用户名: 密码: 验证码:
煤、生物质及其混合物的快速热解及过程中氮的迁移
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热解不仅是热化学转化的一种直接方法,也是燃烧和气化过程的重要阶段。在气流床气化炉中,气化原料喷入气化炉后首先发生快速热解,由于气流床气化炉内反应温度高,物料的平均停留时间较短,快速热解产物的分布和焦的气化特性是影响后续气化反应的重要条件。尤其对转化速率较慢的含氮化合物,快速热解中氮的迁移对最终含氮污染物的形成影响很大。因此,对煤和生物质的快速热解产物分布、快速热解焦的气化特性和氮元素的迁移进行研究对煤和生物质的高效清洁利用具有重要意义。
     本文将高频感应加热方法用于热解实验,设计了一种独特的高频炉快速热解装置,利用该装置对煤和生物质的单独快速热解以及煤/生物质共快速热解(600~1200℃)时气固相产物的分布、焦的结构和气化特性进行了研究。同时考察了煤、生物质单独快速热解和共快速热解过程中氮元素的迁移特性,应用量子化学方法和模型化合物快速热解实验相结合的方法对煤和生物质快速热解时氮的逸出机理进行了分析。主要内容如下:
     (1)对内蒙南露天褐煤、神府烟煤和遵义无烟煤快速热解时产物的分布进行了考察。结果表明,煤快速热解相比慢速热解能析出更多的挥发分。热解温度的升高能显著提高热解气产率,降低焦产率。煤阶的升高使焦产率上升,热解气产率降低。热解气主要成分为H2和CO,其次为CH4和CO2,还有少量气态烃(C2~C3)。热解温度的升高使H2和CO产率升高,CO2产率下降,CH4等气态烃大多呈先上升后下降的趋势。热解气低位热值均随热解温度的升高逐步下降。
     (2)分析了热解条件对煤快速热解焦理化结构及最终气化特性的影响。结果表明,褐煤焦具有粗糙的表面和丰富的孔隙结构;烟煤焦在热解时发生了严重的熔融,形成了光滑的表面,但焦的内部孔隙结构发达;无烟煤焦仅在表面可见少量裂缝。因此,随煤阶的升高,孔隙率和比表面积降低,而煤焦有序化程度则逐步升高,导致气化反应活性下降。褐煤和烟煤的气化反应速率在气化时先升高后迅速下降,导致随机孔模型的拟合效果较差,而变换后的修正随机孔模型能得到较好的拟合效果。
     (3)对煤快速热解时氮的迁移进行了考察。结果表明,大部分氮保留在焦中,N2是主要的气相含氮产物,NH3是主要的含氮污染物,HCN的产率较低。HCN和NH3均可以在热解的初始阶段直接生成。利用量子化学方法和模型化合物快速热解实验对煤中氮的逸出机理进行分析时发现,N-6在快速热解时会倾向于以-CN基的形式逸出并产生较多的HCN, N-5在快速热解时会倾向于以-NH基的形式逸出并主要转化为NH3, N-Q在快速热解的剧烈热冲击条件下可能会以N自由基的形式逸出并转化为NH3。HCN受二次反应程度的影响最为明显。
     (4)对稻草、树叶和木屑快速热解产物分布进行了考察。生物质有机质转化率顺序为松木屑>稻草>梧桐树叶。快速热解焦的产率较低,因此灰分的含量在一定程度影响了焦的产率。生物质有机质向热解气的转化率可达到80%以上。热解气主要成分为CO和H2,二者的产率均随着热解温度的升高而升高;CH4等烃类的产率则先升高后下降;高温条件下CO2的产率很低。随热解温度的升高,热解气的低位热值先升高后下降。
     (5)对三种生物质快速热解焦的结构及气化特性进行了考察。结果表明,热解温度的升高使生物质焦的有序化程度升高,并导致气化活性的下降。稻草和梧桐树叶快速热解焦基本保持了原始结构,而松木屑发生软化和熔缩,导致孔隙结构的破坏,进而导致其气化反应活性的显著下降。随机孔模型在多数情况下能较好地描述生物质焦的气化反应动力学。但当气化反应速率在高转化率范围内仍较高或者急剧下降时,修正随机孔模型的的拟合效果更好。
     (6)对生物质快速热解时氮的迁移进行了考察。生物质快速热解时残留在焦中的氮很少,氮主要转化为了N2,热解温度的提高会降低含氮污染物的生成,促使更多的氮转化为N2。蛋白质、氨基酸和含氮碱基快速热解时,含氮污染物以NH3为主。而三种农林生物质快速热解时HCN的产率远高于NH3,且HCN的产率随生物质木质素含量的升高而升高。木质素构成的微腔结构可能会在热解初期导致蛋白质、氨基酸等含氮物质与生物质有机组分发生缩聚反应而生成含氮杂环,并导致HCN的大量生成。
     (7)高频炉在煤/生物质共热解过程中既能保证样品较好的接触,又能使其达到高的升温速率,在这种条件下共热解能发生明显的协同作用,导致焦产率的降低,热解气产率的升高。生物质的堆积密度及其在热解过程中碳骨架的变化是影响协同作用的重要因素。生物质焦与煤焦共气化时气化活性有所升高,而生物质与煤共热解所得焦的活性并未明显提高,生物质与煤共热解时发生的相互粘附及研磨时孔隙结构的阻塞是导致上述现象的原因。这两个因素又导致共热解焦具有较高的均一性,使其气化反应速率随转化率的变化较为平缓。
     (8)对生物质与煤共快速热解时氮的迁移进行了研究。生物质与煤混合样品的堆积密度以及生物质碳骨架在热解过程中的坍塌特性,是影响混合样品升温速率及其最终含氮产物分布的重要条件。生物质与烟煤共热解能明显降低焦-N产率,提高挥发分-N的产率,降低(NH3+HCN)-N的产率。NH3-N的产率的实验值在所有条件下均低于叠加值。HCN-N产率的实验值在高温条件下均低于叠加值,但在600~700℃条件下,HCN-N的产率却明显提高。
Pyrolysis is not only one of the thermal conversion method, but also an important process in combustion and gasification. In the entrained-flow gasifier, rapid pyrolysis happens immediately when the fuels are injected into the gasifier. As reaction temperature in entrained-flow gasifier is very high and average residence time of reactants is very short, product distribution of the rapid pyrolysis and gasification characteristics of the pyrolysis char are important factors of the subsequent gasification reactions. Especially for the nitrogen containing compounds whose conversion rates are relatively low, thus nitrogen evolution during rapid pyrolysis greatly affects the yields of the final nitrogen pollutants. Therefore, investigation on product distribution and nitrogen evolution during rapid pyrolysis of coal and biomass and gasification characteristics of the derived char has important significances for clean and efficient utilization of coal and biomass.
     In this study, high-frequency inductive heating method was employed to the pyrolysis experiments, and a high-frequency furnace which has innovation significance was designed. Yields of gaseous and solid products during rapid pyrolysis (600~1200℃) of coal, biomass, and their blends, structure and gasification characteristics of the residual char were investigated. Nitrogen evolution during individual pyrolysis and co-pyrolysis of biomass and coal was also studied. Nitrogen release mechanisms during rapid pyrolysis were analyzed by integrating the results of quantum chemical calculation and nitrogen containing model compound pyrolysis. Main contents and results are summarized as the follows:
     (1) Product distributions during rapid pyrolysis of the Inner Mongolia Nanlutian lignite, Shenfu bituminous, and Zunyi anthracite were investigated. Results show that, more volatiles released under rapid pyrolysis than slow pyrolysis. The increasing temperature increased the yields of gas but decreased the char yields. The increasing coal rank decreased the gas yields and increased the char yields. H2 and CO were the main components of the pyrolysis gas, followed by CH4 and CO2, some gaseous hydrocarbons (C2~C3) were also formed. As the temperature increased, yields of H2 and CO increased, yields of CO2 decreased, and yields of CH4 and the other gaseous hydrocarbons mainly increased first and deceased then. Low heating values of all the pyrolysis gas decreased with the increasing temperature.
     (2) Effects of pyrolysis conditions on morphologic and instinct chemical structures and further on gasification characteristics of the char derived from coal pyrolysis were studied. Lignite char presents a very coarse surface and rich porosity. Serious melting happened to the bituminous char which resulted in smooth surfaces but rich internal porosity. Just some gaps formed on the anthracite char. Thus as the coal rank increased, specific areas of the char decrease, graphitization degrees of the char also increased with the coal rank. Therefore, gasification reactivity decreased with the increasing coal rank. During gasification of lignite char and bituminous char, reaction rates increased first and decreased sharply then, which resulted in unsatisfied fitting results of random pore model (RPM). But the shifted modified random pore model (S-M-RPM) could obtain very good fitting results.
     (3) Nitrogen evolution during rapid pyrolysis of the three coals was investigated. Most of the fuel-N was retained in char after pyrolysis, N2 was the main gaseous nitrogen product, and NH3 was the main nitrogen pollutant. Both HCN and NH3 could be formed in the primary stage of rapid pyrolysis. With the results of quantum chemical calculations and pyrolysis of nitrogen-containing model compound, it was found that N-6 tended to release as -CN radicals and formed HCN mainly, N-5 tended to release as -NH radicals and formed NH3 mainly, and N-Q tended to release as N radicals under the drastic heat impact and formed NH3 mainly. HCN has the highest sensitivity to the secondary reactions.
     (4) Product distributions under rapid pyrolysis of rice straw, chinar leaves, and pine sawdust were investigated. During pyrolysis order the organic matter conversions are pine sawdust>rice straw>chinar leaves. Conversion of the organic matters to gas could reach as high as 80%. Char yields were very low after rapid pyrolysis of biomass at high temperature, therefore ash contents had important affected on the char yields. CO and H2 were the main components of the pyrolysis gas, which increased with the increasing temperature. As the temperature increased, yields of CH4 increased first and decreased then, those of CO2 decreased gradually to a very low value in the high temperature. Low heating values of the pyrolysis gas increased first and decreased then.
     (5) Morphologic and instinct chemical structures of the biomass char and their effect on the gasification characteristics were studied. Graphitization degrees of the char increased with the increasing pyrolysis temperature and led to the decrease of gasification reactivity. Char derived from rapid pyrolysis of rice straw and chinar leaves almost remained the original structures. Serious melting happened to the pine sawdust, and resulted in the destruction of the pore structures and low reactivity. RPM performed well under most of the conditions to describe the gasification rates. But under the condition that high gasification rates were remained or drastic decrease of the gasification rates happened in the high conversion range, the S-M-RPM performed better.
     (6) Nitrogen evolution during rapid pyrolysis of biomass was investigated. Little nitrogen retained in char after pyrolysis of biomass, and most of the nitrogen converted to N2. The increasing temperature could decrease the yields of nitrogen pollutants and promote nitrogen conversion to N2. NH3 was the main nitrogen pollutant during rapid pyrolysis of protein, amino acids, and nucleobases. While yields of HCN were much higher than those of NH3 during rapid pyrolysis of the 3 agriculture and forestry biomass, and the yields of HCN increased with the lignin contents of biomass. The reason might be that "Microcells" composed by the lignin could result in the polymerization reactions between protein, amino acids, etc. and the organic compositions (cellulose, hemicellulose, and lignin) to form heterocyclic nitrogen and lead to the formation of HCN.
     (7) The high-frequency furnace not only could make the fuel particles obtain high heating rates, but also could make the biomass and coal particles contact well. Under this condition, obvious synergies were observed during co-pyrolysis of biomass and coal to decrease the yields of char and increase the yields of gas. Packing densities of the biomass and the skeleton collapse characteristics during pyrolysis were important impact factors on the synergies during co-pyrolysis of biomass and coal. Synergies could be observed during co-gasification of biomass char and coal char. But scarcely synergies were found during gasification of the co-pyrolysis char, and inherences between biomass and coal during co-pyrolysis and pore block during char crush might be the reasons. These two aspects also increased the structure homogeneity of the co-pyrolysis char, resulted in a gentle variation of the gasification rates.
     (8) Nitrogen evolution during rapid pyrolysis of biomass/coal blends was also studied. By affecting the heating rate, nitrogen evolution was also affected significantly by the packing densities and carbon skeleton collapse characteristics of biomass. Co-pyrolysis of biomass and coal could decrease the char-N yields, increase the volatile-N yields, but (NH3+HCN)-N in volatile-N was also decreased. NH3-N was decreased in all the conditions. HCN-N was decreased in the high-temperature range, but under the temperature of 600~700℃, HCN-N yields were increased during co-pyrolysis.
引文
[1]Biagini E, Simone M, Tognotti L. Characterization of high heating rate chars of biomass fuels[J]. Proceedings of the Combustion Institute.2009,32:2043-2050.
    [2]Loison R, Chauvin R. Rapid pyrolysis of coal[J]. Chimie Industrielles Paris.1964,91, 269-275.
    [3]Anthony DB, Howard JB, Meissner HP, Hottel HC. Apparatus for determining high pressure coal-hydrogen reaction kinetics under rapid heating conditions[J]. Review of Scientific Instruments.1974,45:992-995.
    [4]Bautista JR, Russell WB, Saville DA. Time-resolved pyrolysis product distributions of softening coals[J]. Industrial and Engineering Chemistry Fundamentals.1986,25: 536-544.
    [5]Niksa SJ, Russell WB, Saville DA. Captive sample reactor for kinetic studies of coal pyrolysis and hydropyrolysis on short time scales[J]. Fuel.1982,61:1207-1212.
    [6]Hamilton LH, Ayling AB, Shiboaka MA. A new experimental device for pyrolysing coal particles under controlled conditions over a wide range of heating rates[J]. Fuel.1979,58: 873-876.
    [7]Cai HY, Guell AJ, Dugwell DR, Kandiyoti R. Heteroatom distribution in pyrolysis products as a function of heating rate and pressure[J]. Fuel.1993,72:321-327.
    [8]Gibbins JR, Kandiyoti R. Coal pyrolysis yields from fast and slow heating in a wire-mesh apparatus with a gas sweep[J]. Energy & Fuels.1988,2:505-511.
    [9]王杰,颜涌捷,吴磊,张志德.两种褐煤快速热解的非等温动力学[J].燃料化学学报.1992,20:414-420.
    [10]Hajaligol MR, Howard JB, Peters W. An experimental and modeling study of pressure effects on tar release by rapid pyrolysis of cellulose sheets in a screen heater[J]. Combustion and Flame.1993,95:47-60.
    [11]Nik-Azar M, Hajaligol MR, Sohrabi M, Dabir B. Mineral matter effects in rapid pyrolysis of beech wood[J]. Fuel Processing Technology,1997,51:7-17.
    [12]Sepman AV, de Goey LPH. Plate reactor as an analysis tool for rapid pyrolysis of biomass[J]. Biomass and Bioenergy.2011,35:2903-2909.
    [13]Giuntoli J, Gout J, Verkooijen AHM, de Jong W. Characterization of fast pyrolysis of dry distiller's grains (DDGS) and palm kernel cake using a heated foil reactor:nitrogen chemistry and basic reactor modeling[J]. Industrial and Engineering Chemistry Research. 2011,50:4286-4300.
    [14]Nola GD, de Jong W, Spliethoff H. The fate of main gaseous and nitrogen species during fast heating rate devolatilization of coal and secondary fuels using a heated wire mesh reactor[J]. Fuel Processing Technology 2009,90:388-395.
    [15]Miura K, Mae K, Shimada M, Minami H. Analysis of formation rates of sulfur- containing gases during the pyrolysis of various coals[J]. Energy & Fuels.2001,15: 629-636.
    [16]Wiktorsson LP, Wanzl W. Kinetic parameters for coal pyrolysis at low and high heating rates-a comparison of data from different laboratory equipment[J]. Fuel.2000,79: 701-716.
    [17]高克凌,章明川.居里点裂解色谱用于煤的快速热分解的研究[J].热力发电.1988,4:7-14.
    [18]王辉,姜秀民,刘建国.水煤浆和原煤粉居里点裂解仪对比实验研究[J].化学工程.2007,35:19-22.
    [19]Wang H, Jiang XM, Liu H, Wu SH. Fast pyrolysis comparison of coal-water slurry with its parent coal in Curie-point pyrolyser[J]. Energy Conversion and Management[J].2009, 50:1976-1980.
    [20]齐永锋,章明川,张健,田凤国.超细煤粉快速热解动力学特性实验研究[J].化学工程.2009,37:62-65,74.
    [21]Ludlow-Palafox C, Chase HA. Microwave-Induced pyrolysis of plastic wastes[J]. Industrial and Engineering Chemistry Research.2001,40:4749-4756.
    [22]Dominguez A, Menendez JA, Fernandez Y, Pis JJ, Valente Nabais JM, Carrott PJM, Ribeiro Carrott MML. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas[J]. Journal of Analytical and Applied Pyrolysis.2007,79:128-135.
    [23]Menendez JA, Inguanzo M, Pis JJ. Microwave-induced pyrolysis of sewage sludge[J]. Water Research.2002,36:3261-3264.
    [24]Yu F, Deng S, Chen P, Liu Y, Wan Y, Olson A, Kittelson D, Ruan R. Physical and Chemical properties of bio-oils from microwave pyrolysis of corn stover[J]. Applied Biochemistry and Biotechnology.2007,136-140:957-970.
    [25]Huang YF, Kuan WH, Lo SL, Lin CF. Total recovery of resources and energy from rice straw using microwave-induced pyrolysis[J]. Bioresource Technology.2008,99: 8252-8258.
    [26]Wan Y, Chen P, Zhang B, Yang C, Liu Y, Lin X, Ruan R. Microwaveassisted pyrolysis of biomass:Catalyst to improve product selectivity[J]. Journal of Analytical and Applied Pyrolysis.2009,86:161-167.
    [27]Miura M, Kaga H, Sakurai A, Kakuchi T, Takahashi K. Rapid pyrolysis of wood block by microwave heating[J]. Journal of Analytical and Applied Pyrolysis.2004,71: 187-199.
    [28]Budarin VL, Clark JH, Lanigan BA, Shuttleworth P, Breeden SW, Wilson AJ, Macquarrie DJ, Milkowski K, Jones J, Bridgeman T, Ross A. The preparation of high-grade bio-oils through the controlled, low temperature microwave activation of wheat straw[J]. Bioresource Technology.2009,100:6064-6068.
    [29]Salema AA, Ani FN. Microwave induced pyrolysis of oil palm biomass[J]. Bioresource Technology,2011,102:3388-3395.
    [30]Guell AJ, Kandiyoti R. Development of a gas-sweep facility for the direct capture of pyrolysis tars in a variable heating rate high-pressure wire-mesh reactor[J]. Energy & Fuels.1993,7:943-952.
    [31]Gibbins J, Kandiyoti R. Experimental study of coal pyrolysis and hydropyrolysis at elevated pressures using a variable heating rate wire-mesh apparatus[J]. Energy & Fuels. 1989,3:670-677.
    [32]Suuberg EM. In:Schlosberg RH, editor. Chemistry of coal conversion[M]. New York: Plenum Press,1985. chapter 4.
    [33]Griffin TP, Howard JB, Peters WA. An experimental and modeling study of heating rate and particle size effects in bituminous coal pyrolysis[J]. Energy & Fuels.1993,7: 297-305.
    [34]Sathe C, Hayashi JI, Li CZ. Release of volatile from the pyrolysis of Victorian lignite at elevated pressure[J]. Fuel.2002,81:1171-1178.
    [35]Unger PE, Suuberg EM. Molecular weight distributions of tars produced by flash pyrolysis of coals[J]. Fuel.1984,63:606-611.
    [36]Suuberg EM, Unger PE, Lily WD. Experimental study on mass transfer from pyrolysing coal particles[J]. Fuel.1985,64:956-962.
    [37]Solomon PR, Serio MA, Despande GV, Kroo E. Cross-linking reactions during coal conversion[J]. Energy & Fuels.1990,4:42-54.
    [38]Cor J, Manton N, Mul G, Eckstrom D, Olson W, Malhotra R, Niksa S. An experimental facility for the study of coal pyrolysis at 10 atmospheres [J]. Energy & Fuels.2000,14: 692-700.
    [39]Li CZ, Sathe C, Kershaw JR, Pang Y. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal[J]. Fuel.2000,79:427-438.
    [40]Kershaw JR, Sathe C, Hayashi JI, Li CZ, Chiba T. Fluorescence spectroscopic analysis of tars from the pyrolysis of a Victorian brown coal in a wire-mesh reactor[J]. Energy & Fuels.2000,14:476-482.
    [41]Zeng C, Wu HW, Hayashi JI, Li CZ. Effects of thermal pretreatment in helium on the pyrolysis behaviour of Loy Yang brown coal[J]. Fuel.2005,84:1586-1592.
    [42]Garcia-Labiano F, Hampartsoumian E, Williams A. Determination of sulfur release and its kinetics in rapid pyrolysis of coal[J]. Fuel.1995,74:1072-1079.
    [43]Chen L, Zeng C, Guo X, Mao Y, Zhang Y, Zhang X, Li W, Long Y, Zhu H, Eiteneer B, Zamansky V. Gas evolution kinetics of two coal samples during rapid pyrolysis[J]. Fuel Processing Technology.2010,91:848-852.
    [44]Hindmarsh CJ, Thomas KM, Wang WX, Cai HY, Giiell AJ, Dugwell DR, Kandiyoti R. A comparison of the pyrolysis of coal in wire-mesh and entrained-flow reactors[J]. Fuel. 1995,74:1185-1190.
    [45]Ye DP, Agnew JB, Zhang DK. Gasification of a South Australian low rank coal with carbon dioxide and steam:kinetics and reactivity studies[J]. Fuel.1998,77:1209-1219.
    [46]Beamish BB, Shaw KJ, Rodgers KA, Newman J. Thermo-gravimetric determination of the carbon dioxide reactivity of char from some New Zealand coals and its association with the inorganic geochemistry of the parent coal[J]. Fuel Processing Technology.1998, 53:243-253.
    [47]Takarada T, Tamai Y, Tomita F. Reactivities of 34 coals under steam gasification[J]. Fuel.1985,64:1438-1442.
    [48]Garcia X, Radovic LR. Gasification reactivity of Chilean coals[J]. Fuel.1986,65: 292-294.
    [49]Kitano K, Chiba S, Takeda S. Coal char gasification by two stage fluidized bed gasifier. American Institute of Chemical Engineers; National Meeting,1984.
    [50]Hippo EJ, Walker Jr PL. Reactivity of heat treated coals in carbon dioxide at 900℃[J]. Fuel.1975,54:245-248.
    [51]Miura K, Hashimoto K, Sileston PL. Factors affecting the reactivity of coal chars during gasification, and indices representing reactivity[J]. Fuel.1989,68:1461-1465.
    [52]Kasaoka S, Sakata Y, Shimada M. Sulfur tolerance of various catalysts for the gasification of coal char[J]. International Chemical Engineering.1986,26:705-715.
    [53]杨帆,范晓雷,周志杰,刘海峰,龚欣,于遵宏.随机孔模型应用于煤焦与CO2气化的动力学研究[J].燃料化学学报.2006,33:671-676.
    [54]谢克昌.煤的结构与反应性[M].北京:科学出版社.2002
    [55]Liu H, Luo CH, Toyota M, Uemiya S, Kojima T. Kinetics of CO2/char gasification at elevated temperatures. Part Ⅱ:Clarification of mechanism through modeling and char characterization[J]. Fuel Processing Technology.2006,87:769-774.
    [56]Liu H, Luo CH, Toyota M, Uemiya S, Kojima T. Kinetics of CO2/Char gasification at elevated temperatures Part I:Experimental results[J]. Fuel Processing Technology.2006, 87:775-781.
    [57]范晓雷,杨帆,周志杰,王辅臣.热解过程中煤焦微晶结构变化及其对煤焦气化反应活性的影响[J].燃料化学学报.2006,34:396-399.
    [58]Nozaki T, Adschiri T, Fujimoto K. Coal char gasification under pressurized CO2 atmosphere[J]. Fuel.1992,71:349-350.
    [59]Sha XZ, Chen YG, Cao J, Yang YM, Ran DQ. Effects of operating pressure on coal gasification[J]. Fuel,1990,69:656-659.
    [60]Adanez J, Miranda JL, Gavilan JM. Kinetics of a lignite-char gasification by CO2[J]. Fuel.1985,64:801-804.
    [61]Messenbock RC, Dugwell DR, Kandiyoti R. CO2 and steam gasification in a high-pressure wire-mesh reactor:the reactivity of Daw Mill coal and combustion reactivity of its chars[J]. Fuel.1999,78:781-783.
    [62]Messenbock RC, Dugwell DR, Kandiyoti R. Coal gasification in CO2 and steam: development of a steam injection facility for high-pressure wire-mesh reactors[J]. Energy & Fuels.1999,13:122-129.
    [63]Koba K, Ida S. Gasification reactivities of metallurgical cokes with carbon dioxide, steam and their mixtures[J]. Fuel.1980,59:59-63.
    [64]张林仙,黄戒介,房倚天,王洋.中国无烟煤焦气化活性的研究-水蒸气与二氧化碳气化活性的比较[J].燃料化学学报.2006,34:265-269.
    [65]Kajitani S, Hara S, Matsuda H. Gasification rate analysis of coal char with a pressurized drop tube furnace[J]. Fuel.2002,81:539-546.
    [66]Walker PL, Rusinko F, Austin LG. Gas reactions of carbon[M]. In:Eley DD, Selwood PW, Weisz PB, editors. Advances in catalysis and related subjects, vol.11. New York: Academic Press, Inc.; 1959. p.133-141.
    [67]Turkdogan ET, Koump V, Vinters JV, Perzak TF. Rate of oxidation of graphite in carbon dioxide[J]. Carbon.1968,6:467-470.
    [68]Turkdogan ET, Vinters JV. Kinetics of oxidation of graphite and charcoal in carbon dioxide[J]. Carbon.1969,7:101-107.
    [69]Dutta S, Wen CY, Belt RJ. Reactivity of coal and char.1. In carbon dioxide atmosphere[J]. Industrial & Engineering Chemistry Process Design Development.1977, 16:20-30.
    [70]Liu TF, Fang YT, Wang Y. An experimental investigation into the gasification reactivity of chars prepared at high temperatures[J]. Fuel.2008,87:460-466.
    [71]Zhu Z, Ma Z, Lin S. Characteristics of coal char gasification at high temperature (Ⅱ). The effect of pore structure on coal char gasification[J]. Journal of Chemical Industry & Engineering.1994,45:155-161.
    [72]Tang L, Wang J, Wu Y. Gasification reactivity of coal with lower ash melting point at high temperature [J]. Journal of East China University of Science & Technology.2003, 29:341-345.
    [73]Moors JHJ. Pulverized char combustion and gasification at high temperatures and pressures[D]. Eindhoven University of Technology, Netherlands,1998.
    [74]Kasaoka S, Sakata Y. Tong CLJ. Kinetic evaluation of reactivity in carbon dioxide gasification of various coal chars and comparison with steam gasification[J]. Japan Fuel.1983,62:335-348.
    [75]吴诗勇,顾菁,李莉,吴幼青,高晋生.高温下灰熔融对神府煤焦反应性的影响[J].煤炭转化.2006,29:41-45.
    [76]白进,李文,LiCZ,白宗庆,李保庆.高温下煤中矿物质对气化反应的影响[J].2009,37:134-138.
    [77]杨建国,邓芙蓉,赵虹,岑可法.煤灰熔融过程中的矿物演变及其对灰熔点的影响[J].中国电机工程学报.2006,26:122-126.
    [78]许慎启.煤气化动力学及渣中残炭反应活性研究[D].华东理工大学,上海,2011.
    [79]Ochoa J, Cassanello MC, Bonelli PR, Cukierman AL. CO2 gasification of Argentinean coal chars:a kinetic characterization [J]. Fuel Processing Technology.2001,74:161-166.
    [80]Matsuoka K, Yamashita T, Kuramoto K, Suzuki K, Takaya A, Tomita A. Transformation of alkali and alkaline earth metals in low rank coal during gasification[J]. Fuel.2008,87: 885-893.
    [81]Ohme H, Suzuki T. Mechanisms of CO2 gasification of carbon catalyzed with group VIII metals.1. Iron catalyzed CO2 gasification[J]. Energy & Fuels.1996,10:980-987.
    [82]Schafer HNS. Functional groups and ion exchange properties. In:Durie RA, editor. The science of Victoria brown coal:structure, properties and consequences for utilization. Oxford:Butterworth-Heinemann Ltd; 1991. Ch.7.
    [83]Nishiyama Y. Catalytic behavior of iron and nickel in coal gasification[J]. Fuel.1986,65: 1404-1409.
    [84]Asami K, Sean P, Furimsky E, Ohtsuka Y. Gasification of brown coal and char with carbon dioxide in the presence of finally dispersed iron catalysts[J]. Fuel Processing Technology.1996,47:139-141.
    [85]Tanaka S, Uemura T, Ishizaki S, Nagayoshi K, Ikenaga N, Ohme H, Suzuki T, Yamashita H, Amp M. CO2 gasification of iron-loaded carbons:activation of the iron catalyst with CO[J]. Energy & Fuels.1995,9:45-52.
    [86]Mckee DW. Effect of metallic impurities on the gasification of graphite in water vapor and hydrogen[J]. Carbon.1974,12:453-454.
    [87]Hermann G, Huttinger KJ. Mechanism of iron-catalyzed water vapor gasification of carbon[J]. Carbon.1986,24:429-435.
    [88]Grim RE. Clay mineralogy. New York, USA:McGraw-Hill Inc.,1968.
    [89]Tulyaganov DU, Ribeiro MJ, Labrincha JA. Development of glass-ceramics by sintering and crystallization of fine powders of calcium-magnesium-alumino-silicate glass[J]. Ceramics International.2002,28:515-520.
    [90]Okada K, Watanabe N, Jha KV, Kameshima Y, Yasumori A, MacKenzie KJD. Effects of grinding and firing conditions on CaA12Si2O8 phase formation by solid-state reaction of kaolinite with CaCO3[J]. Applied Clay Science.2003,23:329-336.
    [91]Hajjaji M, Kacim S. Clayecalcite mixes:sintering and phase formation[J]. British Ceramic Transaction.2004,103:29-32.
    [92]Qiu JR, Li F, Zheng CG. Mineral transformation during combustion of coal blends[J]. Internation Journal of Energy Research.1999,23:453-463.
    [93]Grigore M, Sakurovs R, French D, Sahajwalla V. Mineral reactions during coke gasification with carbon dioxide[J]. International Journal of Coal Geology.2008,75: 213-214.
    [94]Sakawa M, Sakurai Y, Hara Y. Influence of coal characteristics on CO2 gasification[J]. Fuel.1982,61:717-720.
    [95]Li CZ. Some recent advances in the understanding of the pyrolysis and gasification behaviors of Victorian brown coal[J]. Fuel.2007,86:1664-1673.
    [96]Quyn DM, Hayashi JI, Li CZ. Volatilization of alkali and alkaline earth metallic species during the gasification of a Victorian brown coal in CO2[J]. Fuel Processing Technology.2005,86:1241-1251.
    [97]Cao JP, Zhao XY, Morishita K, Li LY, Xiao XB, Obara R, Wei XY, Takarada T. Triacetonamine formation in a bio-oil from fast pyrolysis of sewage sludge using acetone as the absorption solvent[J]. Bioresource Technology.2010,101:4242-4245.
    [98]Cao JP, Xiao XB, Zhang SY, Zhao XY, Sato K, Ogawa Y, Wei XY, Takarada T. Preparation and characterization of bio-oils from internally circulating fluidized-bed pyrolyses of municipal, livestock, and wood waste[J]. Bioresource Technology.2011, 102:2009-2015.
    [99]Cao JP, Zhao XY, Morishita K, Wei XY, Takarada T. Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge[J]. Bioresource Technology.2010,101:7648-7652.
    [100]Reed TB. Biomass gasification:Principles and Technology[M]. ISBN 0-8155-0852-2, 1981,91-11.
    [101]Couhert C, Commandre JM, Salvador S. Failure of the component additivity rule to predict gas yields of biomass in flash pyrolysis at 950℃[J]. Biomass and Bioenergy. 2009,33:316-326.
    [102]Caballero JA, Font R, Marcilla A. Comparative study of the pyrolysis of almond shells and their fractions, holocellulose and lignin. Product yields and kinetics[J]. Thermochimica Acta.1996,276:57-77.
    [103]Cetin E, Moghtaderi B, Gupta R, Wall TF. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars[J]. Fuel.2004,83:2139-2150.
    [104]Cetin E, Gupta R, Moghtaderi B. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity[J]. Fuel.2005,84:1328-1334.
    [105]Biagini E, Narducci P, Tognotti L. Size and structural characterization of lignin-cellulosic fuels after the rapid devolatilization[J]. Fuel.2008,87:177-186.
    [106]Zanzi R, Sjostrom K, Bjornbom E. Rapid high-temperature pyrolysis of biomass in a free-fall reactor[J]. Fuel.1996,75:545-550.
    [107]Zanzi R, Sjoostrom K, Bjornbom E. Rapid pyrolysis of agricultural residues at high temperature[J], Biomass and Bioenergy.2002:23:357-366.
    [108]Onay O, Beis SH, Kockar OM. Fast pyrolysis of rape seed in a well-swept fixed-bed reactor[J]. Journal of Analytical and Applied Pyrolysis.2001,58-59:995-1007.
    [109]Onay O, Kockar OM. Slow, fast and flash pyrolysis of rapeseed[J]. Renewable Energy. 2003,28:2417-2433.
    [110]Yorgun S, Sensoz S, Kockar OM. Flash pyrolysis of sunflower oil cake for production of liquid fuels[J]. Journal of Analytical and Applied Pyrolysis.2001,60:1-12.
    [111]Arpiainen V, Lappi M. Products from the flash pyrolysis of peat and pine bark[J]. Journal of Analytical and Applied Pyrolysis.1989,16:355-376.
    [112]Klass DL. High temperature pyrolysis of biomass[M]. Institute of gas technology, Energy from biomass & wastes XV,1991:877-894.
    [113]Ozturk Z, Merklin JF. Fast pyrolysis ofcellulose in a single pulse shock tube[J]. Biomass & Bioenergy.1993,5:437-444.
    [114]Ozturk Z, Merklin JF. Rapid pyrolysis of cellulose with reactive hydrogen gas in a single-pulse shocktube[J]. Fuel,1995,74:1658-1663.
    [115]Garcia-Perez M, Chaala A, Roy C. Vacuum pyrolysis of sugarcane bagasse[J]. Journal of Analytical and Applied Pyrolysis.2002,65:111-136.
    [116]Steinberg M, Fallon P, Sundaram MS. Flash pyrolysis of biomass with reactive and non-reactive gas[J]. Biomass,1986,9:293-315.
    [117]Zhang Y, Ashizawa M, Kajitani S, Miura K. Proposal of a semi-empirical kinetic model to reconcile with gasification reactivity profiles of biomass chars[J]. Fuel.2008,87: 475-481.
    [118]Wigmans T, Goebel JC, Moulijn JA. The influence of pretreatment conditions on the activity and stability of sodium and potassium catalysts in carbon-steam reactions[J]. Carbon.1983,21:295-301.
    [119]Wigmans T, Haringa H, Moulijn JA. Nature, activity and stability of active sites during alkali metal carbonate-catalysed gasification reactions of coal char[J]. Fuel.1983,62: 185-189.
    [120]Guerrero M, Ruiz MP, Alzueta MU, Bilbao R, Millera A. Pyrolysis of eucalyptus at different heating rates:studies of char characterization and oxidative reactivity[J]. Journal of Analytical and Applied Pyrolysis.2005,74:307-314.
    [121]Russell NV, Gibbins JR, Williamson J. Structural ordering in high temperature coal chars and the effect on reactivity [J]. Fuel.1999,78:803-807.
    [122]Radovic LR, Walker Jr PL, Jenkins RG. Importance of carbon active sites in the gasification of coal chars[J]. Fuel.1983,62:849-856.
    [123]Kannan MP, Richards GN. Gasification of biomass chars in carbon dioxide: dependence of gasification rate on the indigenous metal content[J]. Fuel.1990,69: 747-753.
    [124]Juntgen H. Application of catalysts to coal gasification processes. Incentives and perspectives[J]. Fuel.1983,62:234-238.
    [125]Matsumoto K, Takeno K, Ichinose T, Ogi T, Nakanishi M. Gasification reaction kinetics on biomass char obtained as a by-product of gasification in an entrained-flow gasifier with steam and oxygen at 900-1000℃[J]. Fuel,2009,88:519-527.
    [126]Okumura Y, Hanaoka T, Sakanishi K. Effect of pyrolysis conditions on gasification reactivity of woody biomass-derived char[J]. Proceedings of the Combustion Institute. 2009,32:2013-2020.
    [127]Fermoso J, Stevanov C, Moghtaderi B, Arias B, Pevida C, Plaza MG, Rubiera F, Pis JJ. High-pressure gasification reactivity of biomass chars produced at different temperatures[J]. Journal of Analytical and Applied Pyrolysis.2009,85:287-293.
    [128]Fjellerup J, Gjernes E, Hansen LK. Pyrolysis and Combustion of Pulverized Wheat Straw in a Pressurized Entrained Flow Reactor[J]. Energy & Fuels.1996,10:649-651.
    [129]Marquez-Monstesinos F, Cordero T, Rodriguez-Mirasol J, Rodriguez JJ. CO2 and steam gasification of a grapefruit skin char[J]. Fuel.2002,81:423-429.
    [130]Kapteijn F, Porre H, Moulijn JA. CO2 gasification of activated carbon catalyzed by earth alkaline elements[J]. AIChE J.1986,32:691-695.
    [131]Hippo EJ, Jenkins RG, Walker Jr PL. Enhancement of lignite char reactivity to steam by cation addition[J]. Fuel.1979,58:338-344.
    [132]Samarras P, Diamadopoulos E, Sakellaropoulos GP. The effect of mineral matter and pyrolysis conditions on the gasification of Greek lignite by carbon dioxide[J]. Fuel. 1996,75:1108-1114.
    [133]Risnes H, Fjellerup J, Henriksen U, Moilanen A, Norby P, Papadakis K, Papadakis D, Sorensen LH. Calcium addition in straw gasification[J]. Fuel.2003,82:641-651.
    [134]Standish N, Tanjung AFA. Gasification of single wood charcoal particles in CO2[J]. Fuel.1988,67:666-672.
    [135]Moulijn JA, Kapteijn F. Towards a unified theory of reactions of carbon with oxygen-containing molecules[J]. Carbon.1995,33:1155-1165.
    [136]Tancredi N, Cordero T, Rodriguez-Mirasol J, Rodriguez JJ. CO2 gasification of eucalyptus wood chars[J]. Fuel.1996,75:1505-1508.
    [137]Haykiri-Acma H, Yaman S. Interaction between biomass and different rank coals during co-pyrolysis[J]. Renewable Energy.2010,35:288-292.
    [138]Haykiri-Acma H, Yaman S. Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis[J]. Fuel.2007,86:373-380.
    [139]Ulloa CA, Gordon AL, Garcia XA. Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiata pine sawdust[J]. Fuel Processing Technology. 2009,90:583-590.
    [140]Vuthaluru HB. Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis[J]. Bioresource Technology.2004,92:187-195.
    [141]Vuthaluru HB. Thermal behaviour of coal/biomass blends during co-pyrolysis[J]. Fuel Processing Technology.2003,85:141-155.
    [142]Zhu WK, Song WL, Lin WG. Catalytic gasification of char from co-pyrolysis of coal and biomass[J]. Fuel Processing Technology.2008,89:890-896.
    [143]郭凯,李伟振,王立群,宋旭.煤与生物质(稻秸秆)共热反过程及协同性研究[J].郑州轻工业学院学报(自然科学版).2008,5:77-80,88.
    [144]朱孔远,谌伦建,黄光许,马爱玲.煤与生物质共热解的TGA-FTIR研究[J].煤炭转化.2010,3:10-14,37.
    [145]武宏香,李海滨,赵增立.煤与生物质热重分析及动力学研究[J].燃料化学学报.2009,5:538-545.
    [146]王鹏,文芳,边文,邓一英.煤与生物质共热解特性初步研究[J].煤炭转化.2008,4:40-44.
    [147]Collot AG, Zhuo Y, Dugwell DR, Kandiyoti R. Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixedbed and fluidised bed reactors[J]. Fuel.1999,78: 667-679.
    [148]Blesa MJ, Miranda JL, Moliner R, Izquierdo MT, Palacios JM. Low-temperature co-pyrolysis of a low-rank coal and biomass to prepare smokeless fuel briquettes[J]. Journal of Analytical and Applied Pyrolysis.2003,70:665-677.
    [149]Sonobe T, Worasuwannarak N, Pipatmanomai S. Synergies in co-pyrolysis of Thai lignite and corncob[J]. Fuel Processing Technology.2008,89:1371-1378.
    [150]Park DK, Kim SD, Lee SH, Lee JG. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor[J]. Bioresource Technology.2010,101: 6151-6156.
    [151]Jones JM, Kubacki M, Kubica K, Ross AB, Williams A. Devolatilisation characteristics of coal and biomass blends[J]. Journal of Analytical and Applied Pyrolysis.2005,74: 502-511.
    [152]Keown DM, Hayashi J, Li C. Effects of volatile-char interactions on the volatilization of alkali and alkaline earth metallic species during the pyrolysis of biomass[J]. Fuel. 2008,87:1187-1194.
    [153]Cordero T, Rodriguez-Mirasol J, Pastrana J, Rodriguez JJ. Improved solid fuels from co-pyrolysis of a high-sulphur content coal and different lignocellulosic wastes[J]. Fuel. 2004,83:1585-1590.
    [154]尚琳琳,程世庆,张海清.生物质与煤共热解特性研究[J].太阳能学报.2006,8:852-856.
    [155]尚琳琳,程世庆,张海清,殷炳毅.生物质与煤混合热解时硫化氢的析出特性[J].煤炭学报.2007,32:1079-1083.
    [156]尚琳琳,程世庆,王宪红,殷炳毅.生物质与三种不同变质程度的煤混合热解H2S析出规律[J].节能技术.2007,145:410-412,445.
    [157]董信光,张格睿,程世庆.生物质与煤混合热解过程中H2S的排放特性[J].煤炭燃烧.2010,16:44-48.
    [158]尚琳琳,程世庆,张海清,殷炳毅.生物质与煤共热解时COS的析出特性研究[J].煤炭转化.2007,30:18-21.
    [159]周仕学,聂西文,王荣春,刘泽常.高硫强粘结性煤与生物质共热解的研究[J].燃料化学学报.2000,28:194-297.
    [160]周仕学,郭俊利,刘夕华,姜海涛.高硫强粘结性煤与生物质共热解脱硫脱氮的研究[J].山东科技大学学报(自然科学版).2000,19:33-37.
    [161]张红霞.生物质与煤混合的热解特性研究[J].电力技术.2010,2:63-66,56.
    [162]李文,李保庆,孙成功.尉迟唯,曹变英.生物质热解、加氢热解及其与煤共热解的热重研究[J].燃料化学学报.1996,4:341-347.
    [163]李世光,徐绍平.煤与生物质的共热解[J].煤炭转化.2002,1:7-12.
    [164]马光路,刘岗,曹青.生物质与聚合物、煤共热解研究进展[J].生物质化学工程.2007,3:47-51.
    [165]王宪红,程世庆,刘坤,胡云鹏,孙鹏.生物质与煤混合热解特性的研究[J].电站系统工程.2010,4:13-16.
    []66]倪献智,丛兴顺,马小隆,周仕学.生物质热解及生物质与褐煤共热解的研究[J]. 煤炭转化.2005,23:9-41,47.
    [167]阎维平,陈吟颖.生物质混合物与褐煤共热解特性的试验研究[J].动力工程.2006,68:65-870,893.
    [168]Pan YG, Velo E, Puigjaner L. Pyrolysis of blends of biomass with poor coals[J]. Fuel. 1996,75:412-418.
    [169]Rudiger H, Greul U, Spliethoff H, Hein KRG. Co-pyrolysis of coal/biomass and coal/sewage sludge-mixtures in an entrained Flow Reactor[C]. Final Report, APAS Clean Coal Technology Programme CT92-0001, Commission of the European Communities, Bruxelles,1995.
    [170]Zhang L, Xu SP, Zhao W, Liu SQ. Co-pyrolysis of biomass and coal in a free fall reactor[J]. Fuel.2007,86:353-359.
    [171]Mastellone ML, Zaccariello L, Arena U. Co-gasification of coal, plastic waste and wood in a bubbling fluidized bed reactor[J]. Fuel.2010,89:2991-3000.
    [172]de Jong W, Andries J, Hein KRG. Coal/biomass co-gasification in a pressurized fluidized bed reactor[J]. Rewable Energy.1999,16:1110-1113.
    [173]Velez JF, Chejne F, Valdes CF, Emery EJ, Londono CA. Co-gasification of Colombian coal and biomass in fluidized bed:An experimental study[J]. Fuel.2009,88:424-430.
    [174]Li KZ, Zhang R, Bi JC. Experimental study on syngas production by co-gasification of coal and biomass in a fluidized bed[J] International Journal of Hydrogen Energy.2010, 35:2722-2726.
    [175]Andre RN, Pinto F, Franco C, Dias M, Gulyurtlu I, Matos MAA, Cabrita I. Fluidised bed co-gasification of coal and olive oil industry wastes[J]. Fuel.2005,84:1635-1644.
    [176]McLendona TR, Lui AP, Pineault RL, Beer SK, Richardson SW. High-pressure co-gasification of coal and biomass in a fluidized bed[J]. Biomass and Bioenergy.2004, 26:377-388.
    [177]Priyadarsan S, Annamalai K, Sweeten JM, Holtzapple MT, Mukhtar S. Co-gasification of blended coal with feedlot and chicken litter biomass[J]. Proceedings of the Combustion Institute.2005,30:2973-2980.
    [178]Fermoso J, Arias B, Gil MV, Plaza MG, Pevida C, Pis JJ, Rubiera F. Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H2-rich gas production[J]. Bioresource Technology.2010,101:3230-3235.
    [179]Kumabe K, Hanaoka T, Fujimoto S, Minowa T, Sakanishi K. Co-gasification of woody biomass and coal with air and steam[J]. Fuel.2007,86:684-689.
    [180]Fermoso J, Gil MV, Pevida C, Pis JJ, Rubiera F. Kinetic models comparison for non-isothermal steam gasification of coal-biomass blend chars[J]. Chemical Engineering Journal.2010,161:276-284.
    [181]宋新朝,李克忠,王锦凤,董众兵,毕继诚.流化床生物质与煤共气化特性的初步研究[J].燃料化学学报.2006,34:303-308.
    [182]宋新朝,王芙蓉,赵霄鹏,张永奇,毕继诚.生物质与煤共气化特性研究[J].煤炭转化.2009,32:44-46.
    [183]李克忠,张荣,毕继诚.煤和生物质共气化协同效应的初步研究[J].化学反应工程与工艺.2008,24:312-317.
    [184]张科达,步学朋,王鹏,文芳,梁大明,董卫果,杨忠仁.生物质与煤在CO2气氛下共气化特性的初步研究[J].煤炭转化.2009,32:9-12.
    [185]Ren HJ, Zhang YQ, Fang YT, Wang Y. Co-gasification behavior of meat and bone meal char and coal char[J]. Fuel Processing Technology.2011,92:298-307.
    [186]Jensen PA, Frandsen FJ, Dam-Johansen K, Sander B. Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis[J]. Energy & Fuels.2000,14:1280-1285.
    [187]Wigmans T, Haringa H, Moulijn JA. Role of the influence of potassium during pyrolysis of medium volatile coal[J]. Fuel.1984:63:870-872.
    [188]Olsson JG, Jaglid U, Pettersson JBC, Hald P. Alkali metal emission during pyrolysis of biomass[J]. Energy & Fuels.1997,11:779-784.
    [189]Krevelen VDW. Coal:Typology Chemistry Physics Constitution[M]. Elsevier, Amsterdam,1961.
    [190]Boudou JP, Mariotti A, Oudin JL. Unexpected enrichment of nitrogen during the diagenetic evolution of sedimentary organic matter[J]. Fuel.1984,63:1508-1510.
    [191]Burchill P. Some observations on the variation of nitrogen content and functionality with coal rank[C]. In:J.A. Moulijn, K. Nater, K. and H. Chermin (Eds.), Proc.1987 Int. Conf. Coal Sci., Maastricht. Elsevier, Amsterdam,1987.
    [192]Burchill P, Welch L. Variation of nitrogen content and functionality with rank for some UK bituminous coals[J]. Fuel.1989,68:100-104.
    [193]Mitra-Kirtley S, Mullins O, Elp J, Cramer S. Nitrogen chemical structure in petroleum asphaltene and coal by X-ray absorption spectroscopy[J]. Fuel.1993,72:133-135.
    [194]Elliott, M.A., Yohe, G.R. In:M.A. Elliott (Ed.), Chemistry of Coal Utilization, Supplementary[M]. Vol.2, Ch.1. Wiley, New York,1981.
    [195]Perry DL, Grint A. Application of XPS to coal characterization [J]. Fuel.1983,62: 1024-1033.
    [196]Bartle KD. Structural analysis of coal derivatives[C]. In:Y. Ytiriim (Ed.), New Trends in Coal Science, NATO AS1 Series. Series C:Mathematical and Physical Sciences, Vol. 244. Kluwer Academic Publishers, Netherlands,1988.
    [197]Mullins OC, Mitra-Kirtley S, van Elp J, Cramer SP. Molecular structure of nitrogen in coal from XANES spectroscopy[J]. Applied Spectroscopy.1993,47:1268-1275.
    [198]Bartle K, Perry D, Wallace S. The functionality of nitrogen in coal and derived liquids: An XPS study[J]. Fuel Processing Technology.1987,15:351-361.
    [199]Jones R, McCourt C, Swift P. XPS studies of nitrogen and sulphur in coal[C]. In:Proc. 1981 Int. Conf. Coal Sci., Dusseldorf. Verlag Gliickauf GmbH, Essen, Germany,1981.
    [200]Kelly M, Buckley A, Nelson P. Functional forms of nitrogen in coals and coal volatiles in relation to NO, formation[C]. In:Proc.1991 Int. Conf. Coal Sci, Butteworth-Heinemann, Oxford, UK,1991.
    [201]Nelson PF, Buckley AN, Kelly MD. Functional forms of nitrogen in coals and the release of coal nitrogen as NO, precursors (HCN and NH3)[C].24th Symp. (Int.) on combustion. The Combustion Institute, Philadelphia, PA,1992.
    [202]Kambara S, Takarada T, Yamamoto Y, Kato K. Relation between functional forms of coal nitrogen and formation of NOx Precursors during rapid pyrolysis[J]. Energy & Fuels.1993,7:1013-1020.
    [203]Wojtowicz MA, Pels JR, Moulijn JA. The fate of fuel nitrogen functionalities in coal during pyrolysis and combustion[C]. Paper presented to:Coal utilization and the Environment conference, Orlando, Florida, U.S.A.,1993.
    [204]Kelemen SR, Gorbaty ML, Kwiatek PJ. Quantification of Nitrogen Forms in Argonne Premium Coals[J]. Energy & Fuels.1994,8:896-906.
    [205]Davidson RM. Nitrogen in Coal[C]. International Energy Agency report No. IEAPER/OI.,1994.
    [206]Baumann H, Miiller P. Pyrolysis of hard coals under fluidised bed combustor conditions-Distribution of nitrogen compounds on volatiles and residual char[J]. Erdol u. Kohle-Erdgas-Petrochemie.1991,44:29-33.
    [207]Bassilakis B, Zhao Y, Solomon PR, Serio MA. Sulfur and nitrogen evolution in the argonne coals:experiments and modeling[J]. Energy & Fuels.1992,7:710-720.
    [208]Nelson PF, Kelly MD, Wornat MJ. Conversion of fuel nitrogen in coal volatiles to NO, precursors under rapid heating conditions[J]. Fuel.1990,70:403-407.
    [209]Li CZ, Buckley AN, Nelson PF. Effects of temperature and molecular mass on the nitrogen functionality of tars produced under high heating rate conditions[J]. Fuel.1998, 77:157-164.
    [210]Xu WC, Kumagai M. Nitrogen evolution during rapid hydropyrolysis of coal[J]. Fuel. 2002,81:2325-2334.
    [211]Tan LL, Li CZ. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅰ. Effects of reactor configuration on the determined yields of HCN and NH3 during pyrolysis[J]. Fuel.2000,79:1883-1889.
    [212]Tan LL, Li CZ. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅱ. Effects of experimental conditions on the yields of NOx and SOx precursors from the pyrolysis of a Victorian brown coal[J]. Fuel.2000,79:1891-1897.
    [213]Tan LL, Li CZ. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅲ. Further discussion on the formation of HCN and NH3 during pyrolysis[J]. Fuel.2000,79:1899-1906.
    [214]Xie ZL, Feng J, Zhao W, Xie KC, Pratt KC. Li CZ. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅳ. Pyrolysis of a set of Australian and Chinese coals[J]. Fuel.2001,80:2131-2138.
    [215]Chang LP, Xie ZL, Xie KC, Pratt KC, Hayashi JI, Chiba T, Li CZ. Formation of NOx precursors during the pyrolysis of coal and biomass. Part Ⅵ. Effects of gas atmosphere on the formation of NH3 and HCN[J]. Fuel.2003,82:1159-1166.
    [216]Tian FJ, Wu HW, Yu JL, McKenzie LJ, Konstantinidis S, Hayashi JI, Chiba T, Li CZ. Formation of NOx precursors during the pyrolysis of coal and biomass. Part Ⅷ. Effects of pressure on the formation of NH3 and HCN during the pyrolysis and gasification of Victorian brown coal in steam[J]. Fuel.2005,84:2102-2108.
    [217]Tian FJ, Zhang S, Hayashi JI, Li CZ. Formation of NOx precursors during the pyrolysis of coal and biomass. Part X:Effects of volatile-char interactions on the conversion of coal-N during the gasification of a Victorian brown coal in O2 and steam at 800℃[J]. Fuel.2010,89:1035-1040.
    [218]林建英.煤及煤岩显微组分热解、气化过程中氮的迁移机理[D].太原:太原理工大学,2000.
    [219]常丽萍.煤热解、气化过程中含氮化合物的生成与释放研究[D].太原:太原理工大学,2004.
    [220]Pohl JH, Sarofim AF. Devolatilization and oxidation of coal nitrogen[C].16th Symp. (Int.) on Combustion. The Combustion Institute, Philadelphia, PA,1976.
    [221]Blair DW, Wendt JOL, Bartok W. Evolution of nitrogen and other species during controlled pyrolysis of coal[C].16th Symp. (Int.) on combustion. The Combustion Institute, Philadelphia, PA,1976.
    [222]Solomon PR, Colket MB. Evolution of fuel nitrogen in coal devolatilization[J]. Fuel. 1978,57:749-755.
    [223]Axworthy AE, Dayan VH, Martin BG. Reactions of fuel-nitrogen compounds under conditions of inert pyrolysis[J]. Fuel.1978,57:29-35.
    [224]Freihaut JD, Zabielski MF, Seery JD. A parametric investigations of tar release in coal devolatihzation[C].19th Symp. (Int.) on Combustion. The Combustion Institute,1982.
    [225]Chen JC, Niksa S. Coal devolatilization during rapid transient heating 1. Primary Devolatilization[J]. Energy & Fuels.1992,6:254-264.
    [226]Chen JC, Niksa S. Coal devolatilization during rapid transient heating 2. Secondary pyrolysis[J]. Energy & Fuels.1992,6:264-271.
    [227]Wahlers W. Beitrag zur Strukturautkliung der Sickstoffverbindungen in Steinkohlen [D]. Department of Chemistry, University of Essen, Germany,1989.
    [228]Hill, WH. Recovery of ammonia, cyanogen, pyridine, and other nitrogenous compounds from industrial gases[C]. In:H.H. Lowry (Ed.), Chemistry of Coal Utilisation, Vol.Ⅱ. Wiley, New York,1945.
    [229]Lifshitz A, Tamburu A, Suslensky A. Isomerization and decomposition of pyrrole at elevated temperatures. Studied with a single-pulse shock tube[J]. Journal of Physical Chemistry.1989,93:5802-5808.
    [230]Houser TJ, Mccarville ME, Biftu T. Kinetics of the thermal decomposition of pyridine in a flow systrm [J]. Int. Jorunal of Chemical Kinetics.1980,12:555-568.
    [231]Mackie JC, Doughty A. Kinetics of pyrolysis of a coal model compound,2-picoline,the nitrogen heteroaromatic an alogue of tolyene.2. The 2-picolyl radical and kinetic model[J]. Journal of Physical Chemistry.1992,96:10339-10348.
    [232]Mackie JC, Cillet MB, Nelson PF, Esler M. Shock tube pyrolysis of pyrrole and kinetic modeling[J]. International Journal of Chemistry Kinetics.1991,23:733-760.
    [233]Memon HUR, Barele KD, Taylor JM, Williams A. Shock tube pyrolysis of pyridine[J]. International Journal of Energy Research.2000,24:1141-1159.
    [234]Sugiyama S, Arai N, HAsatani M, Kawamura S, Kudou I, Matsuhiro N. Reducing fuel NOx emission:N2 formation from fuel-N[J]. Environmental Science and Technology. 1978,12:175-180.
    [235]Wu ZH, Sugimoto Y, Kawashima H. Catalytic nitrogen release during a fixed-bed pyrolysis of model coals containing pyrrolic and pyridinic nitrogen[J]. Fuel.2001,80: 251-254.
    [236]Teretis A, Doughty A, Mackie JC. Kinetics of pyrolysis of a coal model compound, 2-picoline, the nitrogen heteroaromatic an alogue of toluene.1. Product distributions [J]. Journal of Physical Chemistry.1992,96:10334-10338.
    [237]Doughty A, Mackie JC. Kinetics of pyrolysis of the isomeric butane nitriles and kinetic modeling[J]. Journal of Physical Chemistry.1992.96:272-281.
    [238]Hansson KM, Samuelsson J, Smand LE, Tullin C. The temperature's influence on the selectivity between HCNO and HCN from pyrolysis of 2,5-diketopiperazine and 2-pynidone[J]. Fuel.2003,82:2163-2172.
    [239]Leichtnam JN, Schwartz D, Gadiou R. The behaviour of fuel-nitrogen during fast pyrolysis of polyamide at high temperature[J]. Journal of Analytical and Applied Pyrolysis.2000,55:255-268.
    [240]Ikeda E, Nicholls P, Mackie JC. A kinetic study of the oxidation of pyridine[J]. Proceedings of the Combustion Institute.2000,28:1709-1716.
    [241]Wang WX, Thomas KM. The release of nitrogen species from carbons during gasification:models for coal char gasification[J]. Fuel.1992,71:871-877.
    [242]Wang WX, Thomas KM. The release of nitrogen oxides from chars derived from high-pressure carbonization of carbozole and naphthol during oxidative gasification[J]. Fuel.1993,72:293-297.
    [243]Furimsky E, Nielsen M, Jurasek P. Formation of nitrogen compounds from nitrogen-containing rings during oxidative regeneration of spent hydroprocessing catalysts[J]. Energy & Fuels.1995,9:439-440.
    [244]Watanabe T, Ohtsuka Y, Nishiyama Yi. Nitrogen removal and carbonization of poly-acrylonitrile with hltrafine metal particles at low temperatures[J]. Carbon.1994,32: 329-334.
    [245]Yu CL, Zhang YX, Bauer SH. Estimation of the equilibrium distribution of products generated during high temperature pyrolysis of 1,3,3-trinitroazetidine:thermochemical parameters[J]. Journal of Molecular Structure(Thaochem).1998,432:63-68.
    [246]Zhong Chen, Shuai Yuan, Qinfeng Liang, Fuchen Wang, Zunhong Yu. Distribution of HCN, NH3, NO, and N2 in an entrained flow gasifier[J]. Chemical Engineering Journal. 2009,148:312-318.
    [247]陈忠,袁帅,梁钦锋,龚凯峰,王辅臣,于遵宏.煤的模型化合物混合燃料气流床气化中N的迁移研究[J].燃料化学学报,2008,36:513-518.
    [248]陈忠,王辅臣,祝庆瑞.赵兰龙,朱敏,陈少锋,李威,梁雪梅.水煤浆气化NH3的生成对生产系统的影响[J].煤化工.2009,2:39-47.
    [249]叶创兴,朱念德,廖文波,刘蔚秋.植物学[M].北京:高等教育出版社,2007.
    [250]匡海学.中药化学[M].北京:中国中医药出版社,2011.
    [251]严国光.光合作用原始过程[M].北京:科学出版社,1987.
    [252]Hansson KM, Amand LE, Habermann A, Winter F. Pyrolysis of poly-L-leucine under combustion-like conditions[J]. Fuel.2003,82:653-660.
    [253]Leppalahti J. Formation of NH3 and HCN in slow-heating-rate inert pyrolysis of peat, coal and bark[J]. Fuel.1995,74:1363-1368.
    [254]Hansson KM, Samuelsson J, Tullin C, Amand LE. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combustion and Flame.2004,137:265-277.
    [255]Tian FJ, Yu JL, Mckenzie LJ, Hayashi JI, Chiba T, Li CZ. Formation of NOx precursors during the pyrolysis of coal and biomass. Part Ⅶ. Pyrolysis and gasification of cane trash with steam[J]. Fuel.2005,84:371-376.
    [256]Tian FJ, Yu JL, Mckenzie LJ, Hayashi JI, Chiba T, Li CZ. Conversion of Fuel-N into HCN and NH3 During the Pyrolysis and Gasification in Steam:A Comparative Study of Coal and Biomass[J]. Energy & Fuels.2007,21:517-521.
    [257]Tian FJ, Yu JL, Mckenzie LJ, Hayashi JI, Chiba T, Li CZ. Formation of NOx precursors during the pyrolysis of coal and biomass. Part Ⅸ. Effects of coal ash and externally loaded-Na on fuel-N conversion during the reforming of coal and biomass in steam[J]. Fuel.2006,85:1411-1417.
    [258]Ren QQ, Zhao CS, Wu X, Liang C, Chen XP, Shen JZ, Wang Z. Formation of NOx precursors during wheat straw pyrolysis and gasification with O2 and CO2[J]. Fuel. 2010,89:1064-1069.
    [259]Ren QQ, Zhao CS, Wu X, Liang C, Chen XP, Shen JZ, Tang GY, Wang Z. Effect of mineral matter on the formation of NOX precursors during biomass pyrolysis[J]. Journal of Analytical and Applied Pyrolysis.2009,85:447-453.
    [260]de Jong W, Nola GD, Venneker BCH, Spliethoff H, Wojtowicz MA. TG-FTIR pyrolysis of coal and secondary biomass fuels:Determination of pyrolysis kinetic parameters for main species and NOx precursors[J]. Fuel.2007,86:2367-2376.
    [261]Aho MJ, Hamalainen JP, Tummavuori JL. Importance of solid fuel properties to nitrogen oxide formation through HCN and NH3 in small particle combustion[J]. Combustion and Flame.1993,95:22-30.
    [262]de Jong W. Nitrogen compounds in pressurised fluidised bed gasification of biomass and fossil fuels[D]. Delft University of Technology, Rotterdam,2005.
    [263]Smith WTJ, Harris TB, Pattx-son JM. Pyrolysis of Soybean Protein and an Amino Acid Mixture Having the Same Amino Acid Composition[J]. Journal of Agriculture and Food Chemistry.1974,22:480-483.
    [264]Gallois N, Templier J, Derenne S. Pyrolysis-gas chromatography-mass spectrometry of the 20 protein amino acids in the presence of TMAH[J]. Journal of Analytical and Applied Pyrolysis.2007,80:216-230.
    [265]丁富传,蒋拥华,张健.五种常见氨基酸的热分解动力学及热稳定性的研究[J].化学与生物工程.2003,增刊:156-158.
    [266]Ren QQ, Zhao CS, Chen XP, Duan LB, Li YJ, Ma CY. NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis:Co-pyrolysis of amino acids and cellulose, hemicellulose and lignin[J]. Proceedings of the Combustion Institute.2011,33: 1715-1722.
    [267]Tian FJ, Li BQ, Chen Y, Li CZ. Formation of NOx precursors during the pyrolysis of coal and biomass. Part V. Pyrolysis of a sewage sludge[J]. Fuel.2002,81:2203-2208.
    [268]Chen HF, Namioka T, Yoshikawa K. Characteristics of tar, NOx precursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge[J]. Applied Energy.2011,88:5032-5041.
    [269]Cao JP, Li LY, Morishita K, Xiao XB, Zhao XY, Wei XY, Takarada T. Nitrogen transformations during fast pyrolysis of sewage sludge[J]. Fuel.doi:10.1016/j.fuel. 2010.08.015.
    [270]Bragg WL. The diffraction of short electromagnetic waves by a crystal[J]. Proceedings of the Cambridge Philosophical Society.1913,17:43-57.
    [271]Patterson A. The Scherrer formula for X-Ray particle size determination[J]. Physical Review.1939,56:978-982.
    [272]郭崇涛.煤化学[M].北京:化学工业出版社,1996.
    [273]Solomon PR, Hamblen DG, Carangelo RM, Serio MA, Deshpande GV. Models of tar formation during coal devolatilization[J]. Combustion and Flame.1988,71:137-146.
    [274]Nelson PF, Smith IW, Tyler RJ, Mackies JC. Pyrolysis of coal at high temperatures[J]. Energy & Fuels.1988,2:391-400.
    [275]王鹏,文芳,步学朋,刘玉华,边文,邓一英.煤热解特性研究[J].煤炭转化.2005,28:8-13.
    [276]Luo C, Nakamura M, Toyoda M, Uemiya S, Kohima T. Influence of heating rate during pyrolysis on gasification reactivity of coal chars at high temperatures[J]. Journal of the Japan Institute of Energy.2000,79:1078-1087.
    [277]Kajitani S, Suzuki N, Ashizawa M, Hara S. CO2 gasification rate analysis of coal char in entrained flow coal gasifier[J]. Fuel.2006,85:163-169.
    [278]Bhatia SK, Perlmutter DD. A random pore model for fluid-solid reactions:Ⅰ. Isothermal, kinetic control[J]. AIChE J.1980,26:379-386.
    [279]Dasappa S, Paul PJ, Mukunda HS, Shrinivasa U. The gasification of wood-char spheres in CO2-N2 mixtures analysis and experiments[J]. Chemical Engineering Science.1994, 49:223-232.
    [280]于遵宏,龚欣,沈才大,孙杏元,曹恩洪,肖克俭.加压下煤催化气化动力学研究[J].燃料化学学报.1990,18:324-329.
    [281]Zou JH, Zhou ZJ, Wang FC, Zhang W, Dai ZH, Liu HF, Yu ZH. Modeling reaction kinetics of petroleum coke gasification with CO2[J]. Chemical Engineering Process. 2007,46:630-636.
    [282]Nelson PF, Buckley AN, Kelly MD. Functional forms of nitrogen in coals and the release of coal nitrogen as NOx precursors (HCN and NH3)[C]. Symp (Int) Combust. 1992,24:1259-1267.
    [283]王宝俊,张玉贵,谢克昌.量子化学计算在煤的结构与反应性研究中的应用[J].化工学报.2003,54:477-488.
    [284]庞先勇,吕存琴,吕永康.煤脱硫过程的量子化学研究[J].煤炭转化.2006,29:17-20.
    [285]孙庆雷,李文,陈皓侃,李保庆.煤显微组分分子结构模型的量子化学研究[J].燃料化学学报.2004,32:282-285.
    [286]Domazetis G, James BD, Liesegang J. Computer molecular models of low rank coal and char containing inorganic complexes[J]. Journal of Molecular Modeling.2008,14: 581-597.
    [287]Domazetis G, Raoarun M, James BD, Liesegang J. Molecular modeling and experimental studies on steam gasification of low rank coals catalysed by iron species[J]. Applied Catalysis A.2008,340:105-118.
    [288]李洁,杜梅芳,闫博,张忠孝.添加硼砂助熔剂煤灰熔融性的量子化学与实验研究[J].燃料化学学报.2008,36:519-523.
    [289]刘海明,张军营,郑楚光,王春梅.煤中吡啶型氮热解机理的量子化学研究[J].煤炭转化.2004,27:19-22.
    [290]刘海明,张军营,郑楚光,孟韵.煤中吡咯型和吡啶型氮热解稳定性研究[J].华中科技大学学报(自然科学版).2004,11:13-15.
    [291]孟韵,居学海,肖鹤鸣.密度泛函理论研究煤中有机氮的热解机理[J].南京理工大学学报(自然科学版).2008,2:241-247.
    [292]Mayer I. Bond orders and valences from ab initio wave functions[J]. International Journal of Quantum Chemistry.1986,29:477-483.
    [293]Accelrys, MS Modeling Getting Started, Release 3.2, Accelrys Software Inc.:San Diego,2005.
    [294]Peles JR, Kapateijn F, Moulijin JA, Zhu Q, Thomas KM. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis[J]. Carbon.1995,11: 1641-1653.
    [295]Leupin W, Wirz J. Low-lying electronically excited states of cycl[3.3.3]azine, a bridged 127-perimeter[J]. Journal of American Chemical Society.1980,102:6068-6075.
    [296]Reed TB. Biomass gasification:Principles and Technology[M]. ISBN 0-8155.0852,2, 1981,91-111.
    [297]Bitowfi B, Andersson LA, Bjerie I. Fast pyrolysis of sawdust in an entrained flow reactor[J]. Fuel.1989,68:561-566.
    [298]Sun SZ, Tian HM, Zhao YJ, Sun R, Zhou H. Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor[J]. Bioresource Technology.2010, 101:3678-3684.
    [299]Wei LG, Xu SP, Zhang L, Zhang HG, Liu CH, Zhu H, Liu SQ. Characteristics of fast pyrolysis of biomass in a free fall reactor[J]. Fuel Processing Technology.2006,87: 863-871.
    [300]李水清,李爱民,严建华,任远,李晓东,李润东,池涌,岑可法.生物质废弃物在回转窑内热解研究Ⅰ.热解条件对热解产物分布的影响[J].太阳能学报.2000,21:333-340.
    [301]李水清,李爱民,严建华,任远,李晓东,李润东,池涌,岑可法.生物质废弃物在回转窑内热解研究Ⅱ.热解终温对产物性质的影响[J].太阳能学报.2000,21:341-348.
    [302]Sharma RK, Wooten JB, Baliga VL, Hajaligol MR. Characterization of chars from biomass-derived materials:pectin chars[J]. Fuel.2001,80:1825-1836.
    [303]Blanco Lopez MC, Blanco CG, Martinez-Alonso A, Tascon, JMD. Composition of gases released during olive stones pyrolysis[J]. Journal of Analytical and Applied Pyrolysis.2002,65:313-322.
    [304]Jakab E, Faix O, Till F. Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry[J]. Journal of Analytical Applied Pyrolysis.1997, 40-41:171-186.
    [305]Okumura Y, Okazaki K. Pyrolysis and gasification experiments of biomass under elevated pressure condition[J]. The Japan Society of Mechanical Engineers, Series B. 2007,73:1434-1441.
    [306]杨淑蕙.植物纤维化学[M].3版.北京:中国轻工业出版社,2001.
    [307]王凤翼,钱方.大豆蛋白质生产与应用[M].北京:中国轻工业出版社,2004.
    [308]Abbott L. Organic Matter Breakdown. http://www.botany.hawaii.edu/faculty/webb/BO T311/bot311-00/Roots/WaterHyacinth.htm,2008.
    [309]Milton K, Dintzis FR. Nitrogen-to-Protein conversion factors for tropical plant samples [J]. Biotropica.1981,13:177-181.
    [310]Abraham M, Muraleedhara Kurup G. Pretreatment studies of cellulose waste for optimization of cellulose enzyme activity[J]. Applied Biochemistry and Biotechnology. 1997,62:201-211.
    [311]Richmond A, Borowitzka M A, Borowitzka L J. Micro-Algae Biotechnology[M]. London:Cambridge University Press,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700