用户名: 密码: 验证码:
通过高通量筛选技术从中药材中发现抗黑色素瘤的新天然化合物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑色素瘤在最常见的癌症中排第六位,它恶性程度很高,是最危险的皮肤癌。黑色素瘤同时也是一个主要的健康问题,近年来它在世界范围内的发病率有所升高。浸润性黑色素瘤的发病率在白人中最高,几乎是其他人种发病率的30倍。在65岁及65岁以上的人群中,黑色素瘤在男性中发病的可能性要比在女性中高出2倍(在女性和男性中的发病率分别为1/35和1/25),每年发病大约有100,000例。根据世界卫生组织下属的国际癌症研究署的数据,皮肤黑色素瘤发病率最高的国家是澳大利亚和新西兰。黑色素瘤的发病率一直上升,但是用来治疗黑色素瘤的手段有限,因此死亡率也有所上升。
     用来阻止黑色素瘤转移和杀死癌细胞的化疗手段包括:烷基化试剂(如氮烯咪胺,有效率在15%-20%之间),铂类药物(如顺铂,单独治疗有效率为15%左右),微管毒素药物(如紫杉醇,单独使用时有效率为16%左右),这些药物的疗效不理想和药物的副作用是化疗的主要问题。从总体疗效和存活率来看,当前转移性黑色素瘤的治疗手段还有待提高。虽然一些药物在生物化学实验中表现出了不错的结果,但是没有一种药物或者是手段能在随后的试验中提高反应的中间期和生存率。来源于植物和草药的天然产物,单独使用或者联合其他药物使用,也许会提供治疗恶性黑色素瘤的一种新的治疗方法。
     天然产物一直是药物先导化合物的最成功的来源,天然产物能提供大于标准组合化学所能提供的结构多样性,天然产物也是新型的低分子量的先导结构的主要来源,这些先导化合物具有针对多个靶点的活性。中药经过了历史上千年的检验,有助于天然活性成分(尤其是用于医疗用途的活性成分)的确定,也许将推动世界范围内新药的研发。源于中药的天然产物在治疗癌症中有很大潜力,例如青蒿琥酯,高三尖杉酯碱,As2O3,斑蝥素。对照临床研究发现,高三尖杉酯碱和As2O3对治疗白血病有显著活性。对中药来源的药物的分子机制越来越多的了解及其最近在应用方面的发展证实了:中药和现代尖端科技的结合可以为发展新型和改良型抗癌药物提供非常引人注目的策略。
     高通量筛选是发现有望在不久的将来用于癌症有效治疗而副作用少的天然小分子的新策略,也是加速其分离,鉴定及表征过程的新策略。在本文中,我们用高通量筛选的方法对源于500种中药的组分库的抗黑色素瘤的活性进行了初步筛选,确定了两个具有抗黑色素瘤和其他肿瘤活性的天然小分子。
     我们使用基于高通量筛选的新策略来系统地针对药物靶点进行中药活性物质的筛选并确定。用于筛选的组分库由中国药典常见的500种中药构成,这些中药有各种活性成分,能够治疗包括肿瘤在内的很多疾病。为构建中药组分库,每种中药粉末用95%乙醇在索氏提取器内95°C回流提取10小时,然后用制备型高效液相色谱(HPLC)收集组分。每种中药粗提物经处理后,用10%-100%甲醇梯度洗脱(每个组分中可见峰在1-17个),收集80个组分,由此得到了来源于500种中药的适合高通量筛选的40,000个组分。假定每个组分中的各种物质的平均分子量为500道尔顿,将每个组分用DMSO溶解成20 mM溶液置于96孔板中构成直接用于筛选的组分库。有活性的单体化合物由进一步的活性引导分离得到并进行结构鉴定。
     用于筛选抗黑色素瘤中药组分的终浓度为100μM。我们用A375细胞系筛选了源于240种中药的19,200个组分,其中67种中药的154个组分表现出了抑制黑色素瘤细胞生长的活性。随后我们进行了阳性组分对新鲜分离的小鼠脾细胞的毒性试验,以排除对正常细胞有毒性的组分。结果显示,110个组分具有显著的细胞毒性,44个组分没有明显的毒性。因其抗黑色素瘤活性好而且对小鼠脾细胞毒性小,艾叶被选择以分离其中具有抑制黑色素瘤活性的化合物。有机溶剂萃取和制备型HPLC收集组分被用来分离艾叶中的活性成分。最终我们从艾叶中得到两种能够抑制A375细胞增殖的化合物,通过质谱,1H NMR和13C NMR,确定其结构为O-甲基黄酮—异泽兰黄素(5,7-二羟基-3’,4’,6-三甲氧基黄酮)和棕矢车菊素(4,5,7-三羟基-3’,6-二甲氧基黄酮)。
     检验异泽兰黄素对A375细胞的抑制增殖效应的MTT测试结果表明,其EC50大约为150μM。异泽兰黄素特异性地诱导A375细胞形态变化,对正常的小鼠脾细胞的毒性较小。进一步研究显示其对A375细胞生长呈现剂量依赖的抑制作用,与DNA损伤,细胞凋亡和细胞周期阻滞在G2/M期有关。异泽兰黄素诱导凋亡的效应通过Annexin V-FITC/PI双染色并由流式细胞仪进行检测得到证实。结果显示:150μM和300μM的异泽兰黄素处理的细胞凋亡率分别为13.05%和29.20%,而对照组的细胞凋亡率只有2.04%。同时我们也进行了Hoechst33258染色来检测细胞凋亡(很容易检测到细胞核中的DNA断裂)。流式细胞术检测结果显示异泽兰黄素处理引起细胞周期阻滞,浓度为150μM和300μM的药物处理细胞24h后,G2/M期的细胞由对照组的8.82%上升到21.70%和29.86%。
     以上结果表明,我们使用中药组分库进行高通量筛选的策略在发现抗肿瘤的天然小分子中是行之有效的方法。两种具有抗黑色素瘤活性的黄酮类化合物值得进一步的机制和疗效研究。对本研究中发现的其它中药阳性组分中单体化合物的分离和功能鉴定,也许能有助于发现新的药物作用机制以及高活性的抗黑色素瘤新药。
Melanoma is the sixth most common cancer and the malignancy with the highest rise in incidence and the most dangerous form of skin cancer. Melanoma is also a major health problem and its rates are increasing in the worldwide. The incidence rate for invasive melanoma is highest in whites, who are almost 30 times more likely to develop melanoma. Men aged 65 or older are more than twice as likely to develop melanoma as women in the same age group (The Lifetime risk for Melanoma is 1 in 35 women and 1 in 25 men) and number of cases is about 100,000 per year. According to the International Agency for Research on Cancer, the countries with the highest incidence of cutaneous melanoma are Australia and New Zealand. The incidence of melanoma is increasing, and the therapeutic options for malignant disease are limited, resulting in an increase in the death rate.
     The chemotherapy of melanoma is to prevent the metastasis and kill the cancer cells which is including Alkylating Agents (such Dacarbazine (DTIC), response rate is 15% to 20%), Platinum Drugs (such cisplatin, response of 15% as a single treatment) and Microtubule-toxin Agents (such paclitaxel, response rate of 16% as single treatment) and still the side effects are main problem of chemotherapy agents. The current treatment for metastatic melanoma is still poor in overall response and survival rate. Although some bio-chemotherapy trials have shown good outcomes, no agent or regimen has improved median response duration and overall survival in subsequent studies. New treatment options, as single or in combination, with the use of natural phyto-compounds or herbal medicines may provide new agents in the treatment of malignant melanoma.
     The natural products are the most consistently successful source of drug leads and provide a greater structural diversity than standard combinatorial chemistry and offer major opportunities for finding novel low molecular weight lead structures that are active against a wide range of assay targets. Traditional Chinese Medicine (TCM) has been practiced for thousands of years with a long history of 2000 to 3000 years and has contributed in the worldwide to the identification of active ingredients for a particular medical usage for several TCM composed of single or multiple herbal components.
     In the coming years, the stage is set for a more systematic, rigorous analysis and testing of therapeutic agents used in TCM that may eventually lead to the development of useful therapeutic agents for the entire world. TCM natural products have the potential for use in cancer therapy, for example; artesunate, homoharringtonine, arsenic trioxide and cantharidin, the controlled clinical studies have shown that homoharringtonine and arsenic trioxide can exert profound activity against leukaemia. Increased knowledge of the molecular mechanisms of TCM-derived drugs and recent developments in their applications demonstrate that the combination of TCM with modern cutting-edge technologies provides an attractive strategy for the development of novel and improved cancer therapeutics.
     Furthermore, high throughput screening is a new development of strategy to speed up the identification, isolation and characterization process and to discover small natural molecules that can be delivered to use in cancer treatment with less side effects on the human health in the near future. In the present study, we used high throughput screening approaches to investigate the melanoma properties of a compounds fraction library from 500 Chinese herbs and to identify new small natural molecules with anticancer properties against melanoma and other cancer cells.
     We have developed a novel HTS-based strategy to systematically identify active natural compounds against any drug target from Chinese medicinal herbs. An herbal compound fraction library was constructed from 500 herbs most frequently used in Traditional Chinese Medicine (TCM) that are likely to contain therapeutic ingredients for a broad spectrum of human diseases including virus infection. For construction of the TCM fraction library, crude herbal extracts were first prepared by 95% ethanol extraction on Soxhlet reflux apparatus followed by automated fractionation of the extracts using preparative HPLC. Eighty fractions were collected from each herb by 0-90% methanol gradient. The number of single compounds in each fraction was ranging from 1 to 17 (averaged 10.4). We have built up a natural compounds library with 40,000 fractions from 500 herbs that is suitable for high throughput screening. Single active compounds from positive fractions are identified by further fractionation, activity analysis and structure determination. For high throughput screening, a working TCM fraction library was prepared in 96-well format by dissolving each fraction in DMSO to make a 20 mM solution suppose average compounds molecular weight is 500 dolton.
     A final concentration of 100μM was used to screen for anti-melanoma activity. Among 240 Chinese herbs containing 19,200 fractions screened against human melanoma cancer cell line A375, we identified 154 positive fractions from 67 herbs. We tested the toxicity of positive fractions on freshly isolated mouse splenocytes to exclude fractions toxic to normal cells. The results indicated 110 fractions with remarkable toxicity and 44 fractions with no significant effect on mouse splenocytes. We choose a positive fraction with anti-melanoma activity and least toxicity on splenocytes from a Chinese herb called Artemisia Argyi to isolate positive single compounds that are responsible for the anti-melanoma activity. Organic extraction followed by preparative HPLC fractionation was used to isolate anti-melanoma single compounds from herbal plant Artemisia Argyi. We have successfully isolated two compounds with anti-proliferative effect on A375 melanoma cells. The chemical structures of the two compounds were determined as an O-methylated flavone; Eupatilin (5, 7-dihydroxy-3', 4’, 6-trimethoxyflavone) and jaceosidin (4, 5, 7-trihydroxy-3', 6-dimethoxyflavone) by using MS, 1H NMR and 13C NMR.
     The anti-proliferative effect of eupatilin in human melanoma A375 cells was performed by MTT assay. The EC50 value is about 150μM. Eupatilin specifically induced morphological changes in A375 cells and was less toxic to the normal mouse splenocytes. The inhibitory effects of A375 cells were associated with the DNA damage, apoptosis, and cell cycle arrest at G2/M phase in a dose-dependent manner. The apoptotic effects of eupatilin were further verified by using Annexin V-FITC/propidium iodide staining in flow cytometry. It was observed that the apoptosis rates were 13.05% and 29.2% in A375 cells treated with 150 and 300μM eupatilin for 24 h, respectively, compared to the control cells at 2.04%. Furthermore we indicated apoptosis effect by using Hoechst staining (easily detect the fragmentation of DNA in cell nucleus). Flow cytometry was performed to determine whether eupatilin induced cell cycle arrest. The percentage of A375 cells in G2/M phase was increased from 8.82% in untreated cells to 21.70%, and 29.86% in the cells treated for 24h with 150 and 300μM eupatilin, respectively.
     These results suggest that our high throughput screening strategy using herbal fraction library is promising in identifying small natural molecules with anti-melanoma activity. The two identified flavones compounds with confirmed anti-melanoma activity perhaps worth further mechanistic and therapeutic studies in human melanoma. Isolation and functional characterization of single compounds from other positive fraction of different herbs may identify new natural compounds with new mechanisms and ideal therapeutic properties against human melanoma.
引文
[1] Spiridon E. Kintzios and Maria G. Barberaki Plants Fighting Cancers, by CR Press LLC, 2004.
    [2] John Boik. Natural Compounds in Cancer Therapy 1st ed, Oregon Medical Press, LLC, Israel, 2001.
    [3] Koshiyama M., Fujii H., Kinezaki M., Ohgi, S., Konishi M. and Hidetaka N. et al Chemosensitivity testing of irinotecan (CPT-11) in ovarian and endometrial carcinomas: a comparison with cisplatin. Anticancer Res, 2000, 20(3A), 1353– 8
    [4] Adriana B da Rocha, Rafael M Lopes and Gilberto Schwartsmann. Natural Products in Anticancer Therapy J of Pharmacology, 2001, 1:364–369.
    [5] G. M. Cragg and D. J Newman Plants as a Source of Anti-Cancer Agents Encyclopedia of Life Support Systems (EOLSS), 2006
    [6] Laura Lam, Clement Lam and Ying Cao Immunotoxins - a New Class of Anticancer Drugs Drugs of the Future, 2004, 29(6): 609-612
    [7] Jai Prakash and S KGupta Natural Products for Chemopreventation Indian J. o Medical&Paediatric Oncology, 2004, Vol.25, No.3
    [8] Dobelis, I.N. Magic and Medicine of Plants. Reader’s Digest Books, Pleasantville, NY, 1989.
    [9] Mutschler, E. and Derendorf, H. Drug Actions: Basic Principles and Therapeutic Aspects. Medpharm Scientific Publishers, Stuttgart, Germany, 1995
    [10] Justin Klekota and Frederick P. Chemical substructures that enrich for biological activity Bioinformatics, 2008, Vol. 24 no. 21 : 2518–2525.
    [11] Jacobson JS., Workman SB., Kronenberg F. Research on Complementary and Alternative Therapies for cancer: Issue and Methodilogical Considerations. J. Am Med Women’s Assoc, 1999, 54:177-180.
    [12] Paolini M., Abdel Rhman SZ., Sapone A. Beta Carotene Acancer Chemopreventive agent or a Co-carcinogen? Mutat Res., 2003, 543:195-200.
    [13] Spiridon E. Kintzios and Maria G. Barberaki, Plants That Fight Cancer, CRC Press LLC, USA, 2004.
    [14] Newman D. J., Cragg G. M. and Snader K. M. Natural products as sources of new drugs over the period 1981-2002. Journal of Natural Products, 2003, 66: 1022-1037.
    [15] Gullett NP, Ruhul Amin AR, Bayraktar S, Pezzuto JM, Shin DM and Khuri FR et al. Cancer prevention with natural compounds. Semin Oncol., 2010, 37(3):258-81.
    [16] Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF et al. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med., 2002, 113 (9B):71S-88S.
    [17] Cassady J. M., Chan k. k., Flose H. G. and Leistner E. Recent developments in the Maytansanoid anti-tumor agents Chem. Pharm. Bull., 2004, 52: 1-26.
    [18] Cragg G. M., Boyd M. R., Cardellina II J. H., Newman D. J., Snader K. M., and McCloud T. G. Ethnobotany and drug discovery: the experience of the US National Cancer Institute. In Ethnobotany and the Search for New Drugs Ciba Foundation Symposium, 1994, 185: 178-196.
    [19] Cichewitz R. H. and Kouzi S. A. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Medical Research Reviews, 2004, 24: 90-114.
    [20] Cragg G. M., Kingston D. G. I. and Newman D. J. Anticancer Agents from Natural Products Boca Raton, Florida: Taylor & Francis, 2005.
    [21] Li Q. and Sham H. L. Discovery and development of antimitotic agents that inhibit tubulin polymerisation for the treatment of cancer. Expert Opin Ther Patents, 2002, 12:1663-1701.
    [22] Dearnaley DP, Horwich A, A'Hern R, Nicholls J, Jay G, Hendry WF and Peckham MJ. Combination chemotherapy with bleomycin, etoposide and cisplatin (BEP) for metastatic testicular teratoma: long-term follow-up. Eur J Cancer, 1991 27(6):684-91.
    [23] Ariltetralin Lignanlar?n. The Importance of Aryltetralin (Podophyllum) Lignans and Their Distribution in the Plant Kingdom J. Fac. Pharm. Ankara, 1995, 24: 2.
    [24] Kiyoyuki Furuse. Platinum/Oral Etoposide Therapy in Non-Small Cell Lung Cancer Oncology, 1992, 49: 63-70
    [25] George A Orr1, Pascal Verdier-Pinard, Hayley McDaid and Susan Band Horwitz. Mechanisms of Taxol resistance related to microtubules. Oncogene, 2003, 22: 7280–7295.
    [26] D. J. Adams, M. L. Wahl, J. L. Flowers, B. Sen, M. Colvin and M. W. Dewhirst et al. Camptothecin analogs with enhanced activity against human breast cancer cells.II. Impact of the tumor pH gradient Cancer Chemotherapy and Pharmacology, 2005, 57(2): 145–154.
    [27] M. Palumbo, C. Sissi, B. Gatto, S. Moro and G Zagotto Quantitation of camptothecin and related compounds J. Chromatofr B Biomed Sci. Appl., 2001, 764 (1-2): 121–40.
    [28] Newman D. J., Cragg G. M., Holbeck S., and Sausville E. A. Natural products as leads to cell cycle pathway targets in cancer chemotherapy, Current Cancer Drug Targets, 2002, 2: 279-308.
    [29] Kinghorn A. D. The discovery of drugs from higher plants in the discovery of Natural Products with Therapeutic Potential (ed. Gullo V. P) Boston: Butterworth-Heineman, 1994, 81-108.
    [30] Farnsworth. The term“cancer”may be poorly defined in many instances J. Ethnopharmacology, 2000, 73: 347-377.
    [31] Kelvin Chan. Progress in traditional Chinese medicine. Trends Pharmacol Sci 1995, 16: 182–187
    [32] Robson, T. An Introduction to Complementary Medicine Allen & Unwin. pp. 90, 2004
    [33] Bensky, Clavey and Stoger. Chinese Herbal Medicine Material Medica (3rd Edition) Eastland Press, 2004
    [34] T.H. Tsai. Analytical approaches for traditional Chinese medicines exhibiting antineoplastic activity. J. Chromatogr., 2001, B 764: 27–48.
    [35] Xiaodong Huang, Liang Kong, Xin Li, Xueguo Chen, Ming Guo and Hanfa Zou Strategy for analysis and screening of bioactive compounds in traditional Chinese medicines Journal of Chromatography, 2004, B 812 : 71–84.
    [36] X.J. Wang. Modernization of Traditional Chinese Medicine World Sci & Tech, 2002, 4:1–4.
    [37] Famei LI, Zhili XIONG, Xiumei LUa, Feng QIN and Xiaoqin LI. Strategy and Chromatographic Technology of Quality Control for Traditional Chinese Medicines Chinese Journal of Chromatography, 2006, Volume 24, Issue 6 :537-545.
    [38] Zheng-Tao Wang, Tzi-Bun and Guo-Jun. Recent Advances in Pharmacognosy Research in China Cm. Pharmac., 1995, Vol. 26, No. 6, 121: I-1224.
    [39] Su Xingye, Kong Liang, Lei Xiaoyuan, Hu Lianghai, Ye Mingliang and Zou Hanfa. Biological Fingerprinting Analysis of Traditional Chinese Medicines with Targeting ADME/Tox Property for Screening of Bioactive Compounds by Chromatographic and MS Methods Mini Reviews in Medicinal Chemistry, 2007, Volume 7, Number 1: 87-98(12).
    [40] Duke, J.A. and Ayensu, E.S. Medicinal Plants of China. Reference Publications, Inc., Algonac, MI, 1985.
    [41] Hostettmann K., Wolfender JL. And Terreaux C. Modern Screening Techniques for Plant Extracts. Pharmaceutica Biol., 2001, 39:18-32.
    [42] Amy K. Hanks. Cancer and Traditional Chinese Medicine Eastland Press 2000.
    [43] Y.Z. Chen and S.Y. Chen, Introduction of Chemical Methods in Study of Modernization of Traditional Chinese Medicines, Science Publishing, Beijing China, (p. 1), 2003
    [44] Shao Liu, Lun-Zhao Yi and Yi-Zeng Liang, Traditional Chinese medicine and separation Science. J. Sep. Sci., 2008, 31: 2113– 2137.
    [45] Chunhui Denga, Ning Liu b, Mingxia Gaoa, Xiangmin Zhang, Recent developments in sample preparation techniques for chromatography analysis of traditional Chinese medicines. Journal of Chromatography, 2007, A 1153: 90–96.
    [46] Xin-miao Liang, Yu Jin, Yan-ping Wang, Gao-wa Jin, Qing Fu and Yuan-sheng Xiao. Qualitative and quantitative analysis in quality control of traditional Chinese medicines, Journal of Chromatography, 2009, A Volume 1216, Issue 11: 2033-2044.
    [47] X Chen, H Zhou, YB Liu, JF Wang, H Li and CY Ung. Database of traditional Chinese medicine and its application to studies of mechanism and to prescription validation, British Journal of Pharmacology, 2006, 149: 1092–1103
    [48] M Yan X, Zhou J and Xie G. Traditional Chinese medicine database and application on the Web. J Chem INF Comput Sci., 2001, 41:273–277.
    [49] Chen Q. Pharmacology and Clinical Studies of Well-known Traditional Chinese Medicinal Recipes. People Health Pub Co: Beijing, 1998.
    [50] Huang TK. Handbook of Composition and Pharmacological Action of Commonly Used Traditional Chinese Medicine, Chin. Med. Sci. Pub Co: Shanghai, 1999.
    [51] Xiaojuan Shu, Michael McCulloch, Hang Xiao, Michael Broffman and Jin GAO. Chinese Herbal Medicine and Chemotherapy in the Treatment of Hepatocellular Carcinoma: A Meta-analysis of Randomized Controlled Trials. Integrative Cancer Therapies, 2005, 4(3): 219-229.
    [52] Ji ZL, Zhou H, Wang JF, Han LY, Zheng CJ and Chen YZ. Traditional Chinese medicine information database, 2006, 103: 501
    [53] Pach D, Willich SN and Becker-Witt C. Availability of research results on traditional Chinese pharmacotherapy. Forsch Komplementarmed Klass Naturheilkd, 2002, 9: 352–358.
    [54] Thomas Efferth, Paul C.H. Li, Venkata S. Badireenath Konkimalla and Bernd Kaina. From traditional Chinese medicine to rational cancer therapy, Trends in Molecular Medicine, 2007, Vol.13 No.8
    [55] Yizhong Caia, Qiong Luob, Mei Sunc and Harold Corke, Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 2004, 74: 2157–2184.
    [56] Ruan Wen-jing, Lai Mao-de and Zhou Jian-guan, Anticancer Effects of Chinese Herbal Medicine, Science or Myth, J Zhejiang Univ Science, 2006, B7 (12):1006- 1014.
    [57] Cheng JT. drug therapy in Chinese traditional medicine. J Clin Pharmacol, 2000, 40: 445-450.
    [58] Liu, Y. et al. The Essential Book of Traditional Chinese Medicine: Theory. Clinical Practice, Columbia University Press, 1988.
    [59] Yin, H. Fundamentals of Traditional Chinese Medicine, CBT China Book Trading, 1992.
    [60] Zhou J. Traditional Chinese Medicine: Molecular Structures, Natural Sources and Applications (2nd edn), Wiley & Sons, 2004.
    [61] Newman D.J. and Cragg G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70: 461–477.
    [62] http://www.tcmadvisory.com/2007/10-1.
    [63] Wee Yeow Chin and Hsuan Keng. An Illustrated Dictionary of Chinese Medicinal, Herbs CRCS Publications; ISBN: 0-916360-53-6, 1992.
    [64] James A Duke and Edward S Ayensu. Medicinal Plants of China, Reference Publications ISBN: 0-917256-204-4, 1985.
    [65] Robert H. Wiltrout and Ronald L. Hornung, Natural Products as Antitumor Agents: Direct Versus Indirect Mechanisms of Activity of Flavonoids1. Journal of the National Cancer Institute, 1988, Vol. 80, No. 4
    [66] Arts I.C. and Hollman P.C. Polyphenols and disease risk in epidemiologic studies. American Journal of Clinical Nutrition, 2005, 81: 317–325.
    [67] Basile A., Sorbo S., Lo′pez-Sa′ez, J.A. and Castaldo-Cobianchini R. Effects of seven pure flavonoids from mosses on germination and growth of Tortula muralis HEDW. (Bryophyta) and Raphanus sativus L. (Magnoliophyta), Phytochemistry, 2003, 62: 1145–1151.
    [68] Bohm, B.A. Introduction to Flavonoids. Harwood, Reading, 1998.
    [69] Cao G., Sofic E., Prior R.L. Antioxidant and prooxidant behaviour of flavonoids: structure–activity relationships. Free Radical Biology and Medicine, 1997, 22: 749– 760
    [70] Kumarasamy Y., Byres M., Cox P.J., Delazar A., Jaspars M. and Nahar L. et al. Isolation, structure elucidation, and biological activity of flavone 6-C-glycosides from Alliaria petiolata, Chemistry of Natural Compounds, 2004, 40: 122–128.
    [71] Lahlou M. Study of the molluscicidal activity of some phenolic compounds: structure–activity relationship. Pharmaceutical Biology, 2004, 42: 258–261.
    [72] Malikov V.M. and Yuldashev M.P, Phenolic compounds of plants of the Scutellaria L. genus Distribution, structure, and properties, Chemistry of Natural Compounds, 2002, 38: 473–519
    [73] Manach C., Mazur A. and Scalbert A. Polyphenols and prevention of cardiovascular diseases. Current Opinion in Lipidology, 2003, 16: 77–84.
    [74] Harborne J.B. and Baxter H. Handbook of Natural Flavonoids, 2 vols. Wiley, Chichester, 1999
    [75] Middleton E. and Kandaswami Jr. C. The impact of plant flavonoids on mammalian biology: implications for immunity, inflammation and cancer. In: Harborne, J.B. (Ed.), the Flavonoids: Advances in Research since 1986. Chapman & Hall, London, pp. 619–652, 1993.
    [76] Middleton E., Kandaswami Jr. C. and Theoharides T.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 2000, 52: 673–751.
    [77] Harborne J.B. and Williams C.A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55: 481–504.
    [78] Havsteen B.H. The biochemistry and medical significance of the flavonoids, Pharmacology and Therapeutics 96: 67–202, 2002.
    [79] Xu H.-X and Lee S.F. Activity of plant flavonoids against antibiotic-resistant bacteria, Phytotherapy Research, 2001, 15: 39–43.
    [80] Stefan Martens and Axel Mitho¨fer. Flavones and flavone synthases, Phytochemistry, 2005, 66: 2399–2407.
    [81] Hwang EI, Kaneko M, Ohnishi Y and Horinouchi S. Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl. Environ. Microbiol, 2003, 69 (5): 2699–706.
    [82] Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT and Lee MT. The antitumor activities of flavonoids, In Vivo, 2005, 19(5):895-909.
    [83] Ren W, Qiao Z, Wang H, Zhu L and Zhang L. Flavonoids: promising anticance agents. Med Res Rev., 2003, 23(4):519-34.
    [84] Thirman MJ, Gill HJ, Burnett RC, Mbangkollo D, McCabe NR and Kobayashi H et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N Engl J Med, 1993, 329 (13): 909–14.
    [85] Strick R, Strissel PL, Borgers S, Smith SL and Rowley JD. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci U S A, 2000, 97 (9): 4790–5.
    [86] Barjesteh van Waalwijk van Doorn-Khosrovani S, Janssen J, Maas LM, Godschalk RW, Nijhuis JG and van Schooten FJ. Dietary flavonoids induce M translocations in primary human CD34+ cells. Carcinogenesis, 2007, 28 (8): 1703–9.
    [87] Ross JA. Maternal diet and infant leukemia: a role for DNA topoisomerase II inhibitors? Int J Cancer, 1998, 11: 26–8.
    [88] Ross JA. Dietary flavonoids and the MLL gene: A pathway to infant leukemia? Proc Natl Acad Sci U S A, 2000, 97 (9): 4411–3.
    [89] Spector LG, Xie Y, Robison LL, Heerema NA, Hilden JM and Lange B et al Maternal diet and infant leukemia: the DNA topoisomerase II inhibitor hypothesis: a report from the children's oncology group. Cancer Epidemiol Biomarkers Prev, 2005, 14 (3): 651–5.
    [90] Esselen, Jessica Fritz, Melanie Hutter and Doris Marko. Delphinidin Modulates the DNA-Damaging Properties of Topoisomerase II Poisons. Chem. Res. Toxicol, 2009, 22 (3): 554–564.
    [91] Bandele O.J., Clawson S.J. and Osheroff N. Dietary polyphenols as topoisomerase II poisons: B-ring substituents determine the mechanism of enzyme-mediated DNA cleavage enhancement. Chemical Research in Toxicology, 2008, (6): 1253–1260.
    [92] Paul Knekt, Jorma Kumpulainen, Ritva J?rvinen, Harri Rissanen, Markku Heli?vaara and Antti Reunanen et al. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr, 2002, 76 (3): 560–8.
    [93] Kuntz S., Wenzel U. and Daniel H. Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines. European Journal of Nutrition, 2000, 38: 133–142.
    [94] Li Y, Fang H and Xu W. Recent advance in the research of flavonoids as anticancer agents, Mini Rev Med Chem., 2007, 7(7):663-78.
    [95] Sung-Won Min, Nam-Jae Kim, Nam-In Baek and Dong-Hyun Kim. Inhibitor effect of eupatilin and jaceosidin isolated from Artemisia princeps on carrageenan- induced inflammation in mice. Journal of ethnopharmacology, 2009, Vol. 125, Issue 3: 497-500.
    [96] Kim YD, Choi SC, Oh TY, Chun JS and Jun CD. Eupatilin inhibits T-cell activation by modulation of intracellular calcium flux and NF-kappaB and NF-AT activity. J Cell Biochem, 2009, 108(1):225-36.
    [97] Anna Giangaspero, Cristina Ponti, Federica Pollastro, Giorgia Del Favero, Roberto Della Loggia and Aurelia Tubaro et al. Topical Anti-inflammatory Activity of Eupatilin, A Lipophilic Flavonoid from Mountain Wormwood (Artemisia umbelliformis Lam.). J. Agric. Food Chem., 2009, 57 (17): 7726–7730.
    [98] Kang YJ, Jung UJ, Lee MK, Kim HJ, Jeon SM and Park YB et al. Eupatilin, isolated from Artemisia princeps Pampanini, enhances hepatic glucose metabolism and pancreatic beta-cell function in type 2 diabetic mice. Diabetes Res Clin Pract., 2008, 82(1):25-32.
    [99] Ji HY, Kim SY, Kim DK, Jeong JH and Lee HS, Effects of eupatilin and jaceosidin on cytochrome p450 enzyme activities in human liver microsomes, Molecules, 2010, 15(9):6466-75.
    [100] Koshihara Y, Neichi T, Murota S, Lao A, Fujimoto Y and Tatsuno T. Selective inhibition of 5-lipoxygenase by natural compounds isolated from Chinese plants, Artemisia rubripes Nakai. FEBS Lett, 1983, 158(1):41-4.
    [101] Kim DH, Na HK, Oh TY, Kim WB and Surh YJ, Eupatilin, a pharmacologically active flavone derived from Artemisia plants, induces cell cycle arrest in ras- transformed human mammary epithelial cells. Biochem Pharmacol., 2004, 68(6):1081-7.
    [102] Kim DH, Na HK, Oh TY, Shin CY and Surh YJ. Eupatilin inhibits proliferation of ras-transformed human breast epithelial (MCF-10A-ras) cells. J Environ Pathol Toxicol Oncol., 2005, 24(4):251-9.
    [103] Kim MJ, Kim DH, Na HK, Oh TY, Shin CY and Surh YJ. Eupatilin, a pharmacologically active flavone derived from Artemisia plants, induces apoptosis in human gastric cancer (AGS) cells. J Environ Pathol Toxicol Oncol, 2005, 24(4), 261-9.
    [104] Soyoung Lee, Myeungsu Lee and Sang-Hyun Kim, Eupatilin inhibits H (2) O (2) - induced apoptotic cell death through inhibition of mitogen-activated protein kinases and nuclear factor-kappaB. Food Chem Toxicol, 2008, Vol. 46 Issues 8, 2865-70.
    [105] Choi EJ, Oh HM, Wee H, Choi CS, Choi SC and Kim KH, et al. Eupatilin exhibits a novel anti-tumor activity through the induction of cell cycle arrest and differentiation of gastric carcinoma AGS cells. Differentiation, 2009, 77(4), 412-23
    [106] Nam SY, Kim JS, Kim JM, Lee JY, Kim N, Jung HC and Song IS. DA-6034, a derivative of flavonoid, prevents and ameliorates dextran sulfate sodium-induced colitis and inhibits colon carcinogenesis. Exp Biol Med (Maywood), 2008, 233(2):180-91.
    [107] Kim MJ, Kim DH, Na HK and Surh YJ, TNF-αinduces expression of urokinase- type plasminogen activator andβ-catenin activation through generation of ROS in human breast epithelial cells. Biochem Pharmacol., 2010, 80(12):2092-100.
    [108] Tsuneatsu Nagao, Fumiko Abe, Junei Kinjo, and Hikaru Okape, Antiproliferative Constituents in Plants 10 Flavones from the Leaves of Lantana montevidensis BRIQ, and Consideration of Structure–Activity Relationship, Biol. Pharm. Bull., 2002, 25(7): 875—879.
    [109] Hye Young Ji , Sung Yeon Kim , Dong Kyun Kim, Ji Hyun Jeong and Hye Suk Lee. Effects of Eupatilin and Jaceosidin on Cytochrome P450 Enzyme Activities in Human Liver Microsomes, Molecules, 2010, 15(9), 6466-6475
    [110] Kim MJ, Han JM, Jin YY, Baek NI, Bang MH, Chung HG, Choi MS, Lee KT, Sok DE, Jeong TS. In vitro antioxidant and anti-inflammatory activities of Jaceosidin from Artemisia princeps Pampanini cv. Sajabal, Arch Pharm Res, 2008, 31(4):429-37.
    [111] Woerdenbag HJ, Merfort I, Passreiter CM, Schmidt TJ, Willuhn G, van Uden W, Pras N, Kampinga HH, Konings AW. Cytotoxicity of flavonoids and sesquiterpen lactones from Arnica species against the GLC4 and the COLO 320 cell lines, Planta Med. 1994, 60(5):434-7.
    [112] Lee HG, Yu KA, Oh WK, Baeg TW, Oh HC, Ahn JS, Jang WC, Kim JW, Lim JS, Choe YK, Yoon DY. Inhibitory effect of jaceosidin isolated from Artemisiaargyi on the function of E6 and E7 oncoproteins of HPV 16. J Ethnopharmacol, 2005, 26, 98(3):339-43.
    [113] MIN A JEONG,KI WON LEE,DO-YOUNG YOON, and HYONG JOO LEEa. Jaceosidin, a Pharmacologically Active Flavone Derived from Artemisia argyi, Inhibits Phorbol-Ester-Induced Upregulation of COX-2 and MMP-9 by Blocking Phosphorylation of ERK-1 and -2 in Cultured Human Mammary Epithelial Cells, Ann. N.Y. Acad. Sci. 1095: 458–466 (2007).
    [114] Lv W, Sheng X, Chen T, Xu Q, Xie X, Jaceosidin induces apoptosis in human ovary cancer cells through mitochondrial pathway. J Biomed Biotechnol, 2008, 2008:394802.
    [115] Kim MJ, Kim DH, Lee KW, Yoon DY, Surh YJ, Jaceosidin induces apoptosis in ras-transformed human breast epithelial cells through generation of reactive oxygen species. Ann N Y Acad Sci. 2007, 1095: 483-95.
    [116] Das B. and Yadav J. S, Role of Biotechnology in Medicinal and Aromatic plants, I. A. Khan & A. Khanum, Eds; Ukaaz publications, India, 1998, Volume 1, 13.
    [117] Chabner, B. A. Cancer Chemotherapy: Principles and practice. Chabner, B. A., and Collins, J. A., Eds; Lippincott, Philadelphia, 1990, 1-15.
    [118] Nakanishi K, An historic prospective of Natural Products Chemistry, in Comprehensive Natural Products Chemistry, Volume 1; Pergamon, USA
    [119] Braun A. C, the Biology of Cancer, Page 29-31.
    [120] edited by Barton, Comprehensive Natural Products Chemistry, D. H. R.,
    [121] Shiff S. J. and Rigas B, Nature Medicine, 1999, 5(12), 1348
    [122] O’Neill M. J, and Lewis J A, Human medicinal agents from Plants, Kinghorn & M. F., Balandrin, Eds; Washington D.C.: American Chemical Society, 1993, 534: 48-55 & De Souza, N., ibid, 331-40.
    [123] Jardine J. S, Anticancer Agents Based on the Natural Product Models, (Eds. Cassay, J.M. and Douros, J.D) Academic Press, New York, 1980, pp 319-351.
    [124] Grabley S. and Thiericke R, Drug Discovery from Nature, Eds: Grabley, S. and Thiericke 1999, pp 1, Springer-Verlag, Berlin, Heidelberg, New York.
    [125] Ashis K Mukherjee, Sourav Basu, Nabanita Sarkar and Anil C Ghosh, Advances in Cancer Therapy with Plant Based Natural Products. Current Medicinal Chemistry, 2001, 8, 1467-1486
    [126] Pal D. C., Jain S. K. Tribal Medicine. Naya Prokash, Calcutta, India, 1998
    [127] Xianghui Ma and Zhiwen Wang, Anticancer Drug Discovery in the future: an evolutionary perspective. Drug Discovery Today, 2009, Volume 14, Numbers 23/24.
    [128] Barua N.C., Sharma J.C., Bordoloi M, Sharma R.P., Mathur R.K. and Ghosh, A.C, Some Less Known Medicinal Plants of Tribal Use in the Northeast Hill Region in India. In Medicinal Plants, Herbal Drugs and Rural Health, Editors: S.C. Pakrashi, R.N. Mukherjee, S. Mukhopadhyay, Publishers: Max Mueller Bhavan, Calcutta, India, 1996, 65.
    [129] Xiao X. Y, Combinatorial Synthesis of Natural Products Meeting, Dec. 15-16, 1997, IBC Conference, San Francisco, CA
    [1] Momna Hejmadi. Introduction to cancer biology, Momna Hejma&Ventus Publishing ApS, 2010, ISBN 978-87-7681-478-6
    [2] Laird PW. Canser epigentics, Human Molecular Genetics, 2005, 14 special No 1:R65-76.
    [3] Frank SA. Genetic predisposition to cancer: insights from population genetics. Nature review genetics, 2008, Vol 5(10), pp764-72
    [4] Hatina J. and Schulz WA. Cancer stem cells-Basic concepts, in www.els.net, (standard article), Encyclopedia of life science, 2008, John Wily&Sons
    [5] Vito Quaranta, MD. Introduction to Cancer Systems Biology, Vanderbilt Integrative Cancer Biology Center Nashville, Tennessee, 2009
    [6] Wolfgang Arthur Schulz. Molecular Biology of Human Cancers, Department of Urology and Center for Biological and Medical Research, Heinrich Heine University, Dusseldorf, Germany, 2005, Springer
    [7] S. Perwez Hussain, Curtis C. Harris. Molecular epidemiology and carcinogenesis: endogenous and exogenous carcinogens. Mutation Research, 2000, 462: 311–322.
    [8] National Cancer Institute (NCI).Types of Cancer. National Institutes of Health (NIH) 9000 Rockville Pike Bethesda, Maryland 20892, http://www.cancer.gov/
    [9] Marina Bacac and Ivan Stamenkovic, Metastatic Cancer Cell. Annual Review of Pathology, 2008, Vol. 3: 221-247.
    [10] Ann F. Chambers, Alan C. Groom and Ian C.MacDonald, Dissemination and Growth of Cancer Cells in Metastatic Sites, Nature review, 2002, Vol., 263-273
    [11] American Cancer Society: Cancer Facts and Figures 2010. Atlanta, Ga: American Cancer Society, 2010. Also available online (PDF - 1543 KB), Last accessed July 15, 2010.
    [12] Chow W-H, Dong LM, and Devesa SS: Epidemiology and risk factors for kidney cancer. Nature Reviews Urology, 2010, 7(5):245-257. [PubMed Abstract]
    [13] Alfons Lawen. Apoptosis—an introduction, BioEssays, 2003, 25:888–896
    [14] Song Iy Han, Yong-Seok Kim and Tae-Hyoung Kim. Role of apoptotic and necrotic cell death under physiologic Conditions, BMB reports, 2008, 41(1): 1-10.
    [15] J.R. Muppidi, J. Tschopp and R.M. Siegel, Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction, Immunity, 2004, 21: 461–465.
    [16] P.H. Krammer, R. Arnold, I. Lavrik, Life and death in peripheral T cells, Nat. Rev. Immunol, 2007, 7:532–542.
    [17] R.W. Johnstone, A.J. Frew, M.J. Smyth, The TRAIL apoptotic pathway in cancer onset progression and therapy, Nat. Rev. Cancer, 2008, 8: 782–798.
    [18] S. Orrenius, B. Zhivotovsky P. Nicotera, regulation of cell death: the calcium– apoptosis link, Nat. Rev. Mol. Cell Biol, 2003, 4: 552–565.
    [19] H.L. Roderick, S.J. Cook, Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival, Nat. Rev. Cancer, 2008, 8: 361–375.
    [20] D. Trachootham, J. Alexandre and P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?, Nat Rev. Drug Disc, 2009, 8: 579– 591
    [21] S.J. Riedl and G.S. Salvesen, the apoptosome: signalling platform of cell death, Nat. Rev. Mol. Cell Biol, 2007, 8: 405–413.
    [22] L.P. Billen, A. Shamas-Din and D.W. Andrews, Bid: a Bax-like BH3 protein, Oncogene, 2008, 1: 93–104.
    [23] B.P. Eckelman, G.S. Salvesen F.L. Scott, Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family, EMBO Rep, 2006, 7: 988–994.
    [24] L. Galluzzi, N. Larochette, N. Zamzami, G. Kroemer, Mitochondria as Therapeutic targets for cancer chemotherapy, Oncogene, 2006, 25: 4812–4830.
    [25] H. Wu, J. Tschopp, S.C. Lin, Smac mimetics and TNFalpha: a dangerous liaison? Cell, 2007, 131: 655–658
    [26] D. Hanahan, R.A. Weinberg, The hallmarks of cancer, Cell, 2000,100: 57–70.
    [27] S.W. Fesik, Promoting apoptosis as a strategy for cancer drug discovery, Nat Rev. Cancer, 2005, 5: 876–885.
    [28] Min Li-Weber. Targeting apoptosis pathways in cancer by Chinese medicine, Cancer Letters xxx, 2010, xxx–xxx
    [29] U. Testa, TRAIL/TRAIL-R in hematologic malignancies, J. Cell Biochem. , 2010, March 24 (Epub ahead of print).
    [30] S. Fulda, Apoptosis pathways and their therapeutic exploitation in pancreatic cancer, J. Cell Mol. Med, 2009, 13: 1221–1227.
    [31] Raymond W. Ruddon. Cancer Biology.4th ed, Oxford University Press, 2007.
    [32] Jacqualine Boultwood and Carrie Fidler, Molecular Analysis of Cancer, Humana Pres, New Jersey, 2001
    [33] Jesse D. Martinez, Michele Taylor Parker, Kimperly E. Fultz Natalia A. Ignatenko and Eugene W. Gerner, Molecular Biology of Cancer, Chapter one, Sixth Edition, Volume 5, Edited by Donald J. Abraham, John Wiley&Sons, Inc, 2003
    [34] Gray-Schopfer V., Wellbrock C. and Marais R. Melanoma biology and new targeted therapy. Nature, 2007, 445: 851–857.
    [35] Jody P. Ebanks, R. Randall Wickett and Raymond E. Boissy, Mechanisms Regulating Skin Pigmentation: The Rise and fall of Complexion Coloration. Int. J. Mol. Sci, 2009, 10: 4067-4087.
    [36] Booklet of National Cancer Institute (NCI). What is Melanoma? Part of the National Institutes of Health, NIH Publication No. 02–1563, Printed September, 2002.
    [37] Ling Yang, D. Maxwell Parkin and Jacques Ferlay, et al. Cancer Epidemiolgy, Biomarkers and Preventation, Cancer Epidemiol Biomarkers Prev, 2005, 14:243-250.
    [38a] Ferlay J, Bray F, Pisani P, and Parkin DM. Globocan.Cancer incidence, Mortality and prevalence worldwide, version 1.0 IARC Cancer Base No. 5. Lyon, France: IARC Press; 2001.
    [38b] Parkin DM, Whelan SL, Ferlay J, Raymond L and Young J. Cancer Incidence in Five Continents, Vol. VII IARC Scientific Publications No. 143, Lyon, France: IARC Press; 1997
    [39a] Makredes Maryanne, Hui Shiu Kee and Kimball Alexa, Melanoma in Hong Kong between 1983 and 2002: a decreasing trend in incidence observed in a complex socio-political and economic setting. Melanoma Research, 2010, Volume 20 - Issue 5: 427-430.
    [39b] http://www.cureresearch.com/m/melanoma/stats-country_printer.htm, Last updated: 24 March, 2005
    [40a] AIHW and AACR, AIHW National Mortality Database, Australia’s Health, 2004, AIHW [40b] Giuseppe Palmieri, Mariaelena Capone, Maria Libera Ascierto, Giusy Gentilcore, David F Stroncek and Milena Casula et al. Main roads to melanoma. Journal of Translational Medicine, 2009, 7:86.
    [41] Levi A. Garraway, Hans R. Widlund, Mark A. Rubin, Gad Getz, Aaron J. Berger, Sridhar Ramaswamy et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature , 2005, Vol 436/7
    [42] KSM Smalley and KT Flaherty. Integrating BRAF/MEK inhibitors into combination therapy for Melanoma, British Journal of Cancer, 2009, 100: 431– 435
    [43] Levy C, Khaled M and Fisher DE. MITF: master regulator of melanocyte Development and melanoma oncogene, Trends Mol Med, 2006, 12:406-14.
    [44] Bevona C, Goggins W and Quinn T. Cutaneous melanomas associated With nevi, Arch Dermatol, 2003, 139:1620-1624
    [45] Rasheed S, Mao Z, Chan JMC and Chan LS. Is melanoma a stem cell Tumor, Identification of neurogenic proteins in trans-differentiated Cells, J Transl Med, 2005, 3:14
    [46] Zabierowski SE and Herlyn M. Melanoma stem cells: the dark seed of melanoma. J Clin Oncol, 2008, 26:2890-2894.
    [47] Agar N and Young AR. Melanogenesis: a photoprotective response to DNA damage? Mutation Research, 2005, 571 (1–2): 121–32.
    [48] Andrzej Slominski, Desmond J. Tobin, Shigeki Shibahara and Jacobo Wortsman, Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation, Physiol Rev, 2004, 84:1155-1228.
    [49] Yoshimura K, Tsukamoto K, Okazaki M, Virador VM, Lei TC and Suzuki Y et al Effects of all-trans retinoic acid on melanogenesis in pigmented skin equivalents and monolayer culture of melanocytes. J Dermatol Sci, 2001, 27 Suppl 1:S68–S75.
    [50] Wankowicz-Kalinska A, Le Poole C, van den Wijngaard R, Storkus WJ and Das PK. Melanocyte-specific immune response in melanoma and vitiligo: two faces of the same coin? Pigment Cell Res, 2003, 16: 254–260.
    [51] Westbroek W, Lambert J and Naeyaert JM. The dilute locus and Griscelli syndrome: gateways towards a better understanding of melanosome transport. Pigment Cell Res, 2001, 14: 320–327.
    [52] Widlund HR and Fisher DE. Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene, 2003, 22: 3035–3041.
    [53] Sturm RA, Teasdale RD and Box NF. Human pigmentation genes: identification, structure and consequences of polymorphic variation. Gene, 2001, 277: 49–62.
    [54] Lucia B. Jilaveanu, Saadia A. Aziz and Harriet M. Kluger, Chemotherapy and biologic therapies for melanoma: do they work? Clinics in Dermatology, 2009, 27: 614–625
    [55] Kyaw Minn Hsan, Chun-Chieh Chen and Lie-Fen Shyur. Current Research and Development of Chemotherapeutic Agents for Melanoma, Cancers, 2010, 2: 397-419.
    [56] Azadeh Orouji, Sergij Goerdt and Jochen Utikal, Systemic Therapy of Non- Resectable Metastatic Melanoma, Cancers, 2010, 2: 955-969.
    [57] Svetromir N. Markovic, Lori A. Erickson, Ravid. Rao, Roger H. Weenig, Barbara A. Pockaj and Aditya Bardia et al. Malignant Melanoma in the 21st Century, Part 2:Staging, Prognosis, and Treatment Mayo Clin Proc, 2007, 82(4):490-513.
    [58] Philip P.A., Carmichael J., Tonkin K., Ganesan T.A. and Harris A.L. A phase II study of high-dose hydroxyurea and dacarbazine (DTIC) in the treatment of metastatic malignant melanoma, Eur. J. Cancer, 1994, 30A: 1027–1029.
    [59] Hill G. J., Metter G.E., Krementz E.T., Fletcher W.S., Golomb F.M., Ramirez G. and Grage S.E. DTIC and combination therapy for melanoma. II. Escalating schedules of DTIC with BCNU, CCNU, and vincristine. Cancer Treat Rep., 1979, 63: 1989–1992.
    [60] Bajetta E., Vecchio M.D., Bernard-Marty C., Vitali M., Buzzoni R. and Rixe O. Metastatic melanoma: chemotherapy. Semin Oncol, 2002, 29: 427–445.
    [61] Bleehen N.M., Newlands E.S., Lee, S.M., Thatcher N., Selby P. and Calvert A.H. Cancer Research Campaign phase II trial of temozolomide in metastatic melanoma. J. Clin. Oncol, 1995, 13: 910–913.
    [62] Middleton M.R., Grob J.J., Aaronson N., Fierlbeck G., Tilgen, W. and Seiter S. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J. Clin. Oncol, 2000, 18: 158–166.
    [63] Durando X., Thivat E., D'Incan M., Sinsard A., Madelmont J.C. and Chollet P. Long-term disease-free survival in advanced melanomas treated with nitrosoureas: mechanisms and new perspectives. BMC Cancer, 2005, 5: 147.
    [64] Khayat D., Giroux B., Berille J., Cour V., Gerard B and Sarkany M Fotemustine in the treatment of brain primary tumors and metastases. Cancer Invest, 1994, 12: 414–420.
    [65] Jacquillat C., Khayat D., Banzet P., Weil M., Fumoleau P. and Avril M.F. Final report of the French multicenter phase II study of the nitrosourea fotemustine in 153 evaluable patients with disseminated malignant melanoma including patients with cerebral metastases. Cancer, 1990, 66: 1873–1878.
    [66] Atkins M.B. The treatment of metastatic melanoma with chemotherapy and biologics, Curr Opin Oncol., 1997, 9: 205–213.
    [67] Glover D., Glick J.H., Weiler C., Fox K. and Guerry D. WR-2721 and high-dose cisplatin: an active combination in the treatment of metastatic melanoma. J. Clin. Oncol, 1987, 5: 574–578.
    [68] Evans L.M., Casper E.S. and Rosenbluth, R. Phase II trial of carboplatin in advanced malignant melanoma. Cancer Treat Rep., 1987, 71: 171–172.
    [69] Olver I., Green M., Peters W., Zimet A., Toner G. and Bishop J, A phase II trial of zeniplatin in metastatic melanoma, Am. J. Clin. Oncol, 1995, 18: 56–58.
    [70] Abal M., Andreu J.M. and Barasoain I. Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Targets, 2003, 3: 193–203.
    [71] Bedikian A.Y., Plager C., Papadopoulos N., Eton O., Ellerhorst J. and Smith T Phase II evaluation of paclitaxel by short intravenous infusion in metastatic melanoma, Melanoma Res., 2004, 14: 63–66.
    [72] Quagliana J.M., Stephens R.L., Baker L.H. and Costanzi J.J. Vindesine in patients with metastatic malignant melanoma: a Southwest Oncology Group studies J. Clin. Oncol, 1984, 2: 316–319.
    [73] John Koo and Rishi Desai, Raditional Chinese medicine in Dermatology, Dermatologic Therapy, 2003, Vol. 16: 98–105
    [74] Liu, Y. The Essential Book of Traditional Chinese Medicine: Theory, Clinical Practice, Columbia University Press, 1988.
    [75] Yin, H. Fundamentals of Traditional Chinese Medicine, CBT China Book Trading, 1992
    [76] Zhou, J. Traditional Chinese Medicine: Molecular Structures, Natural Sources and Applications (2nd edn), Wiley & Sons, 2004.
    [77] Abelson, P.H. Medicine from plants. Science, 1990, 247: 513.
    [78] Wink, M. Bioprospecting: the search for bioactive lead structures from nature. I Medical Plant Biotechnology: From Basic Research to Industrial Applications (Vol. 2) (Kayser, O. and Quax, W.J., Eds), 2007, pp. 97–116.
    [79] Thomas Efferth, Paul C.H. Li, Venkata S, Badireenath Konkimalla and Bernd Kaina, From traditional Chinese medicine to rational cancer therapy TREND Molecular Medicine, 2007, Vol.13 No.8
    [80] S. J. Chatterjee, P. Ovadje, M.Mousa, C. Hamm and S. Pandey, The Efficacy of Dandelion Root Extract in Inducing Apoptosis in Drug-Resistant HumanMelanoma Cells. Evidence-Based Complementary and Alternative Medicine, 2010, Volume 2011, Article ID 129045, 11 pages
    [81] Ming Chen, Amy E. Rose and Nicole Doudican, et al. Celastrol Synergistically Enhances Temozolomide Cytotoxicity in Melanoma Cells. Mol Cancer Res, 2009, 7:1946-1953.
    [82] Thomas G. Berger, Detlef Dieckmann,Thomas Efferth, Erwin S. Schultz, Jens-Oliver Funk andAndreas Baur et al. Artesunate in the treatment of metastatic uveal melanoma-first experiences. Oncology Reports, 2005, 14: 1599-1603.
    [83] Wang L, Duan H, Wang Y, Liu K, Jiang P, Qu Z, Yagasaki K and Zhang G. Inhibitory effects of Lang-du extract on the in vitro and in vivo growth of melanoma cells and its molecular mechanisms of action. Cytotechnology, 2010, 62(4):357-66.
    [84] Xu X, Liu Y, Wang L, He J, Zhang H and Chen X et al. Gambogic acid induces apoptosis by regulating the expression of Bax and Bcl-2 and enhancing caspase-3 activity in human malignant melanoma A375 cells. Int J Dermatol., 2009,) 48(2):186-92.
    [85] Liu XY, Fang H, Yang ZG, Wang XY, Ruan LM and Fang DR et al. Matrine inhibits invasiveness and metastasis of human malignant melanoma cell line A375 in vitro. Int J Dermatol., 2008, 47(5):448-56.
    [86] Gu Xu, Cheng LG and Xia WJ, The effect of Angelica sinensis on adhesion, invasion, migration and metastasis of melanoma cells, Zhong Yao Cai., 2007, 30(3):302-5.
    [87] Chen PF, Liu LM, Chen Z, Lin SY, Song WX and Xu YF. Effects of ethanol extracts of Panax notoginseng on liver metastasis of B16 melanoma grafted in mice. Zhong Xi Yi Jie He Xue Bao, 2006, 4(5):500-3. [Article in Chinese]
    [88] Xu X, Wang S, Chen W and Chen G. Effects of taohong siwu decoction II in the chick chorioallantoic membrane (CAM) assay and on B16 melanoma in mice and endothelial cells ECV304 proliferation, J Tradit Chin Med., 2006, 26(1):63-7.
    [89] Chen LG, Chang WL, Lee CJ, Lee LT, Shih CM and Wang CC. Melanogenesis inhibition by gallotannins from Chinese galls in B16 mouse melanoma cells. Biol Pharm Bull., 2009, 32(8):1447-52.
    [90] Guan S, Su W, Wang N, Li P and Wang Y. Effects of radix polygoni multiflori components on tyrosinase activity and melanogenesis, J Enzyme Inhib Med Chem., 2008, 23(2):252-5.
    [91] Deng Y, Yang L and an SL. Effect of Tribulus terrestris L decoction of different concentrations on tyrosinase activity and the proliferation of melanocytes, Di Yi Jun Yi Da Xue Xue Bao., 2002, 22(11):1017-9. [Article in Chinese]
    [92] Kawaii S, Tomono Y, Katase E, Ogawa K and Yano M. Antiproliferative activity of flavonoids on several cancer cell lines. Biosci Biotechnol Biochem, 1999, 63:896–899.
    [93] Miyagi Y, Om AS, Chee KM and Bennink MR. Inhibition of azoxymethane-induced colon cancer by orange juice. Nutr Cancer, 2000, 36:224–249.
    [94] Caltagirone S, Rossi C, Poggi A, Ranelletti FO, Natali PG and Brunetti M et al. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer, 2000, 87:595–600.
    [95] Ohta T, Nakatsugi S, Watanabe K, Kawamori T, Ishikawa F and Morotomi M et al. Inhibitory effects of bifidobacterium-fermented soy milk on 2-amino-1-methyl-6-phenylimidaz[4,5-b]pyridine-induced rat mammary carcinogenesis, with a partial contribution of its component isoflavones. Carcinogenesis, 2000, 21:937–941.
    [96] Afaq F, Adhami VM, Ahmad N and Mukhtar H. Botanical antioxidants for chemoprevention of photocarcinogenesis, Front Biosci., 2002, 7:d784-92.
    [97] Li F, Awale S, Tezuka Y and Kadota S. Cytotoxicity of constituents from Mexican propolis against a panel of six different cancer cell lines, Nat Prod Commun., 2010, 5(10):1601-6.
    [98] Monserrat JP, Chabot GG, Hamon L, Quentin L, Scherman D and Jaouen G. et al. Synthesis of cytotoxic ferrocenyl flavones via a ferricenium-mediated 1,6-oxidative cyclization. Chem Commun (Camb), 2010, 46(28):5145-7.
    [99] Said A, Tundis R, Hawas UW, El-Kousy SM, Rashed K and Menichini F. et al. In vitro antioxidant and antiproliferative activities of flavonoids from Ailanthus excelsa (Roxb) (Simaroubaceae) leaves, Z Naturforsch C., 2010, 65(3-4):180-6.
    [100] Arung ET, Shimizu K, Tanaka H and Kondo R, 3-Prenyl luteolin, a new prenylated flavone with melanin biosynthesis inhibitory activity from wood of Artocarpus heterophyllus. Fitoterapia, 2010, 81(6):640-3.
    [101] Alvarez N, Vicente V and Martínez C, Synergistic effect of diosmin and interferon-alpha on metastatic pulmonary melanoma, Cancer Biother Radiopharm., 2009, 24(3):347-52.
    [102] Bonesi M, Tundis R, Deguin B, Loizzo MR, Menichini F and Tillequin F. et al. In vitro biological evaluation of novel 7-O-dialkylaminoalkyl cytotoxic pectolinarigenin derivatives against a panel of human cancer cell lines, Bioorg Med Chem Lett., 2008, 18(20):5431-4.
    [103] Nitoda T, Isobe T and Kubo I, Effects of phenolic compounds isolated from Rabdosia japonica on B16-F10 melanoma cells. Phytother Res., 2008, 22(7):867-72.
    [104] Piantelli M, Rossi C, Iezzi M, La Sorda R, Iacobelli S and Alberti S et al. Flavonoids inhibit melanoma lung metastasis by impairing tumor cells endothelium interactions. J Cell Physiol., 2006, 207(1):23-9.
    [105] Martínez C, Vicente V, Yá?ez J, Alcaraz M, Castells MT and Canteras M et al. The effect of the flavonoid diosmin, grape seed extract and red wine on the pulmonary metastatic B16F10 melanoma, Histol Histopathol., 2005, 20(4):1121-9.
    [106] Tundis R, Deguin B, Loizzo MR, Bonesi M, Statti GA and Tillequin F et al. Potential antitumor agents: flavones and their derivatives from Linaria reflexa Desf. Bioorg Med Chem Lett., 2005, 15(21):4757-60.
    [107] Martínez Conesa C, Vicente Ortega V, Yá?ez Gascón MJ, Alcaraz Ba?os M, Canteras Jordana M and Benavente-García O et al. Treatment of metastatic melanoma B16F10 by the flavonoids tangeretin, rutin, and diosmin. J Agric Food Chem., 2005, 53(17):6791-7.
    [108] HorváthováK, Chalupa I, SebováL, TóthováD and VachálkováA. Protective effect of quercetin and luteolin in human melanoma HMB-2 cells, Mutat Res. , 2005, 565(2):105-12.
    [109] Adams M, Efferth T and Bauer R, Activity-guided isolation of scopoletin and isoscopoletin, the inhibitory active principles towards CCRF-CEM leukaemia cells and multi-drug resistant CEM/ADR5000 cells, from Artemisia argyi, Planta Med., 2006, 72(9):862-4.
    [110] F. Pastorino, C. Brignole, D. Di Paolo, B. Nico, A. Pezzolo, D. Marimpietri, G. Pagnan, F. Piccardi, N. Cilli, R. Longhi, D. Ribatti, A. Corti, T.M. Allen, M. Ponzoni, Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy, Cancer Res. 66 (2006) 10073–10082.
    [111] Yi-fei Zhang, Jian-cheng Wang, Dong-yan Bian, Xuan Zhang and Qiang Zhang, Targeted delivery of RGD-modified liposomes encapsulating both combretastatin.A-4 and doxorubicin for tumor therapy: In vitro and in vivo studies. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74: 467–473
    [112] Del Prete SA, Maurer LH and O'Donnell J, Combination chemotherapy with cisplatin, carmustine, dacarbazine, and tamoxifen in metastatic melanoma, Cancer Treat Rep , 1984, 68:1403-5.
    [113] McClay EF, Mastrangelo MJ and Bellet RE, Combination chemotherapy and hormonal therapy in the treatment of malignant melanoma, Cancer Treat Rep, 1987, 71:465-9.
    [114] McClay EF and McClay ME, Tamoxifen: is it useful in the treatment of patients with metastatic melanoma? J Clin Oncol, 1994, 12:617-26.
    [115] Rusthoven JJ, Quirt IC, Iscoe NA, Randomized, double-blind, placebo-controlled trial comparing the response rates of carmustine, dacarbazine, and cisplatin with and without tamoxifen in patients with metastatic melanoma. National Cancer Institute of Canada Clinical Trials Group, J Clin Oncol, 1996, 14:2083-90.
    [116] Pyrhonen S, Hahka-Kemppinen M and Muhonen T, A promising interferon plus four-drug chemotherapy regimen for metastatic melanoma. J Clin Oncol, 1992, 10:1919-26.
    [117] Saxman SB, Meyers ML and Chapman PB, A Phase III multicenter randomized trial of DTIC, cisplatin, BCNU and tamoxifen versus DTIC alone in patients with metastatic melanoma., Proceedings of the American Society of Clinical Oncology, 1999, pp 2068 (Abstract)
    [118] Agarwala SS, Glaspy J, O'Day SJ, Mitchell M, Gutheil J and Whitman E. et al. Results from a randomized phase III study comparing combined treatment with histamine dihydrochloride plus interleukin-2 versus interleukin-2 alone in patients with metastatic melanoma. J Clin Oncol, 2002, 20: 125-33.
    [119] Maxim Pharmaceutical Phase 3 Trial for Advanced Malignant Melanoma Fails to Meet Primary Endpoint, 2004.
    [120] Northern California Melanoma Center San Francisco, Therapy of Metastatic Melanoma - (Stage IV), 2007
    [121] Chapman PB, Einhorn LH and Meyers ML. Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J Clin Oncol, 1999, 17:2745–2751.
    [122] Legha SS, Ring S and Papadopoulos N, A prospective evaluation of a triple-drug regimen containing cisplatin, vinblastine, and dacarbazine (CVD) for metastatic melanoma, Cancer, 1989, 64:2024–2029.
    [123] Legha SS, Ring S and Bedikian A. Treatment of metastatic melanoma with combined chemotherapy containing cisplatin, vinblastine and dacarbazine (CVD) and biotherapy using interleukin-2 and interferon-alpha. Ann Oncol, 1996, 7:827–835.
    [124] Hodi FS, Soiffer RJ and Clark J, Phase II study of paclitaxel and carboplatin for malignant melanoma, Am J Clin Oncol, 2002, 25:283–286.
    [125] Agarwala SS, Keilholz U and Hogg D. Randomized phase III study of paclitaxel plus carboplatin with or without sorafenib as second-line treatment in patients with advanced melanoma (abstract 8510). J Clin Oncol, 2007, 25(18S):474s.
    [126] Shailender Bhatia, Scott S. Tykodi and John A. Thompson, Treatment of Metastatic Melanoma: An Overview. Oncology (Williston Park), 2009, 23(6): 488–496.
    [127] Egberts F, Gutzmer R, Ugurel S, Becker JC, Trefzer U and Degen A. Sorafenib and pegylated interferon-{alpha} 2b in advanced metastatic melanoma: a multicenter phase II DeCOG trial. , 2011, Jan 10. [Epub ahead of print]
    [128] Yu JS and Kim AK, Effect of combination of taurine and azelaic acid on antimelanogenesis in murine melanoma cells, 2010, 17 Suppl 1:S45.
    [129] Valero T, Steele S, Neumüller K, Bracher A, Niederleithner H and Pehamberger H. Combination of dacarbazine and dimethylfumarate efficiently reduces melanoma lymph node metastasis. J Invest Dermatol, 2010, 130(4):1087-94. Epub 2009 Nov 26.
    [130] Jazowiecka-Rakus J, Jarosz M and Szala S, Combination of vasostatin gene therapy with cyclophosphamide inhibits growth of B16(F10) melanoma tumours. Acta Biochim Pol., 2006, 53(1):199-202.
    [131] Molhoek KR, Brautigan DL and Slingluff CL Jr, Synergistic inhibition of human melanoma proliferation by combination treatment with B-Raf inhibitor BAY43-9006 and mTOR inhibitor Rapamycin, J Transl Med., 2005, 3:39.
    [1] Rosa Tundis, Brigitte Deguin, Monica R. Loizzo, Marco Bonesi, Giancarlo A. Statti,Francs Tillequinb and Francesco Menichinia. Potential antitumor agents: Flavones and their derivatives from Linaria reflexa Desf. Bioorganic & Medicinal Chemistry Letters, 2005, 15: 4757–4760.
    [2] Mauro Piantelli, Cosmo Rossi, Manuela Iezzi, Rossana La Sorda, Stefano Iacobelli, Saverio Alberti and Pier Giorgio Natali. Flavonoids Inhibit Melanoma Lung Metastasis by Impairing Tumor Cells Endothelium Interactions J. Cellular Physiology, 2006, 207:23–29.
    [3] Teruhiko Nitoda, Takahiko Isobe and Isao Kubo, Effects of Phenolic Compounds Isolated from Rabdosia japonica on B16-F10 Melanoma Cells Phytother, Res. 2008, 22: 867–872.
    [4] Katar′?na Horv′athov′a, Ivan Chalupa, L′?viaˇSebov′a, Darina T′othov′a and Anna Vach′alkov′a. Protective effect of quercetin and luteolin in human melanoma HMB-2 cells Mutation Research, 2005, 565:105–112.
    [5] Kim MJ, Kim DH, Na HK, Oh TY, Shin CY and Surh Ph DPYJ, Eupatilin, a pharmacologically active flavone derived from Artemisia plants, induces apoptosis in human gastric cancer (AGS) cells. J Environ Pathol Toxicol Oncol, 2005b, 24: 261-269
    [6] Kim DH, Na HK, Oh TY, Shin CY and Surh YJ. Eupatilin inhibits proliferation of ras-transformed human breast epithelial (MCF-10A-ras) cells. J Environ Pathol Toxicol Oncol, 2005a, 24: 251-259
    [7] Lee S, Lee M and Kim SH. Eupatilin inhibits H (2) O (2)-induced apoptotic cell death through inhibition of mitogen-activated protein kinases and nuclear factor-kappaB. Food Chem Toxicol, 2008, 46: 2865-2870
    [8] Nam SY, Kim JS, Kim JM, Lee JY, Kim N, Jung HC and Song IS. DA-6034, a derivative of flavonoid, prevents and ameliorates dextran sulfate sodium-induced colitis and inhibits colon carcinogenesis. Exp Biol Med (Maywood), 2008, 233: 180-191
    [9] Seo HJ and Surh YJ, Eupatilin, a pharmacologically active flavone derived from Artemisia plants, induces apoptosis in human promyelocytic leukemia cells. Mutat Res, 2001, 496: 191-198
    [10] Koshihara Y, Neichi T, Murota S, Lao A, Fujimoto Y and Tatsuno T. Selective inhibition of 5-lipoxygenase by natural compounds isolated from Chinese plants, Artemisia rubripes Nakai. FEBS Lett, 1983, 158: 41-44
    [11] Schulze-Osthoff K, Walczak H, Droge W and Krammer PH. Cell nucleus and DNA fragmentation are not required for apoptosis. J Cell Biol, 1994, 127: 15-20
    [12] Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature, 1980, 284: 555-556.
    [13] Yiannis A. Ioannou and Fannie W.Chen, Quantitation of DNA fragmentation in apoptosis. Nucleic Acids Research, 1996, Vol. 24, No. 5
    [14] Zhang JH and Xu M. DNA fragmentation in apoptosis, Cell Res, 2000, 10: 205-211
    [15] Yu J, Guo QL, You QD, Zhao L, Gu HY, Yang Y, Zhang HW, Tan Z, Wang X. Gambogic acid-induced G2/M phase cell-cycle arrest via disturbing CDK7-mediated phosphorylation of CDC2/p34 in human gastric carcinoma BGC-823 cells. Carcinogenesis, 2007, 28: 632-638
    [16] Wang W, Heideman L, Chung CS, Pelling JC, Koehler KJ and Birt DF, Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines. Mol Carcinog, 2000, 28: 102-110
    [17] Priyadarsini RV, Murugan RS, Maitreyi S, Ramalingam K, Karunagaran D and Nagini S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-kappaB inhibition. Eur J Pharmacol, 2008, 649: 84-91
    [18] Choi EJ, Oh HM, Wee H, Choi CS, Choi SC, Kim KH, Han WC, Oh TY, Kim SH and Jun CD. Eupatilin exhibits a novel anti-tumor activity through the induction of cell cycle arrest and differentiation of gastric carcinoma AGS cells. Differentiation, 2009, 77: 412-423
    [19] Auyeung KK and KO JK, Novel herbal flavonoids promote apoptosis but differentially induce cell cycle arrest in human colon cancer cell. Invest New Drugs, 2010, 28: 1-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700