用户名: 密码: 验证码:
油气管道的腐蚀及预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋油气开发产业的快速发展,海港油气管道已成为海洋油气开发过程中不可或缺的重要设备。油气钢管服役环境复杂,由于接触油气介质及海水、土壤等环境,服役过程中面临着内外介质的腐蚀而发生油气泄漏事故。由于油气具有易燃、易爆、易毒性等特点,使得油气钢管因腐蚀而产生的危害较大。对油气钢管的腐蚀行为及腐蚀状态预测进行研究,从而制定出恰当的防护措施,已成为确保管道安全运行的有效手段。
     根据服役环境的不同,油气钢管的腐蚀分为管道内壁腐蚀和管道外壁环境腐蚀。本文在分析油气管道腐蚀环境的基础上,以Q235B钢和L245钢为研究对象,采用电化学方法研究了管线钢的内腐蚀行为和外部土壤腐蚀行为,并且基于马尔可夫随机过程研究了油气钢管的腐蚀预测方法。首先,建立马尔可夫链预测模型,分别对管道的外防腐层劣化状态和管壁腐蚀状态进行预测;而后,针对油气管道的维修措施问题引入马尔可夫决策过程,确定了油气管道的最优维修策略。本文围绕油气钢管的腐蚀及预测、决策进行研究,主要研究内容和成果包括以下几个方面:
     (1)模拟大连港油气管道内环境,针对油气管道内壁存在硫化物腐蚀的现状,分别考虑了内腐蚀介质中含硫量、环境温度和介质pH值等主要因素的影响,对管线钢的管内腐蚀行为进行了试验研究。结果表明,Q235B钢和L245钢表现出相似的腐蚀行为。随着含硫量的增加,两者的腐蚀速率先增大后减小。在含硫量为20mg/L时,两者的腐蚀速率最大;含硫量较少时,Q235B钢和L245钢出现点蚀现象,含硫量较高时发生均匀腐蚀,且主要腐蚀产物为Fe3S4。在一定程度上,高含硫量对管线钢具有缓蚀作用;不同含硫量中阻抗谱时间常数的变化,与阻抗谱的退化现象相关。同等条件的腐蚀介质中,L245钢的耐蚀性要优于Q235B钢。不同温度及不同pH值模拟溶液中的测量结果表明,管线钢在该介质中的腐蚀过程受阴极控制。
     (2)根据大连港油气管道附近土壤采样分析,模拟饱和水土壤介质,建立“管线钢—土壤”腐蚀环境,对管线钢的土壤腐蚀行为进行了试验研究。结果表明,Q235B钢比L245钢具有更高的热力学稳定性,但L245钢的耐蚀性要优于Q235B钢,这与两者本身材料的差异性相关。腐蚀前期,两者的电化学阻抗谱均表现为高频区出现小容抗、中频区出现大容抗和低频区出现小感抗;腐蚀后期,低频区小感抗表现出逐渐退化至消失的特征。测量期间Q235B钢的腐蚀速率呈现随时间先增大后缓慢递减的趋势,L245钢的腐蚀速率呈现随时间先缓慢减小后急剧减小的趋势。
     (3)基于马尔可夫过程的随机理论,建立油气管道外防腐层劣化状态预测方法。根据外防腐层质量状态评价标准划分外防腐层劣化状态,分别建立了单一管段外防腐层劣化状态预测模型和整条管线外防腐层劣化状态分布预测模型。根据外防腐层检测数据确定其初始状态分布,进而求解转移概率矩阵,分别预测了单一管段外防腐层劣化状态及整条管线外防腐层劣化状态分布的发展趋势。
     (4)基于马尔可夫过程的随机理论,建立油气钢管管壁腐蚀状态预测方法。根据管体腐蚀损伤评价标准划分管壁腐蚀状态,分别建立了单一管段管壁腐蚀状态预测模型和整条管线管壁腐蚀状态分布预测模型。通过曲线拟合、灰色—马尔可夫链模型分别确定了单一管段和整条管线管壁腐蚀状态的转移概率矩阵,预测了单一管段和整条管线的管壁腐蚀状态发展趋势。
     (5)基于马尔可夫决策过程探究油气管道的维修策略。在确定油气管道维修过程中的腐蚀状态划分以后,分析了油气管道的维修措施及相应费用,并采用策略改进算法对马尔可夫决策过程进行求解。在马尔可夫决策过程应用中,结合一条实际运行油气管线,从腐蚀状态划分、维修措施及费用、不同维修策略下转移概率矩阵的计算及马尔可夫决策过程求解等方面进行了深入探讨,制定了该管线的最优维修策略。
Seaport oil-gas pipelines have become indispensable equipments for the exploitation of oil and gas with the fast development of ocean oil-gas industry. The service environment of oil and gas steel pipelines are complex. It is common reported that oil and gas leakage accidents were happened because of exposing to oil and gas medium or soil environment, which makes the hazard of tube corrosion more greater due to their easy flammable, explosive and toxic feature. Therefore, basing on the research of corrosion behavior and corrosion state prediction for oil and gas steel pipelines, then making out appropriate protective measures, which has become effective means for oil and gas pipeline's safety operation.
     According to different service environment, the corrosion of oil and gas steel pipelines are divided into two groups:pipe inner wall corrosion and pipe exine environment corrosion. Basing on the analysis of corrosion environment for oil and gas steel pipelines, taking Q235B steel and L245 steel for research objects, the internal and exine soil corrosion behavior of steel pipelines are studied by means of electrochemical methods. Moreover, the corrosion prediction models are researched basing on the Markov stochastic process. First, Markov chain prediction models are built, which are used to predicting aging conditions for external anticorrosion and pipe wall corrosion damage. Forthermore, Markov decision is introduced in view of maintenance measures for oil and gas steel pipelines, then optimal maintenance strategy is determined. In this paper, centering on the research of corrosion, prediction and its strategic decision for oil and gas steel pipelines. The following are the main contribution of this thesis:
     (1) Experimental research is conducted on corrosion behaviors for steel pipelines(Q235B steel and L245 steel) inner wall in the oil-gas simulated internal environment of dalian port. The sulphur content, environment temperature and pH values of corrosion medium are considered in view of existing the present situation with sulfide corrosion in oil and gas steel pipelines inner wall. The results find that Q235B steel and L245 steel show similar corrosion behavior. In the corrosion medium, Corrosion rates of them first increase then decrease with the increase of sulphur content. The corrosion rate have the maximum value when the sulphur content is 20mg/L. Q235B steel and L245 steel occur pitting corrosion phenomenon when the sulphur content is low, while general corrosion happened in the high sulphur content, and the main corrosion product is ferriferous sulfide. The change of time constant of impedance spectroscopy in solutions with different sulphur content that is related to aseptic degeneration of impedance spectroscopy. High sulphur extent has a corrosion inhibiting effect to the steel pipelines in a certain extent. The corrosion resisting property of L245 steel is more stronger than Q235B steel in the same corrosion condition. The results of solutions with different temperatures and pH values show that corrosion processes in the corrosion medium are controlled by the cathode process.
     (2) According to sampling and analysis for dalian port soil near the oil-gas pipe, experimental research is conducted on corrosion behaviors for steel pipelines(Q235B steel and L245 steel) in simulated water saturated soil environment of dalian port. The results find that the thermodynamic stability of Q235B steel is higher than L245 steel, while the corrosion resisting property of L245 steel is much stronger than Q235B steel in this condition, which is related to diversity of their nature of materials. At early stage, both of their electrochemical impedance spectroscopy is shown that high-frequency region appears small capacitive reactance, medium-frequency region appears large capacitive reactance and low-frequency region appears little inductive reactance. At later stage, the low-frequency little inductive reactance has become degradation into disappearance gradually. Moreover, the corrosion velocity of Q235B steel increases first then decreases progressively, while the corrosion velocity of L245 steel decreases progressively then decreases rapidly during the measurement period.
     (3) The prediction method for extrrnal coating deterioration state of oil-gas pipelines is established based on Markov process stochastic theory. The prediction model of extrrnal coating deterioration state for a single pipe section and the entire pipeline are established respectively according to classification criteria quality status for extrrnal coating. Their initial state distribution are defined based on inspection data of extrrnal coating, then transition probability matrixes are obtained, and finally the trends of extrrnal coating deterioration state for a single pipe section and the entire pipeline are predicted respectively.
     (4) The prediction method for tube wall corrosion state of oil-gas steel pipelines is established based on Markov process stochastic theory. The prediction model of tube wall corrosion state for a single pipe section and the entire pipeline are established respectively according to classification criteria quality status for pipe body. The tube wall transition probability matrixes of a single pipe section and the entire pipeline are obtained by curve fitting and gray Markov chain model respectively. Furthermore, the trends of tube wall deterioration state for a single pipe section and the entire pipeline are predicted seperately.
     (5) The optimum maintenance strategy of oil-gas pipelines is studied basing on Markov decision process. Maintenance measures and their corresponding cost are analyzed after dividing the corrosion state during oil-gas pipelines'maintenance, and Markov decision process is solved by appling strategy improvement algorithm. The division of corrosion state, maintenance measures and their corresponding cost, the obtaining of transition probability matrixes and the solving of Markov decision process are discussed, which combines with a oil-gas pipeline under service during the application of Markov decision process. Finally, the optimum maintenance strategy for the pipeline is worked out.
引文
[1]Gunter S, Michal S, George F.et al. Global needs for knowledge dissemination, research, and development in materials deterioration and corrosion control [EB/OL]:New York:The World Corrosion Organization,2009 [2009,05]. http://www.corrosion.org.
    [2]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003.
    [3]蒲明.中国油气管道发展现状及展望[J].国际石油经济,2009,(3):40-47.
    [4]杨明华.海洋油气管道工程[M].天津:天津大学出版社,1994.
    [5]石仁委,龙媛媛.油气管道防腐蚀工程[M].北京:中国石化出版社,2008.
    [6]曹备,张琳,杨印臣.地下管道腐蚀控制与检测评估[M].北京:中国方正出版社,2007.
    [7]杨筱蘅.油气管道安全工程[M].北京:中国石化出版社,2005.
    [8]李晓刚,杜翠薇,董超芳等.X70钢的腐蚀行为与试验研究[M].北京:科学出版社,2006.
    [9]杨印臣.城市燃气管道安全评估中的后果严重度评价[J].化工设备与管道,2005,42(6):22-25.
    [1 0]杨印臣.埋地钢管腐蚀隐患检测及整改方案的制订[J].全面腐蚀控制,2006,20(2):20-23.
    [11]Perez N. electrochemistry and corrosion science [M]. Dordrecht:Kluwer Academic Publishers,2004.
    [12]牛韧.论湿硫化氢环境下管道设计材料的选择[J].石油化工腐蚀与保护,2003,20(6):6-10.
    [13]Medvedeva M L, Guryanov V V. On the corrosion state of plants for purifying natural gas from acid components [J]. Protection of metals.2002,38(3):284-288.
    [14]梁成浩编.金属腐蚀学导论[M].北京:机械工业出版社,1999.
    [15]Bullard S J, Covino B S Jr, Cramer S D, et al. Natural Gas Technologies 2005 [C]//Soil corrosion monitoring near a pipeline under CP. Florida:Natural Gas Institute,2005:1-11.
    [16]Medvedeva M L, Guryanov V V. On the corrosion state of plants for purifying natural gas from acid components [J]. Protection of metals.2002,38(3):284-288.
    [17]王凤平,康万利,敬和民等.腐蚀电化学原理、方法及应用[M].北京:化学工业出版社,2008.
    [18]曹楚南.腐蚀电化学原理(第三版)[M].北京:化学工业出版社,2008.
    [19]寇杰,梁法春,陈婧.油气管道腐蚀与防护[M].北京:中国石化出版社,2008.
    [20]Hopkins P. The challenges for frontier pipeline projects. Pipe Dreamer's Conference [C]. Yokohama (Japan),2002:3-32.
    [21]姜敏,支玉明,刘卫东等.我国管线钢的研发现状和发展趋势[J].上海金属,2009,31(6):42-46.
    [22]Rebak R B, Szklarska-Smialowska Z. Influence of stress intensity and loading mode on intergranular stress corrosion cracking of alloy 600 in primary waters of pressurized water reactors [J]. Corrosion. 1994,50(5):378-393.
    [23]Tsay L W, Chen Y C, Chan S L I. Sulfide stress corrosion cracking and fatigue crack growth of welded TMCP API 5L X65 pipe-line steel [J]. International Journal of Fatigue,2001,23(2):103-113.
    [24]Hara T, Asahi H. Conditions under which cracks occur in modified 13% chromium steel in acid solutions with H2S [J]. Corrosion,2000,56(5):533-542.
    [25]Huang H, Shaw W J D. Cold work effects on sulfide stress cracking of pipeline steel exposed to sour environments [J]. Corrosion Science,1993,34(1):61-78.
    [26]谢广宇,唐荻,武会宾等.X70级管线钢硫化物应力腐蚀开裂试验研究[J].物理测试,2008,26(1):26-29.
    [27]熊颖,陈大钧,王君等.油气开采中H2S腐蚀的影响因素研究[J].石油化工腐蚀与防护,2007,24(6):17-19.
    [28]Ren C Q, Liu D X. Corrosion behavior of oil tube steel in stimulant solution with hydrogen sulfide and carbon dioxide [J]. Materials Chemistry and Physics,2005,93(2):305-309.
    [29]《油气田腐蚀余防护技术手册》编委会.油气田腐蚀与防护技术手册(下册)[M].北京:石油工业出版社.1999.
    [30]冯拉俊,马小菊,雷阿利.硫离子对碳钢腐蚀性的影响[J].腐蚀科学与防护技术,2006,18(3):180-182.
    [31]Hamdy A S, Sa'eh A G, Lorenz W J, Shoeib M A, et al. Evaluation of corrosion and erosion-corrosion resistances of mild steel in sulfide-containing NaCl aerated solutions [J]. Electrochimica Acta,2007, 52(24):7068-7074.
    [32]王成达,严密林,赵新伟等.油气开发中H2S/CO2腐蚀研究进展[J].西安石油大学学报(自然科学版),2005,20(5):66-70.
    [33]Xia Z,Chou K C, Szklarska-Smialowska Z. Pitting corrosion of carbon steel in CO2-containing NaCl brine[J]. Corrosion,1989,45(8):636-642.
    [34]刘宏波,王书淼,高铸等.H2S、CO2对油气管道内腐蚀影响机制[J].油气储运,2007,26(12):43-46.
    [35]Srinivasan S. Experiment simulation of multiphase H2S/CO2 system [J], Corrosion,1999, 14:1168-1182.
    [36]Pots B.F.M, John R.C. Improvements on de-Waard Milliams corrosion prediction and applications to corrosion management [A]. Corrosion/02, Paper No.02235, NACE Internationl, Houston, Texas, 2002.
    [37]陈武,潘阳秋,梅平等.H2S/CO2共存腐蚀与缓蚀技术研究进展[J].油气田环境保护,2007,17(3):1-4.
    [38]Wang J Q, Atrens A,. SCC initiation for X65 pipelin steel in the "high" pH carbonate/bicarvonate solution [J]. Corrosion Science,2003,45:2199-2217.
    [39]Parkins R N. Mechanistic aspects of intergranular stress corrosion cracking of ferritic steels [J]. Corrosion,1996,52(5):363.
    [40]张增刚,李继志.埋地管线钢应力腐蚀敏感性分析[J].武汉理工大学学报, 2010,32(3):9-12.
    [41]张亮,李晓刚,杜翠薇等.管线钢应力腐蚀影响因素的研究进展[J].腐蚀科学与防护技术,2009,21(1):62-65.
    [42]陈旭,杜翠薇,李晓刚等.含水量对X70钢在大港滨海盐渍土壤中腐蚀行为的影响[J].北京科技大学学报,2008,30(7):730-734.
    [43]Gupta S K, Gupta B K. The critical soil moisture content in the underground corrosion of mild steel [J]. Corrosion Science,1979,19(3):171-178.
    [44]李素芳,陈宗璋,曹红明等.碳钢在黄土中的腐蚀研究[J].四川化工与腐蚀控制,2002,6(5):12-15.
    [45]Hamadou L, Kadri A, Benbrahim N. Characterization of passive films formed on low carbon steel in borate buffer solution(pH9.2)by electrochemical impedance spectroscopy [J].Applied Surface Science, 2005,252:1510-1519.
    [46]杜娟,李松海,刘建华等.A3钢在芽孢杆菌作用下的腐蚀行为[J].物理化学学报,2010,26(6):1527-1534.
    [47]张亮,李晓刚,杜翠薇等.X70管线钢在库尔勒土壤模拟溶解氧液中的腐蚀行为[J].金属热处理,2007,32(12):93-95.
    [48]蒋晓斌,高惠临.油气管道腐蚀剩余寿命的预测方法[J].石油工业技术监督,2005,21(4):20-22.
    [49]罗金恒,赵新伟,张华等.腐蚀管道剩余寿命预测方法[J].管道技术与设备,2006,(5):37-39.
    [50]周方勤.在役输气管道腐蚀剩余寿命预测技术研究[D].成都:西南石油大学,2006.
    [51]Zhang L, Li X G, Du C W. Effect of environmental factors on electrochemical behavior of X70 pipeline steel in simulated soil solution [J]. Journal of Iron and Steel Research,2009,16(6):52-57.
    [52]胥聪敏,霍春勇,熊庆人.X80管线钢在酸性土壤模拟溶液中的腐蚀行为[J].机械工程材料,2009,(5):33-36.
    [53]曲良山,李晓刚,杜翠薇等.运用BP人工神经网络方法构建碳钢区域土壤腐蚀预测模型[J].北京科技大学学报,2009,31(12):85-91.
    [54]Jones D, Dawson J. Risk assessment approach to pipeline life management [J]. Pipes and Pipelines, 1998,43 (1):5-18.
    [55]翟云皓,郭兴蓬,曲良山等.集输管道腐蚀评价及剩余寿命预测.油气田地面工程[J],2006,25(4):47-48.
    [56]Ahammed M. Probabilistic estimation of remaining life of a pipeline in the presence of active corrosion defects [J]. Pressure Vessels and Piping,1998,75 (4):321-329.
    [57]王海秋,张昌兴,李双林等.油气管道腐蚀失效概率统计及预测模型[J].油气田地面工程,2007,26(4):14.
    [58]刘武,季寿兰,兰志林等.灰色GM(1,1)模型在管道腐蚀预测中的应用[J].管道技术与设备,2008,(05):55-56.
    [59]彭星煜,张鹏,孙德青等.基于灰色GM(1,1)模型埋地金属管道腐蚀速率预测[J].全面腐蚀控制,2009,23(4):30-31.
    [60]赵小玲.基于马尔可夫链的手机市场份额的预测及销售策略[J].上海商学院学报,2010,11(2):98-100.
    [61]李美桂,李壮壮.基于Markov链在GDP增长率中的预测[J].产业与科技论坛,2010,(4):111-112.
    [62]吴诣民,成明峰.基于Markov链的人民币汇率分析与预测[J].统计与信息论坛,2008,23(2):79-81.
    [63]咎欣,宗鹏,吴祈宗.马尔可夫链在高校教师人才流动预测中的应用[J].科技进步与对策,2007,24(1):191-193.
    [64]张雅清.马尔可夫链在教学质量评价中的应用[J].湖北广播电视大学学报,2010,30(3):128-129.
    [65]严薇荣,徐勇,杨小兵等.基于灰色马尔可夫模型的伤寒副伤寒发病率预测[J].数理医药学杂志,2008,21(2):137-139.
    [66]吴晓明,宋长新,王波等.隐马尔可夫模型用于蛋白质序列分析[J].生物医学工程杂志,2002,19(3):101-103.
    [67]张千生.磺脲类药物继发失效的马尔可夫过程[J].数理医药学杂志,2000,13(5):54-55.
    [68]袁传武,史玉虎,唐万鹏等.马尔可夫模型在森林资源预测中的应用[J].湖北林业科技,2009,(1):13-16.
    [69]阮海英.运用马尔可夫模型探讨人类活动对乡村森林景观动态的影响[J].防护林科技,2007,(5):49-51.
    [70]张丹,周惠成.基于指数权马尔可夫链及双原则干旱预测研究[J].水电能源科学,2010,28(4):5-8.
    [71]Li X Y, Yan U S, Jiang G F. Grey-Markov model for road accidents forecasting [J]. Journal of Southwest Jiaotong University,2003,11(2):90-95.
    [72]胡敏涛,杨豪,杨晔等.城市火灾的马尔可夫链预测方法[J].工业安全与环保,2009,35(10):35-37.
    [73]吕品,周心权.灰色马尔可夫模型在煤矿安全事故预测中的应用[J].安徽理工大学学报(自然科学版),2006,26(1):11-14.
    [74]肖珏.基于马尔可夫模型的沥青路面使用性能预测[J].山西建筑,2009,35(36):306-307.
    [75]夏海兵.基于灰色马尔可夫组合模型的在役桥梁承载力模糊可靠性预测[J].现代交通技术,2008,5(2):38-41.
    [76]巩艳芬,于慧贤,许冯军.设备维修的马尔科夫决策及战略思考[J].技术经济,2005,(4):58-60.
    [77]Dan M F, Eugen B, Michal H F, et al. Estimate of structural deterioration process by Markov-China and costs for rehabilitation. In:Life-Cycle Performance of Deteriorating Structures:Assessment, Design and Management [M],2003:424-431.
    [78]韦宝伴.Markov决策在网级路面管理系统中的应用[D].长沙:湖南大学,2003.
    [79]Burgess E H. Planning model for sewer system rehabilitation [J]. Urban Drainage Rehabilitation Programs and Techniques,1994:30-38.
    [80]Kleiner Y. Scheduling inspection and renewal of large infrastructure assets [J]. Infrastructure Systems, 2001,7(4):136-143.
    [81]Micevski T. Kuczera G. Coombes P. Markov model for storm water pipe deterioration. Infrastructure Systems [J],2002,8 (2):49-56.
    [82]Abraham D M, Wirahadikusumah R, Short T J et al. Optimization modeling for sewer network management [J]. Construction Engineering and Management,1998,124 (5):402-410.
    [83]Wirahadikusumah R, Abraham D M, Castello J. Markov decision process for sewer rehabilitation [J]. Engineering Construction and Architectural Management,1999,6 (4):358-370.
    [84]Wirahadikusumah R, Abraham D M, Iseley T. Challenging issues in modeling deterioration of combined sewers [J]. Infrastructure Systems,2001,7 (2):77-84.
    [85]Baik H S, Jeong H S, Abraham D M. Estimating transition probabilities in Markov chain-based deterioration models for management of wastewater systems [J], Water Resources Planning and Management,2006,132 (1):15-24.
    [86]Butt A A, Shahin M Y, Feighan K J et al. Pavement performance prediction model using the Markov process [J]. Transportation Research Record,1987:12-19.
    [87]Yang J D, Gunaratne M, Lu J J et al. Use of recurrent Markov chains for modeling the crack performance of flexible pavements [J]. Transportation Engineering,2005,131 (11):861-872.
    [88]潘玉利.路面管理系统原理[M].北京:人民交通出版社,1998.
    [89]丁锐,王磊.桥梁管理系统中的桥梁退化模型初探[J].山西建筑,2007,33(3):295-296.
    [90]Scherer W T, Glagola D M. An overview of Markovian models for bridge management systems [J]. Proceedings of the ASCE conference on Infrastructure Planning and Management,1993:382-386.
    [91]Mccann D M. The value of information in structural performance assessment [dissertation]. Maryland: Johns Hopkins University,2000.
    [92]Provan J W, Rodriguez III E S. Part I:Development of a Markov description of pitting corrosion [J]. Corrosion (Houston),1989,45(3):178-192.
    [93]Hong H P. Application of stochastic process to pitting corrosion [J]. Corrosion,1999,55(1):10-16.
    [94]Hong H P, Inspection and maintenance planning of pipeline under external corrosion considering generation of new defects [J], Structural Safety,1999,21(3):203-222.
    [95]Valor A, Caleyo F, Alfonso L, et al. Stochastic modeling of pitting corrosion:A new model for initiation and growth of multiple corrosion pits [J]. Corrosion Science,2007,49(2):559-579.
    [96]Caleyo F, Velazquez J C, Valor A, et al. Markov chain modelling of pitting corrosion in underground pipelines [J]. Corrosion Science,2009,51(9):2197-2207.
    [97]Papavinasam S, Doiron A, Revie R W, Sizov V. Model predicts internal pitting corrosion of oil, gas pipelines [J]. Oil & gas journal,2007,105(44):68-73.
    [98]王卫红,李莉萍.燃气管道内防腐的探讨[J].煤气与热力,2003,23(9):562-563.
    [99]龚敏,余祖孝,陈琳.金属腐蚀理论及腐蚀控制[M].北京:化学工业出版社,2009.
    [100]Nestor perez. Electrochemistry and corrosion science [M]. NewYorks:Kluwer academic pulishers, 2004.
    [101]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:北京科学出版社,2002.
    [102]史美伦.交流阻抗谱原理及应用[M].北京:国防工业出版社,2001.
    [103]王梓坤,杨向群.生灭过程与马尔可夫链[M].北京:科学出版社,2005.
    [104]孙洪祥.随机过程[M].北京:机械工业出版社,2008.
    [105]邱菀华,冯允成,魏法杰等.运筹学教程[M].北京:机械工业出版社,2004.
    [106]刘克.实用马尔可夫决策过程[M].北京:清华大学出版社,2004.
    [107]傅东阳,胡昌斌.高速公路沥青路面使用性能马尔可夫概率预测[J].福州大学学报(自然科学版),2005,33(4):518-522.
    [108]张晓华,邱延峻.基于逆阵的路面综合性能马尔可夫预测[J].东北公路,2003,26(3):7-10.
    [109]王佳.高速公路沥青路面使用性能评价与预测决策研究[D].长沙:长沙理工大学,2006.
    [110]陈红萍,刘彬,王艳彦.人工煤气管道内壁腐蚀分析及防腐措施[J].煤气与热力,2007,27(4):13-16.
    [111]Race J.M. Management of Corrosion of Onshore Pipelines[J]. Shreir's Corrosion,2010,4: 3270-3306.
    [112]孟建勋,王健,刘彦成等.油气集输管道的腐蚀机理与防腐蚀技术研究进展[J].重庆科技学院学报:自然科学版,2010,(3):21-23.
    [113]Xie X J, Yang W Q, Cao S N, et al. The effect of sulfide on the corrosion behavior of carbon steel in natural waters [J]. Anti-Corrosion Methods and Materials,2005,52(3):145-147.
    [114]曹楚南,王佳,林海潮.氯离子对钝态金属电极阻抗频谱的影响[J].中国腐蚀与防护学报,1989,9(4):261-270.
    [115]魏华.API X60管线钢在海泥中的腐蚀行为研究[D].青岛:中国海洋大学,2005.
    [116]Ma H Y,Cheng X L,Li G Q, et al.The influence of hydrogen sulfide on corrosion of iron under different conditions [J]. Corrosion Science,2000,23(10):1669-1683.
    [117]Kim J G, Kim Y W. Cathodic protection criteria of thermally insulated pipeline buried in soil[J], Corrosion Science,2001,43(11):2011-2021.
    [118]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,2004.
    [119]梁英教.物理化学[M].北京:冶金工业出版社,1989.
    [120]聂向晖,杜翠薇,李晓刚.温度对Q235钢在大港模拟溶液中腐蚀行为的影响[J].腐蚀科学与防护,2008,29(4):171-174.
    [121]Morris D R, Sampaleanu L P, Veysey D N. The corrosion of steel by aqueous solution of hydrogen sulfide[J]. Electrpchem Soc,1988,127(6):1228-1235.
    [122]罗金恒,王曰燕,赵新伟等.在役油气管道土壤腐蚀研究现状[J].石油工程建设,2004,30(6):1-6.
    [123]武俊伟,李晓刚,杜翠薇等.X70钢在库尔勒土壤中短期腐蚀行为研究[J].中国腐蚀与防护学报,2005,25(1):15-19.
    [124]Standard practice for preparing, cleaning, and evaluating corrosion test specimens [S]. ASTM Designation G1.
    [125]埋地钢质管道外腐蚀直接评价[S].SY0087.1-2006,2006:29.
    [126]Lorenz W J, Mansfeld F. Determination of corrosion rates by electrochemical DC and AC methods [J]. Corrosion Science,1981,21(9):647-672.
    [127]尹桂勤,张莉华,常守文等.土壤腐蚀研究方法概述[J].腐蚀科学与防护技术,2004,16(6):367-374.
    [128]李谋成,林海潮,曹楚南.碳钢在土壤中腐蚀的电化学阻抗谱特征[J].中国腐蚀与防护学报,2000,20(2):111-117.
    [129]李谋成,林海潮,曹楚南.碳钢在中性土壤中的腐蚀行为研究[J].材料科学与工程,2000,(4):58-61.
    [130]王文杰,邱于兵,金名惠.X70钢在库尔勒土壤中腐蚀初期的电化学阻抗谱特征[J].材料保护,2007,40(12):18-21.
    [131]林玉珍,杨德钧.腐蚀和腐蚀控制原理[M].北京:中国石化出版社,2007:243.
    [132]潘应君,张恒,刘静.材料环境学[M].北京:冶金工业出版社,2004:73-75。
    [133]天华化工机械及自动化研究设计院编.耐蚀金属材料及防蚀技术-腐蚀与防护手册(第2卷)[M].北京:冶金工业出版社,2008.
    [134]刘冰,张宏,何仁洋.埋地钢质管道沥青外覆盖层保护失效评价概述[J].腐蚀与防护,2006,27(2):90-93.
    [135]Measurement of protective coating electrical conductance on underground pipelines [S]. NACE TM0102-2002.
    [136]Pipeline external corrosion direct assessment methodology [S]. NACE RP0502-2002.
    [137]埋地钢制管道外防腐层修复技术规范[S].SY/T5918-2004.
    [138]何仁洋,张洪泉,王力等.埋地钢质管道外覆盖层安全质量分级评价方法研究[J].化工设备与道,2004,41(1):22-24.
    [139]城市燃气埋地钢质管道腐蚀控制技术规程[S].CJJ95-2003.
    [140]俞蓉蓉,蔡志章.地下金属管道的腐蚀与防护[M].北京:石油工业出版社,1998.
    [141]埋地钢质管道阴极保护技术规范[S].GB/T21448-2008.
    [142]河北沧州银泽防腐材料有限公司.埋地钢质管道防腐层的发展简史及性能分析[EB/OL]. (2010, 04,12). http://www.yinzekeji.com/?show/3/2.html.
    [143]向才旺.城镇燃气埋地钢质管道腐蚀控制技术规程宣贯教材[M].北京:中国计划出版社,2004.
    [144]钢质管道管体腐蚀损伤评价方法[S].SY/T6151-1995.
    [145]黄新杰.带腐蚀缺陷管道剩余寿命预测方法研究[D].成都:西南石油学院,2002.
    [146]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002.
    [147]熊和金,徐华中.灰色控制[M].北京:国防工业出版社,2005.
    [148]涂装前钢材表面锈蚀等级和除锈等级[S].GB/T8923.2-2008.
    [149]胡运权,郭耀煌.运筹学教程[M].北京:清华大学出版社,2003.
    [150]Hillier S F, Lieberman G J. Introduction to operations research 6th [M]. New York:McGraw Hill Book Company,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700