用户名: 密码: 验证码:
碱性活化水混凝土工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土是工程中用量最多的建筑材料,其性能对国民经济建设具有重要意义。混凝土中水(第二组分)的含量及性能对混凝土性能具有决定性的影响。广义上讲,水是水泥激发剂,因此水的活性至关重要。目前对混凝土拌合水的活化方法主要将水磁化,得到磁性活化水。与磁性活化水类似,通过隔膜电解的方式可得到一种具有碱性的高活性水,我们称之为碱性活化水,它具有高活性、高pH值、低表面张力、具有还原性及活性保持时间长等特点,将有利于改善混凝土性能、方便混凝土施工需要。本文采用小型隔膜式电解装置生成碱性活化水,首次研究了碱性活化水混凝土工艺及性能。
     为了明确电解条件对碱性活化水理化性能的影响规律,对不同电场强度及流速下的碱性活化水的pH值、表面张力进行了测试。结果表明,电场强度为280-320V/m、流速60-80ml/s时,制取的碱性活化水的pH值和表面张力都能达到最佳值。进而对碱性活化水的活性保持时间进行了测试,试验选择在电场强度为320V/m、流速80m1/s条件下制取的碱性活化水为样本。结果表明,在闭口水瓶中存放3个月变化不大,在开口水瓶中可保持15天以上,在敞口容器中可保持6天以上。较长的活性保持时间为混凝土施工提供了方便,尤其是商品混凝土。
     研究了不同活性碱性活化水对水泥浆、砂浆性能的影响。结果表明,碱性活化水使水泥标准稠度用水量有所下降、水泥初凝时间和终凝时间都略有减少,碱性活化水砂浆的和易性有明显改善,砂浆抗压强度在各龄期均有提高,在pH值为9.0~9.5时出现最大值(7天抗压强度提高50%,28天提高40%以上),掺30%粉煤灰砂浆抗压强度在各龄期均有提高,也是在pH值为9.0~9.5时出现最大值(7天抗压强度提高30%,28天提高35%以上),因此可确定改善砂浆性能的pH值为9.0~9.5。
     进而研究了对混凝土(以C40为对象)的和易性、抗压强度、孔结构等主要性能影响程度。结果显示,碱性活化水混凝土和易性得到改善,用碱性活化水拌和混凝土在各龄期抗压强度均有提高,在28d时,用P·032.5R水泥拌制混凝土抗压强度提高21%,用P-042.5R水泥拌制混凝土抗压强度提高15%;碱性活化水混凝土总孔隙率下降20%,各龄期的孔级配明显改善。为节约水泥,研究了最佳碱性活化水对掺30%粉煤灰混凝土性能的影响。结论是,和易性明显改善,在各龄期抗压强度均有较大提高,28d时提高近20%。说明碱性活化水对掺粉煤灰混凝土工程具有重要意义。
     结合碱性活化水特性及水泥浆硬化理论,参考普通混凝土试样在300、1000、3000倍的放大倍数下拍摄的SEM图和300倍放大倍数下拍摄的背散射电子图像分析结果,较深入探讨了碱性活化水改善砂浆、混凝土性能机理,为碱性活化水混凝土推广使用提供了理论依据。
     针对碱性活化水具有高活性、高pH值的突出特点,研究了碱性活化水对混凝土(以C40为对象)碳化性能的影响。结果表明,碳化性能有较大改善,28天快速碳化试验碳化深度下降16%。为更好研究混凝土碳化性能变化规律,考虑混凝土碳化深度测量值少、不确定性大的特点,利用灰色系统理论,研究了建立混凝土碳化深度灰色预测模型的基本方法。为实现混凝土快速碳化试验的非破坏测试,研制了新的混凝土试件模具,使制得试件具有球形凹面,保证了试件检测表面的光滑连续性,提出了混凝土碳化非破坏测试方法,使混凝土碳化深度测试值具有同一性、连续性、高精度、多样本的优点。
     初步研究了用碱性活化水拌和自密实混凝土的工作性及抗压强度。结果显示,与普通自来水相比,碱性活化水拌和自密实混凝土的工作性有明显提高,养护28天的抗压强度提高约15%。说明了碱性活化水有利于自密实混凝土等高性能混凝土的配制。
     以确保淡化海砂混凝土性能、节约淡水为目标,提出了一种制作淡化海砂混凝土新工艺。依据电渗析原理与工艺,研制小型双隔膜电解装置(即小型电渗析装置)和隔膜电解装置,用多级双隔膜电渗析与隔膜电解相配合的方法淡化海水,获得含盐量合格的碱性淡化海水,进而采用堆砂冲洗法,用充足的淡化海水冲洗海砂,再用淡化海砂及碱性活化水拌制混凝土。结果表明:简易海水淡化装置操作、移动方便,海水淡化效果符合冲洗海砂的要求;堆砂冲洗法淡化海砂简单易行,冲洗效果好;通过基准混凝土对比试验知,用淡化海砂及碱性活化水拌制混凝土,其力学性能及护筋性都有提高。碱性活化水及冲洗后的海砂都含有一定的OH-离子,减小了海砂混凝土液相中C1-/OH-的比值,能更好抑制C1-离子侵蚀及混凝土碳化,利于提高海砂混凝土耐久性能。
Concrete is a most widely applied composite construction material in civil engineering, composed of cement (commonly Portland cement) and other cementitious materials such as fly ash and slag cement, aggregate (generally a coarse aggregate made of gravel or crushed rocks such as limestone, or granite, plus a fine aggregate such as sand), water and chemical admixtures. The content and properties of water in concrete, also known as the second component of concrete, have decisive influences on concrete performances. Generally, water is the activator of cement. Combining water with a cementitious material forms a cement paste by the process of hydration which is closely related with the activity of water. Currently, the main method to activate water used for mixing concrete is magnetization, from which magnetized water is obtained. Similar to magnetized water, a new type of activated water by the membrane electrolysis method. For its alkalescence reason, this type of water is named alkaline-activated water. Besides its high activity, alkaline-activated water also has the advantages of high PH value, low surface tension, reducing property and long life time, all of which contribute to concrete performances and increase its practical site convenience. This paper uses a small scale membrane electrolysis device to manufacture alkaline-activated water, and studied the performances and production techniques of alkaline-activated water concrete for the first time.
     In order to find out how electrolysis parameters influence the chemical and physical properties of alkaline-activated water, the experiment tested the pH value and surface tension of alkaline-activated water of different electric fields and flow velocities. Results show that pH value and surface tension of the derived water reach best at field strength of 280-320V/m and flow velocity of 60-80ml/s. Then the experiment uses the water derived at 320V/m and 80ml/s (pH value of 9.8) as a sample to test the preservation time of alkaline-activated water; the result is 3 months in sealed bottle, over 15 days in open bottle and more than 6 days in open container. Longer preservation time provides much convenience for concrete construction, especially for merchandise concrete.
     According to the results of the influences of alkaline-activated water on the performances of grout and mortar, It shows that alkaline-activated water reduces water usage at standard consistency, shortens initial and final condensing time of cement, greatly improves mortar workability and increases the compressive strength of mortar and mortar with 30% fly ash admixture for all ages. Compressive strength increasing of mortar and mortar with 30% fly ash admixture both reach max when the pH value of alkaline-activated water is 9.0-9.5. Therefore 9.0-9.5 is considered the best pH value for alkaline-activated water to improve mortar performances.
     Then the influences of alkaline-activated water with best pH value on concrete workability, compressive strength and pore structure etc were studied. Workability of alkaline-activated water concrete was improved. Compressive strength at all ages of alkaline-activated water concrete was elevated a lot. After 28 days, the compressive strength of concrete with cement P.032.5R increased by 21%, concrete with P·042.5R increased by 15%. Total porosity decreased by 20%, pore gradation of all curing ages improved significantly. It indicates that alkaline-activated water is of great importance to fly ash concrete engineering.
     By combining the attributes of alkaline-activated water and the theory of cement slurry hardening and comparing the SEM photos of 300,1000,3000 amplification and the backscattered electric image of 300 amplification of both common concrete and alkaline-activated water concrete, extensively focused on the principles of alkaline-activated water's improving the performance of mortar and concrete.
     Since alkaline-activated has the advantages of high activeness and high pH value, this paper studied the impact that alkaline-activated water has on concrete carbonation property(C40 objected). Results show that carbonation property enhanced a lot that in the 28-day fast carbonation test the carbonation depth decreased by 16%. For the purpose of better studying the changing rules of concrete carbonation property, taking into account that carbonation depth of concrete has few measurements and high uncertainty, this paper adopts the grey system to study the basic methods of formulating concrete carbonation depth forecasting model. In order to sufficiently optimize the carbonation equation, a new mould for concrete specimen is designed. It enables the specimen to have smooth and continuous spherical concave surface and thus attains non-destructive tests for concrete carbonation specimens; tests on carbonation depth therefore gain the advantages of homogeneity, continuity, accuracy and multiple samples
     The paper briefly studied the workability and compressive strength of self-compacting concrete with alkaline-activated water. Results show that the workability of the self-compacting concrete mixed with alkaline-activated water is obviously higher than that of the concrete mixed with tap water, which at the 28th day of curing the advantage is approximately 15%. It proves that alkaline-activated water helps enhance the properties of self-compacting concrete, as well as other kinds of HPC.
     To ensure the properties of concrete with desalinated sea sand and at the same time conserving freshwater, this paper proposed a new process to manufacture desalinated sea sand concrete:First, by using the co-operating device of dual membrane electrodialyzers and membrane electrolyzers to desalinate sea water, it obtains the salinity qualified alkaline-activated sea water. Then sluice the sea sand with ample desalinated sea water by means of piling sand sluicing. What' s more, adopting the desalinated sea sand and alkaline-activated water to mix the concrete. It's shown that the sea water desalination device is handy and mobile, the desalination effect of sea water meets the requirements of sluicing sea sand and the piling sand sluicing is easy and effective. Results of the comparative experiment of standard concrete prove that concrete made from desalinated sea sand and alkaline-activated water show better dynamics properties and steel protection. Both alkaline-activated water and desalinated sea sand contain certain amount of OH- ions, which could reduce the Cl-/OH-ratio in concrete liquidoid; accordingly, Cl-ion corrosion and concrete carbonation are further inhibited, and concrete durability enhanced.
引文
[1]袁亦川,曾凌三.水的活性化与活性水、功能水[J].净水技术,2003(5):40-42.
    [3]王信良,徐国勇,王岳兴等.关于磁化水性质的实验研究[J].物理,1992(2):113-114.
    [4]陈为民,肖贤明,闵育顺.关于氧化还原电位水术语刍议[J].中国消毒学杂志,2007(3):285.
    [5]李美超,马淳安,吴庆,甘永平.电解制备离子水的研究[J].化学世界,2002(12):406-409.
    [6]尹军,张居奎,张小雨,刘志生.功能水的若干研究进展[J].中国资源综合利用.2009,27(3):23-25.
    [7]Shirahata S, Kabayama K, Nakano M, etal. Electrolyzed-reduced waterscavenges active oxygen species and protects DNA from oxidative damage[J]. Biochem Biophys Res Commun, 1997,234:269-274.
    [8]Sohal R S, Weindruch R. Oxidative stress, caloric restriction and aging[J]. Science,1996,273:59-63.
    [9]朱娜,董铁友,洪妍.三曹隔膜式弱碱性水的制备[J].食品研究与开发,2006(2):74-76.
    [10]关东胜,李里特.强酸化水的制备及其灭菌效果[J].中国农业大学学报,1997,2(2):109-113.
    [11]李娇娥,易滨,傅春华.强氧化离子水含漱治疗口腔溃疡的观察[J].中华护理杂志,2001,35(3):162-163.
    [12]王军,于甜.电位水在食品杀菌领域的研究进展[J].食品科学,2011,32(3):241-246.
    [13]张华,纵伟,李吕文.酸性氧化电位水在食品工业中的应用进展[J].食品研究与开发,2010,31(8):207-209.
    [14]谭五丰,李月兰.饮用离子水[J].食品与机械,1999,3:32-33.
    [15]王豫廉.饮用碱性离子水对血压、血糖及血脂水平影响的初步观察[J].上海预防医学杂志,2001,13(12):565-566.
    [16]Paul Zimmed, K G M M Alberti, Jonathan Show. Global and societal implications of the diabetes epidemic[J]. Nature,2001,414(13):782-787.
    [17]YupingLi, TNishimura, etal. Protective mechanism of reduced water against alloxaninduced pancreatic β-cell damage:Scavenging effect against reactive eoxygen species[J]. Cytotechnology,2002,40:139-149.
    [18]马永红.饮水与运动后的疲劳恢复-碱性离子水对运动员训练后血HL的实验与分析[J].北京体育大学学报,2002,25(4):480-481.
    [19]侯树慧,潘桂兰,王英,陈晓东.碱性离子水与健康关系的研究进展[J].包头医学院学报,2011,27(2):118-119.
    [20]李玉萍,喻小念等.碱性电解功能水对动物细胞的调控及其在医疗中的应用[J].食品科学,2006(11):532-535.
    [21]林秀光.抗酸化水が健康畏寿を実现する[M].実業之日本社,1995.
    [22]刘秋芳,逯晓波,靳翠红,等.碱性电解水对D-半乳糖致小鼠血液和肝、肾、脑组织脂质过氧化作用的影响[J].环境与健康杂志,2010,27(2):105-107.
    [23]张明,樊福成,谷鹏.新型饮水对子代小鼠抗疲劳和学习记忆影响[J].中国公共卫生,2007,23(12):1453-1454.
    [24]赵冬芹,朱莹漫,蔡昭林,肖鹏,李楚华.碱性钙离子水对大鼠血液酸碱度、血钙浓度及免疫功能的影响[J].华南师范大学学报(自然科学版),2011(2):129-132.
    [25]任占冬,朱玉婵,刘晔,陈红梅,张智勇.强碱性还原电位水的制备和杀菌效果.中国医院药学杂志,2009,,29(17):1448-1450.
    [26]李崇智,冯乃谦,李永德.现代高性能混凝土的研究与发展[J].建筑技术,2003(1):23-25.
    [27]冯乃谦.高性能混凝土[M].北京:中国建筑工业出版社,1996.
    [28]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [29]阎培渝.现代混凝土的特点[J].混凝土,2009(1):3-5.
    [30]王立久,艾红梅.绿色生态混凝土技术与循环经济发展[J].混凝土,2009(1):6-11.
    [31]Mather, B. Concrete durability[J].Cement & Concrete Composites,2004,26 (1):3-4.
    [32]孙伟.现代混凝土材料与结构服役特性的研究进展[J].混凝土世界,2009(1):21-30.
    [33]冯乃谦.新实用混凝土大全[M].北京:科学出版社,2005.
    [34]吴中伟.我国水泥工业的发展方向[J].中国建材,1999,(12):51-52.
    [35]阎培渝.关于优质水泥的思考[J].水泥,2001(10):9-10.
    [36]程麟,李东旭.少熟料高标号复合水泥的性能[J].南京化工大学学报,2001,(5):40-44.
    [37]王景贤,王立久,曹明莉.少熟料水泥研究进展[J].水泥技术,2005(1):28-31.
    [38]王景贤,王立久.煤矸石少熟料水泥研究[J].水泥,2004(12):9-11.
    [39]刘贤萍,王培铭.硅酸盐水泥熟料-煤矸石混合水泥的界面结构[J].硅酸盐学报,2008,36(1):105-112.
    [40]陈恩义,廉慧珍,覃维祖.高效能混凝土专用水泥[P].中国:CN1096280,1994-12-14.
    [41]王立久,赵湘慧.生态水泥的研究进展[J].房材与应用,2002,30(4):19-22.
    [42]钱晓倩,甘海军.城市污泥在水泥生产中的资源化利用[C].北京:中国硅酸盐学会房建材料分会,2006.
    [43]郭成举.混凝土的物理和化学[M].北京:中国铁道出版社,2004:58.
    [44]AITCIN P C, MEHTA P K. Effect of coarse-aggregatecharacteristics on mechanical properties of high-strengthconcrete[J]. ACIMaterials Journa,1 1990,87(2):103-107.
    [45]ZHOU F P, LYDON F D, BARR B I G. Effect ofcoarse aggregate on elastic modulus and compressivestrength of high performance concrete[J].Cement andConcrete Research, 1995,25(1):177-186.
    [46]WU Keru, CHEN Bing, YAO Wu,et al. Effect ofcoarse aggregate type on mechanical properties of high-performance concrete[J]. Cement and Concrete Re-search, 2001,31 (10):1421-1425.
    [47]EZELDIN A S, AITCIN P C. Effect of coarse aggregateon the behavior of normal and high-strength concretes[J]. Cement and Concrete Aggregate,1991,13 (2):121-124.
    [48]严安,吴科如,张东,等.冶金集料对高性能混凝土力学性能的影响[J].混凝土,2001(8):38-40.
    [49]陈兵,姚武,吴科如.用声发射研究集料尺寸对混凝土受压力学性能的影响[J].无损检测,2001,23(5):194-197.
    [50]李凌.粗集料表面特征对混凝土强度的影响[J].公路交通科技,2003(4):13-15.
    [51]钱觉时,宋开伟,杨再富,唐祖全.粗集料强度对混凝土抗折强度的影响[J].建筑材料学报,2006,9(4):468-472.
    [52]袁杰,张宝生,葛勇,郑秀华.混合骨料混凝土的力学性能研究[J].混凝土,2004(11):42-44.
    [53]董淑慧,张宝生,葛勇,郑秀华.轻骨料性能对界面区微观结构的影响[J].沈阳建筑大学学报(自然科学版),2009,25(6):1120-1124.
    [54]张冠伦,王玉吉,孙振平.混凝土外加剂原理及应用[M].北京:中国建筑工业出版社,1996.
    [55]陈文豹,田培,李功洲等.混凝土外加剂及其在工程中的应用[M].北京:煤炭工业出版社,1998.
    [56]王正祥,李春喜,田立才.SMAA高效减水剂的制备及性能研究[J].化学建材,1993(2):67-69.
    [57]周广德.超耐久性混凝土外加剂[J].化学建材,1992(4):164-166.
    [58]孙振平,冯波,黄雄荣等.醛酮-磺化木质素共聚减水剂的性能研究[J].建筑材料学报,2010(3):330-334.
    [59]王立久,黄凤远,马希晨等.水溶性纤维素醚减水剂合成与性能研究.建筑材料学报[J],2008年(1):52-57.
    [60]刘进强,王子明.聚羧酸系减水剂与早强组分的复合性能研究[J].混凝土,2008(7):58-60.
    [61]高庆,陈正国.AMS型高性能混凝土外加剂的合成研究[J].胶体与聚合物,2009(4):22-24.
    [62]莫祥银,景颖杰,邓敏等.聚羧酸盐系高性能减水剂研究进展及评述[J].混凝土,2009(3):60-63.
    [63]Chikawa, H.U, S. Hanehara and D. Sawaki. The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture[J]. Cement and concrete research,1997(1):37-50.
    [64]K. Yoshioka, E. Tazawa, K. Kawai, T. Enohata. Adsorption characteristics of water-reducers on cement component minerals[J]. Cement and Concrete Research,2003(5):1507-1513.
    [65]C. Li, N. Feng, Y. Liand R. Chen. Effects of polyethylene oxide chains on the performance of polycarboxylate-type water-reducers[J]. Cement and concrete Research 2005(5):867-873.
    [66]N. S. Berke, M.P. Dallaire, M.C.Hicks and A. Korkar. New developments in shrinkage-reducing admixtures, CANMET/ACI 5th International Conference on Superplasticizers and Other Chemical Admixtures in Concrete[J]. Supplementary Papers, Malhotrs,1997:971-998.
    [67]X.Feng, M. D. A. Thomas, T. W. Bremner, B. J. Balcom and K. J. Folliard. Studies on lithium salts to miligalr asr-induced expansion in new concrete:a critical review[J]. Cement and concrete Research,2005(35):1789-1796.
    [68]C.M, Hansson, L.Mammoliti and B.B.Hope. Corrosion inhibitors in concrete-Part 1:The principles[J]. Cement and Concrete Research,1998(12):1775-1781.
    [69]孙振平,蒋正武,金慧忠,王培铭,张冠伦.我国高效减水剂现状与发展措施[J].工业建筑,2007,37(增刊):958-961.
    [70]冯乃谦,丁建彤,庄青峰等译.高性能混凝土的耐久性[M].北京:中国科学出版社,1997.
    [71]邢锋,冯乃谦.普通强度混凝土高性能化的研究[J].土木工程学报,2000(5):19-23.
    [72]张亚梅,孙伟,王亚丽,等.硅灰和钢纤维对喷射混凝土性能的影响研究[J].混凝土与水泥制品,2002(6):33-35.
    [73]郑克仁,孙伟,缪昌文,等.矿物掺和料对混凝土疲劳性能的影响[J].建筑材料学报,2007,10(4):379-385.
    [74]Nan Su, Yeong Hwa, Chung Yo. Mar. Effect of magnetic water on engineering properties of concrete containing granulated blast-furnace slag[J]. Cement and Concrete Research,2000(30):599-605.
    [75]方江华,张景任,姜玉松.磁化水混凝土应用中几个技术问题的研究[J].安徽理工大学学报(自然科学版).2004(2):18-22.
    [76]董学佼.磁化水拌制混凝土研究[D].硕士学位论文.大连:大连理工大学,2001.
    [77]吴忠,秦本东,罗运军.磁化水对混凝土强度的影响及其作用机理试验研究[J].建井技术,2004(1):28-31.
    [78]付温,王宏彬.混凝土工程新技术[M].北京:中国建材工业出版社,1994:56-59.
    [79]李志鹏.磁化水提高混凝土强度的研究[J].煤炭工程.2005(12):72-73.
    [80]张维华,吴振杰.磁化水技术在混凝土中的应用[J].建筑技术开发,2001(6):55-56.
    [81]郭松年,张自太.磁化水拌和混凝土提高强度试验[J].甘肃农业大学学报,1995(2):169-172.
    [82]熊瑞生,姚庆钊.磁化水对水泥活性影响的实验研究[J].哈尔滨工业大学学报,2006(2):307-309.
    [83]谢定均.磁化水混凝土技术的实验研究(硕士学位论文)[D].河南:焦作工学院,2000.
    [84]王立久,赵善宇.磁化水对水泥拌合物性能的影响[J].混凝土,2005(9):11-17.
    [85]赵善宇.磁化水混凝土性能研究[D].大连:大连理工大学,2005.
    [86]汤如山,陈谢军,姜玉松等.磁化混凝土的试验研究与应用分析[J].建井技术,1999,20(5):28-29.
    [87]邹超,姜玉松.磁化混凝土物理力学性能的试验研究.西部探矿工程.2006,12,3(7):241-243.
    [88]赵华玮,代学灵,曾宪桃等.磁化水降低喷射混凝土粉尘含量的试验研究[J].采矿与安全工程学报,2008,25(3):371-374.
    [89]赵华玮,代学灵.磁化水对喷射混凝土强度影响的试验研究[J].采矿与安全工程学报,2009,26(3):381-385.
    [90]刘建江.磁化水混凝土技术的研究及应用[J].建筑机械技术与管理,2005(8):35-37.
    [91]秦敬爱.浅论磁化水混凝土技术的开发和应用[J].铁道建筑,2009(9):118-121.
    [92]曲敬绪,刘淑敏.不锈钢在一些溶液中的阳极行为[J].水处理技术,1981,7(3):12-18.
    [93]刘慧,费振勇,朱海洪.电渗析脱盐的数学模型[J].北京化工学院学报(自然科学版),1992(1):98-103.
    [94]万洪文,詹正坤.物理化学[M].北京:高等教育出版社,2002.
    [95]关东胜,李里特.强酸化水的制备及其灭菌效果[J].中国农业大学学报,1997,2(2):109-113.
    [96]董铁有,朱娜,洪妍.三槽隔膜间歇式电解槽制取弱碱性离子水工艺研究[J].食品工业科技-工艺技术,2005(12):126-128.
    [97]朱元保,颜流水,曹祉祥.磁化水的物理化学性能[J].湖南大学学报,1999(1):21-24.
    [98]王立久.建筑材料学[M].北京:中国水利水电出版社,2008.
    [99]姚明芳,李立权,杨源等.新编混凝土强度设计与配合比速查手册[M].长沙:湖南科学技术出版社,2000.
    [100]郭成举.混凝土的物理和化学[M].北京:中国铁道出版社2004:113.
    [101]Koichi Maekawa, Rajesh chaube, Toshinaru kishi. Modeling of concrete Performance. E and FN SPON[J]. London and New York,1999:2017-2023.
    [102]OKAMURA Hajime, OUCHI Masahiro. Self-compacting concrete:development, present use and future[A].In:SKARENDAHL A, PE-TERSSON 0 eds. Proceedings of 1st International RILEM Symposiumon Self-Compacting Concrete[C]. Paris:RILEM Publication SARL,1999:3-14.
    [103]刘运华,谢友均,龙广成.自密实混凝土研究进展[J].硅酸盐学报,2007,5:671-678
    [104]蒋正武,石连富,孙振平.用机制砂配制自密实混凝土的研究[J].建筑材料学报,2007,10 (2):154-160.
    [105]陈丽华,叶燕华,缪汉良等.自密实混凝土工作性能试验[J].南京工业大学学报(自然科学版),2008(5):47-51.
    [106]傅沛兴,贺奎.自密实混凝土的配合比设计[J].建筑技术,2007(1):49-52.
    [107]柳俊哲,吕丽华,左红军.混凝土碳化腐蚀时亚硝酸钠保护钢筋作用的研究[J].混凝土,2003(4):24-27.
    [108]朱安民.混凝土碳化与钢筋混凝土耐久性[J].混凝土,1992(6):18-22.
    [109]阎培渝,杨静.建筑材料[M].北京:中国水利水电出版社,2008.
    [110]李立,黄士元.混凝土碳化的预测[J].混凝土与水泥制品,1988,(3):3-6.
    [111]龚洛书,苏曼青,王洪琳.混凝土多系数碳化方程及其应用[J].混凝土及加筋混凝土,1985,(6):10-16.
    [112]莫斯克文B M,阿列克谢耶夫c H,古捷耶夫E A,等.混凝土和钢筋混凝土的腐蚀及其防护方法[M].倪继森,何进源,孙昌宝,等译.北京:化工出版社,1988.
    [113]Papadakis V G, Vayenas C G, Fardjs M N. Fundamental modeling and experimental investigation of concrete carbonation[J]. ACI Materials Journal,1991 (88):363.
    [114]张誉,蒋利学.基于碳化机理的混凝土碳化深度使用数学模型[J].北京:工业建筑,1998,28(1):16.
    [115]张誉,蒋利学,张伟平等.混凝土结构耐久性概论.上海:上海科学技术出版社,2003.
    [116]屈文俊,陈道普.混凝土碳化的随机模型[J].同济大学学报(自然科学版),2007(5):577-581.
    [117]袁群.老化病害混凝土结构质量评估及粘结加固中的基础问题研究[D].大连理工大学博士学位论文,2000.
    [118]OKAMURA Hajime, OUCHI Masahiro. Self-compacting concrete:development, present use and future [A]. In:SKARENDAHL A, PE-TERSSON 0 eds. Proceedings of 1st International RILEM Symposiumon Self-Compacting Concrete [C]. Paris:RILEM Publication SARL,1999. 3-14.
    [119]朱艳芳,王培铭.大掺量粉煤灰混凝土的抗碳化性能研究[J].建筑材料学报,1999,12:319-323.
    [120]陈树东,张云升,杨建民.混凝土二维、三维碳化的研究[J].混凝土,2006(1):3-4.
    [121]金伟良,鄢飞.混凝土碳化指数的概率模型[J].混凝土,2000(10):35-37.
    [122]刘志勇,孙伟.多因素作用下混凝土碳化模型及寿命预测[J].混凝土,2003(12):3-7.
    [123]颜承越.水灰比-碳化方程与抗压强度-碳化方程的比较[J].混凝土,1994(1):46-49.
    [124]R. K. Dhir, P. C. Hewlett, Y. N. Chan. Near-surface characteristics of concrete prediction of carbonation resistance[J]. Magazine of Concrete Research,1989(148):137-143.
    [125]保护层厚度专题研究组.钢筋混凝土保护层厚度取值的建议[J].混凝土,1988(3):7-8
    [126]方景,梅国兴,陆采荣.影响混凝土碳化主要因素及钢锈因素实验研究[J].混凝土,1986(2):35-43.
    [127]柳俊哲.混凝土碳化研究与进展(1)[J].混凝土,2005(11):10-13.
    [128]C. L. Page, K. W. J. Treadawag. Aspects of the electrochemistry of steel in concrete[J]. Nature,1982,297:109-114.
    [129]尤志洁,柳俊哲,吕丽华,左红军.含防冻剂混凝土钢筋阻锈机理研究[J].低温建筑技术,2003(4):14-15.
    [130]程云虹,刘斌.混凝土结构耐久性研究现状及趋势[J].东北大学学报(自然科学版),2003,6:600-601.
    [131]Jong Herman Cahyadi. Effect of Carbonation on Pore Structure and Strength Characteristics of Mortar. Adissertation of the University of Tokyo,1995:43-50.
    [132]洪乃丰.海砂对钢筋混凝土的腐蚀与对一策[J].混凝土.2002(8):12-14.
    [133]王威.海砂资源现状及其采矿权延续申请的程序相关问题[J].国土资源情报,2006(5)43-46.
    [134]刘军,邢锋等.海砂型氯离子在混凝土中扩散的微观形貌分析[J].混凝土与水泥制品,2007,158(6):15-17.
    [135]建设部关于严格建筑用海砂管理的意见[Z].建标(2004)143号,2004.
    [136]Anders Lindvall. Chloride ingress data from field and laboratory exposure Influence of salinity and temperature[J]. Cement and Concrete Composites,2007,29(2):88-9.
    [137]洪乃丰.海砂腐蚀与“海砂屋”危害[J].工业建筑,2004,11(34):65-67.
    [138]史美鹏,卢福海.淡化海砂在高性能混凝土中的应用研究[J].混凝土,2004(4):63-66.
    [139]《建筑用砂》(GB/T 14684-2001)[S].国家质量监督检验检疫总局发布.
    [140]谢家泽,陈志凯.中国水资源[J].地理学报,1990,45(2),210-213.
    [141]张光斗.面临21世纪的中国水资源问题[J].地球科学进展,1999,14(2),18-18.
    [142]王建华,江东,陈伟有.21世纪中国水资源问题与出路[J].国土与自然资源研究,1999(2):6-8.
    [143]周如禄.电渗析装置工作电流优化探讨[J].水处理技术,1993(10):277-280.
    [144]王炜.海砂中主要有害物质对混凝土的影响及处理办法[J].施工技术,2005,34(4):81.
    [145]赵毛媛.海砂淡化技术的开发应用[J].建材工业信息,1999(4):9-10.
    [146]Hughes B P, Soleit A K O, Brierley R W. New Technique for Determining the Electrical Resistivity of Concrete[J]. Magazine of Concrete Research,1985,37(133):243-248.
    [147]Wilson J G, Whittington HW, Forde M C. Phy-sicalInterpretation of Microcomputer-Controlled Automatic Electrical Resistivity Measurements on Concrete [J]. NDT International,1985,18(2):79-84.
    [148]刘志勇,詹镇峰.混凝土电阻率及其在钢筋混凝土耐久性评价中的应用研究[J].混凝土,2006(10):13-16.
    [149]Rengaswamy N S, Srinivaasan S, Mahadeva IyerY, et al. Non-destructive Testing of Concrete by Electrical Resistivity Measurements [J]. Indian Concrete Journal,1986, 60(1):23-27.
    [150]魏小胜,夏玉英,王延伟.用电阻率法评定混凝土的氯离子渗透[J].华中科技大学学报(城市科学版),2008(6):19-22.
    [151]LI Z J, LI W L. Contactless transformer based measurement of the resistivity of materials:U.S.,6639401[P].2003-10-28.
    [152]REZA F, BATSON G B, YAMAMURO J A, et al. Volume electrical resistivity of carbon fiber cement composites[J]. ACI Materials Journal,2001,98(1):25-35.
    [153]WEN S H, CHUNG D D L. Seebeck effect in carbon fiber-reinforced cement [J]. Cement and Concrete Research,1999,29:1989-1993.
    [154]弓国军,宋晓冰,孔启明.氯盐污染下混凝土的电阻率[J].工业建筑,2005(12):5-7.
    [155]钱觉时,徐姗姗,李美利,王立霞.混凝土电阻率测量方法与应用[J].山东科技大学学报,2010(2):37-41.
    [156]Hope B B, Ip A K, Manning D G. Corrosion and electrical impedance in concrete[J]. Cement and concrete Research.1985,15(3):525-534.
    [157]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990.
    [158]Deng Julong. On judging the admissibility of grey modeling via class ratio[J]. The Journal of Grey System,1993(4):249.
    [159]邓聚龙.灰预测与灰决策[M].武汉:华中理工大学出版社,2002.
    [160]Deng Julong. A novel GM(1,1) model for non-equigapseries[j]. The Journal of Grey System,1997(2):111-116.
    [161]邓聚龙,郭洪.灰预测原理与应用[M].台北:全华图书公司,1996.
    [162]刘思峰,党耀国,方志耕.灰色系统理论及其应用[M].北京:科学出版社,2005.
    [163]李云贵,李清富,赵国藩.灰色GM(1,1)预测模型的改进[J].系统工程,1992(11):27-31.
    [164]张维润等.电渗析工程学[M].北京:科学出版社,1995.
    [165]Winwton Ho W S, Sirkar K K(eds). Membrane Handbook. New York:Van Nostrand Reinhol,1992.
    [166]Donnan F G. The Theory Membrane Equilibrium in Presence of a Non-dialyzable Electrolyte. Z Electrochem,1911:572.
    [167]Donnan F G,Guggenhein E A. Exact Thermodynamics of Mermbrane Equilibrun. Z Physik Chemie,1932,A162:346-360.
    [168]莫剑雄等.对电渗析器用铅电极的探讨[J].水处理技术,1982,8(2):19-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700