,1996,80(3): 1872-1877.
    158,Boulet B, Lalli G, Ajersch M. Modeling and control of an electric arc furnace[C], Proceedings of the American Control Conference,2003,3060-3064.
    159.Balan R, Maties V, Hancu O, Stan S, Ciprian L. Modeling and control of an electric arc furnace[C].2007 Mediterranean Conference on Control and Automation,2007, 1077-1082.
    160.金伟强,李济顺.电弧炉电极调节系统的设计[J].工业加热,2008,37(2):45-47.
    161.Billings S A, Nichilson H. Temperature Weighting Adaptive Controller for Electric Arc Furnace[J]. Ironmaking and Steelmaking,1977,4(4):216-221.
    162.刘小河,殷杰,张奇志.基于Lyapunov方法的一类非线性系统分段线性化自适应控制[J].控制理论与应用,2005,22(5):829-833.
    163.杨文华,聂松林.电弧炉电极调节参考模型自适应系统的研究[J].重型机械,1994,(4):31-36,49.
    164.周王民,马戎,刘奇峰.神经网络在电弧炉电极控制中的应用研究[J].测控技术,2006,25(6):39-41,59.
    165.Zhang Shifeng, Li Kun. Design and application of the electrode system intelligent controller for 70t LF furnace[C]. Second IEEE Conference on Industrial Electronics and Applications,2007,5:726-730.
    166.Zhang Xiaohui. An embedded to system be applied to neural network predictive control in an electric arc furnace[C]. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2005,9:75-79.
    167.陈淑燕,何婕,周延怀.电弧炼钢炉电极模糊控制系统的设计与实现[J].小型微型计算机系统,2003,24(8):1566-1568.
    168.苏东海,杨京兰.基于SIMULINK的阀控非对称液压缸系统的研究[J].流体传动与控制,2008,(1):3-5.
    169.He Qinghua, Hao Peng, Zhang Daqing. Modeling and parameter estimation for hydraulic system of excavator's arm[J]. Journal of Central South University of Technology,2008, 15(3):382-386.
    170.马晓红,陈冰冰,甘学辉,孙志军.电液比例阀控缸位置控制系统的建模与仿真[J].机械设计与制造,2008,(4):43-45.
    171.朱凡,王振华,孙运强.基于MATLAB的电液比例控制系统仿真研究[J].机械工程与自动化,2007,(1):59-61.
    172.Zhang Youwang, Gui Weihua. Compensation for secondary uncertainty in electro-hydraulic servo system by gain adaptive sliding mode variable structure control[J]. Journal of Central South University of Technology,2008,15(2):256-263.
    173.刘军,张利建,薛明.变论域模糊仿人智能控制[J].青岛科技大学学报,2007,28(4):346-348.
    174.谷俊杰,李剑,张栾英.执行机构含死区环节的自适应补偿控制[J].中国电机工程学报,2003,23(5):153-155.
    175.郑宏,徐红兵,朱贵平.变论域自适应模糊控制在航机发电中的应用[J].控制理论与应用,2008,25(2):253-256.
    176.朱良红,王永初.模糊与积分混合控制器[J].华侨大学学报,2003,24(3):285-289.
    177.李洪兴.模糊控制器与PID调节器的关系[J].中国科学(E辑),1999,29(2):136-145.
    178.潘永平,张慧,王钦若.非线性液位系统的稳定自适应模糊控制研究[J].电气传动,2007,37(3):44-48.
    179.Woo Zhiwei, Chung Hungyuan, Lin Jinjye. A PID type fuzzy controller with self-tuning scaling factors[J]. Fuzzy Sets and Systems,2000,115(2):321-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700