用户名: 密码: 验证码:
基于热力学分析的常减压装置流程优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是人类物质活动的基础,节约能源一直是摆在学术界和工业界面前的重大课题。作为石油化工企业用能大户的常减压装置,其能量消耗约占整个炼油厂所用能量的20%~30%。目前,常减压装置的节能措施主要是从提高装置能量回收率入手。随着节能工作的深入,这方面的困难越来越大。因此,今后要进一步降低能耗,必须在降低工艺用能方面挖潜力。常减压装置的改造及设计主要依靠经验,但是近年来很多炼油装置所加工的原油品种、性质发生了较大的变化。为了分析、筛选并组合提高原油加工能力和节约能量的工艺路线,本文选取两套正在运行的进料分别为轻油及重油两种工况的常减压装置现场数据进行热力学分析,分别优化组合并设计出针对轻油及重油的最优工艺路线。
     首先采集并整理现场操作数据,搭建两套装置的模型,模拟结果与现场运行数据吻合的很好,为热力学分析提供了准确的原始状态数据集。另外,根据现场数据反推得到修正的原油蒸馏曲线,并采用聚类分析的方法判断了三种原油之间的亲疏关系,表明修正在合适的范围内。
     然后,在对常减压工艺流程中初馏、常压及减压单元各工艺方案深入分析的基础上,利用热力学分析模型、R软件及正交试验方法,针对现有装置单独分析初馏单元各方案,常压和减压单元采用传统流程。针对新建装置,以工艺流程中每个单元的方案变化为变量,进行全流程深入的理论分析,提出了炼制不同类型原油的优化流程。
     完成流程层面的优化工作以后,利用CGCC曲线、灵敏度分析及目标函数优化,进一步进行分馏塔内部优化,以期达成整个过程的全面优化。总之,本文结合大量现场数据,基于相关热力学原理进行流程的系统分析和全面优化,研究方法和成果对同类装置用能分析的相关研究方法以及工艺优化等工业实践具有重要的参考价值。
Energy is the material base of human activity and doubtlessly saving energy is also a significant issue met with academia and industry societies. Crude distillation is so energy intensive that it reportedly requires up to 20-30% of the total that of the whole refinery. Presently, the energy conservation measures for this distillation unit are spontaneously directed to improving the energy recovery, which becomes more and more difficult along with the progress and maturity of technology in this respect. Therefore, further energy saving lies in diging latent capacity from process energy supply through process optimization. To make the whole thing worse, crudes and their features for more and more refinery distillation unit have been changed, sometimes from heavy to light. Thus, designing process scheme based on experience can hardly reach a satisfying result. In this regard, this work focuses its attention on thermodynamic analyses, screening and combination or development of two schemes individually for light and heavy cases. The whole work started with field investigation of two running atmospheric and vacuum distillation units, with their feeding, heavy and light respectively.
     First, operational data from the spot were collected and processed. Then Aspen Plus platform was applied to these 2 operative modes. The simulation results describing the original flowsheet were in good accordance with the plant data, which provided datasets to thermodynamic analysis. Furthermore, the new distillation curve was deduced by plant data. And the clustering analysis of three kinds of crude was done to examine the close or distant relationships among them. This indicates that the revised distillation curve obtained is in proper range.
     Then based on in-depth analysis on pre-distillation unit, atmosphere distillation unit and vacuum distillation, only the schemes of pre-distillation unit were changed aiming at revamp device, and various schemes of three units were used to carry out the permutation and combination for new device. The optimum process flows, evaluated by exergy analyses, orthogonal testing method and R software, were proposed aiming at crude with different property.
     After the accomplishment of the process level optimization, Column Grand Composite Curve (CGCC), sensitivity analysis and off-line optimization were applied to optimize the column inner to reach a sound completion. In all, a system analysis and fully optimization on this issue is made based on a mass of field data under thermodynamic principles. This approach and its results can gave reference to researches about energy analyses on similar units, as well as guidance to industrial practice on process optimization.
引文
[1]林世雄,石油炼制工程,第1版,石油工业出版社,1988年6月.
    [2]华贲,当前我国炼油工业节能的几个问题,中国石油化工信息指南,2003年上卷.
    [3]冯宵,化工节能原理与技术,第二版,化学工业出版,2004: 6.
    [4]靳尊龙,换热网络的模拟、优化与综合,郑州大学硕士学位论文,2004.
    [5] Fonyo Z and N BenkO. Enhancement of process integration by heat pumping. Computers and Chemical Engineering, 1996.20( Suppl.):85-90.
    [6] Homsak M and Glavic. Pressure exchangers in pinch technology. Computers and Chemical Engineering, 1996. 20(6/7):711-715.
    [7] Staine F and D Favrat. Energy integration of industrial processes based on the pinch analysis method extended to include exergy factors. Applied Thermal Engineering, 1996. 16(6):497-507.
    [8] Feng X and X X Zhu. Combining pinch and exergy analysis for process modifications. Applied Therma lEngineering, 1997. 17(3):249-261.
    [9] Kravanja Z and Glavic. Cost targeting for HEN through simultaneous optimization approach: a unified pinch technology and mathematical programming design of large HEN. Computers and Chemical Engineering, 1997. 21(8):833-853.
    [10] Marechal E G. Heyen and B. Kalitventzeif. Energy saving in methanol synthesis:use of heat integration techniques and simulation tools. Computers and Chemical Engineering, 1997. 21(Suppl.):511-516.
    [11] Sofjn M and J Paris, Combined exergyand pinch approach to process analysis. Computersand Chemical Engineering, 1997. 21(Suppl.):23-28.
    [12] Zhu X X and N D K Asante. Diagnosis and optimization approach for heat exchanger network retrofit. AIChE Journal, 1997. 45(7): 1488-1503.
    [13] Bagajewicz MJ. Energy savings horizons for the retrofit of chemical processes: Application to crude fractionation units. Computers and Chemical Engineering. 1998. 23:1-9.
    [14] Bosnjakovic F. and k E Knonhe. Pinch analysis for cooling towers. Energy Conversion and Management, 1998. 39(16-18):1745-1752.
    [15] Marechal F and B Kulitventze. Energy integration of industrial sites: tools, methodology and application.Applied Thermal Engineering, 1998. 18:921-933.
    [16] Papalexandri K and D I Patsiatzis. Heat integrationaspectsinacrude preheat refinery section. computers and Chemical Engineering, 1998. 22(suppl.): 141-148.
    [17] Reisen J L B v, G T Polley, and J.T. Verheijen. Structural targeting for heat integration retrofit.Applied Thermal Engineering, 1998. 18(5): 283-294.
    [18] Ficarella A and D Laforgia. Energy conservation in alcohol distillery with the application of pinch technology. Energy Conversion and Management, 1999. 40:1495-1514.
    [19] Nie X R and X X Zhu. Heat exchanger network retrofit considering pressure drop and heat-transfer enhancement. AIChE Journal, 1999. 45(6):1239-1254.
    [20] Rivera-Ortega et a1. Thermal integration of heat pumping systems in distillation columns. Applied Thermal Engineering, 1999. 19: 819-829.
    [21] Sorin M and J Pans, Integrated exergy load distribution method and pinch analysis. Computers and Chemical Engineering, 1999. 23: 497-507.
    [22] Bagajewicz M and H Rodera. Energy savings in the total site heat integration across many plants. Computers and Chemical Engineering, 2000. 24: 1237-1242.
    [23] Ebrahim M. and AI Kawari. Pinch technology: an efficient tool for chemical-plant energy and capital-cost saving. Applied Energy, 2000. 65:45-49.
    [24] Jezowski J, R Bochenek and A Jezowska. Pinch locations at heat capacity flow-rate disturbances of streams for minimum utility coat heat exchanger networks. Applied Thermal Engineering, 2000. 20:1481-1494.
    [25] Markowski M. Reconstruction of a heat exchanger network under industrial constraints-the case of a crude distillation unit. Applied Thermal Engineering, 2000. 20:1535-1544.
    [26] Roque M C and L M F Lona. economics of the detailed design of heat exchanger networks using the Bell Delaware method. Computers and Chemical Engineering. 2000. 24:1349-1353.
    [27] Silva M L and R J Zemp. Retrofit of pressure drop constrained heat exchanger networks. Applied Thermal Engineering, 2000. 20:1469-1480.
    [28] Tantimurat L,A C Kokossis and F U Muller. The heat exchanger network design as a paradigm of technology integration. Applied Thermal Engineering, 2000. 20: 1589-1605.
    [29] AI-Riyami B A, J Klemes and S Perry. Heat integration retrofit analysis of a heat exchanger network of a fluid catalytic cracking plant. Applied Thermal Engineering, 2001. 21:1449-1487.
    [30] Furman K.C and N V Sahinidis. Computational complexity of heat exchanger network synthesis. Computers and Chemical Engineering,2001.25:1371-1390.
    [31] Kalitventzeff, B F Marechal and H Closon. Better solutions for process sustainability through better insight in process energy integration. Applied Thermal Engineering, 2001. 21:1349-1368.
    [32] Martin LL and V Manousiouthakis.Total annualized cost optimality properties of state space models for mass and heat exchanger networks. Chemical Engineering Science, 2001. 56:5835-5851.
    [33] Ozksn S and S Dineer. Application for pinch design of heat exchanger networks by use of a computer code employing an improved problem algorithm table.Energy Conversion and Management, 2001. 42:2043-2051.
    [34] Wang L and B.Sanden, Detailed simulation of heat exchanger networks for flexibility consideration.Applied Thermal Engineering, 2001. 21:1175-1184.
    [35] Bengtsson, C et a1. Co-ordination of pinch technology and the MIND method-applied to a Swedish board mill. Applied Thermal Engineering, 2002. 22:133-144.
    [36] Bjork k.M and T Westerlund. Global optimization of heat exchanger network synthesis problems with and without the isothermal mixing assumption. Computers and Chemical Engineering, 2002. 26:1581-1593.
    [37] Lakshmanan R and E.S Fraga. Pinch location and minimum temperature approach for discontinuous composite curves. Computers and Chemical Engineering, 2002. 26:779-783.
    [38] Matijasevia L and H Otmaeia. Energy recovery by pinch technology. Applied Thermal Engineering, 2002. 22:477-484.
    [39] Schacl K. Straight forward solutions of heat exchanger networks(HEN) problems. Chem. Eng. Technol, 2002.25:1107-1114.
    [40] Shivakumar k and S Narasimhan. A robust and efficient NLP formulation using graph theoretic principles for synthesis of heat exchanger networks. Computers and Chemical Engineering, 2002. 26:1517-1532.
    [41] Axelsson H et a1. Potential for green house gas reduction in industry through increased heat recovery and/or integration of combined heat and power. Applied Thermal Engineering, 2003. 23: 65-87.
    [42] Bagajewicz M J and A F Barbaro. On the use of heat pumps in total site heat integration. Computers and Chemical Engineering, 2003. 27:1707-1719.
    [43] Brodowicz k and M Markowski. Calculation of heat exchanger net works for limiting fouling effects in the petrochemical industry. Applied Thermal Engineering, 2003. 23:2241-2253.
    [44] Frausto-Hemandez S et a1. MINLP synthesis of heat exchanger networks considering pressure drop effects.Computers and Chemical Engineering, 2003. 27:1143-1152.
    [45] Herrera A, J Islas and A Arriola. Pinch technology application in a hospital. Applied Thermal Engineering, 2003. 23:127-139.
    [46] Lavric V et a1. Entropy generation reduction through chemical pinch analysis. Applied Thermal Engineering, 2003. 23:1837-1845.
    [47] M G Manfrida and A Ziebik. Parametric study of HRSG in case of repowered industrisl CHP plant.Energy Conversion and Management, 2003. 44: 995-1012.
    [48] M.A .S.S. Ravagnani, A. da Silva, and A L Andrade. Detailed equipment design in heat exchanger networks synthesis and optimization. Applied Thermal Engineering, 2003. 23:141-151.
    [49] Rodera H, D L Westphalen and H K Shethna. A methodology for improving heat exchanger network operation. Applied Thermal Engineering, 2003. 23:1729-1741.
    [50] Ruyck J.D, et al. Broadening the capabilities of pinch analysis through virtual heat exchanger networks. Energy Conversion and Management, 2003. 44:2321-2329.
    [51] Vaclavek V, A Novotna, and J Dedkova. Pressure as a further parameter of composite curves energy process integration. Applied Thermal Engineering, 2003. 23:1785-1795.
    [52] Wang Y et a1. Appfication of total process energy-integration in retrofitting an ammonia plant. Applied Energy. 2003. 76:476-480.
    [53] Sema M and A Jhnenez. An area targeting algorithm for the synthesis of heat exchanger net works. Chemical Engineering Science, 2004. 59:2517-2520.
    [54] Salama A.I.A. Numerical techniques for determining heat energy targets in pinchanalysis.Computers and Chemical Engineering, 2005. 29:1861-1866.
    [55] Geldermann J, M.Tfeitz and O.Rentz. Integrated technique assessment based on the pinch analysis approach for the design of production networks. European Journal of Operational Research, 2006. 171:1020-1032.
    [56] Krajnc M, A.Kovac-Kralj and Glavic. Heat integration in a specialty produc t process.Applied Thermal Engineering, 2006. 26:881-891.
    [57] Lavric E.D et a1. Supercritical water oxidation improvements through chemical reactors energy integration. Applied Thermal Engineering, 2006. 26:1385-1392.
    [58] Nourcldin M B and Ak Hasan. Global energy targets and optimal operating conditions for waste energy recovery in Bisphenol-A plant. Applied Thermal Engineering, 2006. 26:374-381.
    [59] Pourali O, M Amidpour and D Rashtehian. Time decomposition in batch process integration. Chemical Engineering and Porcessing, 2006. 45:14-21.
    [60] Salama A.I.A. Determination of the optimal heat energy targets in heat pinch analysis using a geometry based approach . Computers and Chemical Engineering, 2006. 30:758-764.
    [61] Shyamsundar V and G Rangaiah. A method for simulation and optimization of mulfiphase distillation. Computers and Chemical Engineering. 2000. 24:23-37.
    [62] Diamond D et a1. Improving the undemtanding of a novel complex azentropic distillation process using a simplified graphical model and simulation. Chemical Engineering and Processing, 2004. 43:483-493.
    [63] Jhon Y H and T h Lee. Dynamic simulation for reactive distillation with synthesis.Separation and Purification Technology, 2003. 31:301-317.
    [64] Eiden U and S Scholl. Use of simulation in rating and design of distillation units.Computers and Chemical Engineering, 1997. 21(Suppl.):199-204.
    [65] Lavric V, V Plesu and J D Ruyck. Chemical reactors energy integration through virtual heat exchanger-benefits and drawbacks. Applied Thermal Engineering, 2005. 25:1033-1044.
    [66] Hwa C S. Mathematical for mulation and optimization of heat exchanger networks using separable programming. AIChE-Intern. Chem. Eng. Symp. Ser., NewYork, 1965, No4: 101~106.
    [67] Gundersen T. Achievements and future challenge in industrial design applications of process system engineering. 4th International Symposium on Process system Engineering, PSE’91, 111.
    [68] Nishida N, Liu Y A, Lapidus L. Studies in chemical Proeess design and synthesis (Ⅲ): A simple and practical approach to the optimal synthesis of heat exchanger networks. AIChE J, 1977, 23: 77~93.
    [69] Gundersen T and Naess L. The synthesis of cost optimal heat exchanger, An industrial review of the art. Computers Chem. Engng, 1988. 12(6): 503~530.
    [70] CerdáJ and Stephanopoulos G. Structural Operability analysis of heat exchanger networks,Ⅱ: No convex networks with large temperature variations, Computers chem. Engng, 1989, 14: 213~225.
    [71] Linnhoff B, Ahmad S. Cost optimum heat exchanger networks-Ⅰ: Minimum energy and capital using simple model for capital cost. Computers Chem Engng, 1990, 14: 729~750.
    [72] Furman K C, Sahinidis N V. A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century. Ind. Eng. Chem. Res. 2002, 41: 2335~2370.
    [73]董其伍,靳遵龙,刘敏珊等,换热网络综合优化研究方法的新进展.轻工机械,2 006, 24(3): 150~152.
    [74]树明,工程热力学,化学工业出版社,2001.
    [75]肖立刚,张道光,段维忠,常减压蒸馏联合装置节能设计,石油规划设计, 1999, 10(2) :26-29.
    [76]车俊铁,蔡晓君,王丽,王建军,炼厂常减压加热炉节能改造综合分析,工业炉,2001, 23(1):33-36.
    [77]高维平,刘谦,郑绪光,赵弄春,常减压换热网络的节能研究,化工科技, 19997:49-54.
    [78] Rudd D F. The synthesis of system design.Ⅰ: Elementary deposition theory, AIChE J. 1968, 14: 343-349.
    [79] P. Chandra Prakash Reddy, I. A. Karimi, and R. Srinivasan. Novel Solution Approach for Optimizing Crude Oil Operations. AIChE Journal, 2004. 50(6): 1177-1197.
    [80] By Jlong W. Seo, Min Oh and Tae H. Lee. Design Optimization of Crude Oil Distillation. Full Paper, 2000. 23(2): 157-164.
    [81] Raja Kumar More, Vijaya Kumar Bulasara, Ramgopal Uppaluri, Vikas R. Banjara. Chemical Engineering Research and Design, 2010. 88: 121~134.
    [82] K. Liebmann and V. R. Dhole. Integrated Crude Distillation Design, 1995. 19: 119-124.
    [83] Mohammad Reza Jafari Nasr, Mehdi Majidi Givi. Modeling of crude oil fouling in preheat exchangers of refinery distillation units, Applied Thermal Engineering. 2006. 26: 1572-1577.
    [84] Leo Chau-Kuang Liaua, Thomas Chung-Kuang Yangb, Ming-Te Tsaib. Expert system of a crude oil distillation unit for process optimization using neural networks, Expert Systems with Applications. 2004 .26: 247~255.
    [85] K. Liebmann, V. R. Dhole. and M, Jobson. Integrated design of a Conventional crude oil distillation tower using pinch analysis, Institution of Chemical Engineers. 1998 . 76:335~347.
    [86] S. Motlaghi a, F. Jalali a, M. Nili Ahmadabadi. An expert system design for a crude oil distillation column with the neural networks model and the process optimization using genetic algorithm framework, Expert Systems with Applications. 2008. 35: 1540-1545.
    [87] M. Gadalla, M. Jobson and R. Smith. Optimization of existing heat-integrated refinery Distillation systems. Institution of Chemical Engineers. 2003. 81: 147-152.
    [88] Ricardo Rivero, Consuelo Rendo and Salvador Gallegos. Exergy and exergoeconomic analysis of a crude oil combined distillation unit, Energy. 2004. 29: 1909-1927.
    [89] Hohmann E C. Optimum networks for heat exchange. PhDThesis. University of Southern California, 1971.
    [90] Linnhoff B., Flower J R. Synthesis of heat exchanger network (I): systematic generation of energy optimal networks. AIChE J, 1978.24(4): 633-642.
    [91] Nishida N, Stephanopoulos G, Westberg A W. A review of Proeess synthesis. AIChE J, 1981. 27: 321-351.
    [92] Linnhoff B and Hindmarsh E. The pinch design method for heat exchanger networks. Chem Engng Sci, 1983. 389(5): 745-763.
    [93] Linnhoff B. Pinch analysis-a-state-of-the-art overview. Chem. Eng. Res. Des, 1993, 71(A): 503-522.
    [94]王林、段占庭,周荣琪,常减压新型流程的节能效果,化工学报,2000,51(3):383-389.
    [95]陈士军,常减压蒸馏装置节能改进,能源研究与利用,2003,46-48.
    [96]尹清华,陈清林,杨道红,华责,陆恩锡,过程系统扩产与能量综合同时优化的拥经济模型及其策略,炼油设计,2000, 3(8):55-59.
    [97]曾敏刚,尹清华,华责等,催化裂化-气体分馏热联合装置节能改造,华北电力大学学报,2000, 31(11): l26-129.
    [98]朱明善,能量系统的火用分析,北京:清华大学出版社,1998.
    [99]宋之平,王家,节能原理,北京:水利电力出版社,1985.
    [100]朱自强,徐汛.化工热力学,化学工业出版社(第二版),1995, 3.
    [101]毕明树,工程热力学,北京:化学工业出版社,2010.
    [102]杨少华,基于环境(火用)经济学策略的清洁过程系统优化研究.华南理工大学博士学位论文,2000.
    [103]项新耀,工程火用分析方法,石油工业出版社,1990.
    [104]姚平经,全过程系统能量优化综合,大连,大连理工大学出版社,1995.
    [105]杨东华,火用分析和能级分析,科学出版社,1986.
    [106]沈静珠,过程系统优化,清华大学出版社,北京,1994.
    [107]邵之江等,基于自动微分的精馏塔优化计算灵敏度分析川,化工学报, 2004,55(8):1296-1299.
    [108]瞿国华, 21世纪中国炼油工业的重要发展方向-重质(超重质)原油加工,中外能源,2007, 12(3):54-62.
    [109]魏忠、扬宇晖, 21世纪中国炼油工业的重要发展方向-重质(超重质)原油加工,中外能源,2000, 29(3):171-174.
    [110]范晓梅,刘承平,常减压蒸馏装置加工国外轻质原油的工艺路线选择,石油炼制与化工,1998, 29(6):6-12.
    [111] Shuncheng Ji and Miguel Bagajewicz. Design of Crude Fractionation Units with Preflashing or Prefractionation: Energy Targeting. Ind. Eng. Chem. Res. 2002, 41, 3003-3011.
    [112] Massimiliano Errico, Giuseppe Tola, Michele Mascia. Energy saving in a crude distillation unit by a preflash implementation. Applied Thermal Engineering. 2009, 29: 1642-1647.
    [113]王仲华,原油蒸馏装置常压预气化多段进料生产工艺,中国,发明专利, ZL00124598.8,2004.6.30
    [114] Husain Al-Muslim, Ibrahim Dincer, Syed M. Zubair. Exergy Analysis of Single- and Two-Stage Crude Oil Distillation Units. Journal of Energy Resources Technology. 2003, 125:199-207.
    [115] H. Al-Muslim a, I. Dincer , S.M. Zubair c. Effect of reference state on exergy efficiencies of one- and two-stage crude oil distillation plants. International Journal of Thermal Sciences.2005,44: 65-73.
    [116]张吕鸿、张道光、吴衍兴等,带有减压闪蒸塔的常减压蒸馏方法及设备,中国,发明专利,CN101376068A,2009.3.4
    [117]陈建民、李和杰、武劲松等,石油常减压蒸馏工艺及其装置,中国,发明专利,CN1454965A,2003.11.2
    [118] Al-Muslim H. Energy and exergy analyses of crude oil distillation plants. M.Sc. Thesis, KFUPM, Dhahran. 2002.
    [119]华贲,工艺过程用能分析与综合,北京:烃加工出版社出版,1989.
    [120]朱明善,能量系统的火用分析,北京:清华大学出版社出版,1988.
    [121] Govin OV, Diky VV and Kabo GJ, et al. Evaluation of the chemical exergy of fuels and petroleum fractions. Journal of the Thermal Analysis Calorimetry, 2000,62:123-133.
    [122] Hinderink AP, Kerkhof FPTM and Lie ABK, et al. Exergy analysis with a flow-sheeting simulator-Ιtheroy; calculating exergies of material steams. Chemical Engineering Science,1996,51(20):4693-4700.
    [123] Ricardo RIVERO, Consuelo RENDON and Leodegario MONROY. The Exergy of Crude Oil Mixtures and Petroleum Fractions: Calculation and Applicatio, Int.J. Applied Thermodynamics,1998, l.2 (3):115-123.
    [124]沈邦兴,文昌俊,实验设计及工程应用,北京:中国计量出版社出版, 2005.
    [125]正交试验设计法编写组,正交试验设计法,上海:上海科技出版社出版, 1978.
    [126]谢季坚,刘承平,模糊数学方法及其应用,武汉:华中科技大学出版社, 2001.
    [127]宋帮勇,程亮亮,孔祥冰等,应用模糊聚类分析法预测原油加工方案,石化技术与应用,2008, 26(3): 240-243.
    [128]薛毅,陈立萍,统计建模与R软件,北京:清华大学出版社,2007.
    [129] H. Al-Muslim a, I. Dincer , S.M. Zubair c. Effect of reference state on exergy efficiencies of one- and two-stage crude oil distillation plants. International Journal of Thermal Sciences.2005,44: 65-73.
    [130] Dhole V.R and linnhoff B, Distillation Column Targets. Computers chem.Energ, 1993,17:549-560.
    [131]李振民,复杂精馏塔的夹点分析,石油炼制与化工,1998, 29: 55-58.
    [132]李会泉,祝刚,王世广,姚平经,复杂精馏塔的用能分析,高校化学工程学报,1998, l2 (2): 146-151.
    [133]魏寿彭,石油化工生产过程最优化,中国石化出版社,1994.
    [134]王燕,胡海兰,文伯欣,常压蒸馏系统的建模与优化,石油化工自动化, 2000, 5:32-34.
    [135]李学范,周明宇,催化裂化装置主分馏塔扩能改造模拟及优化分析,炼油与化工,2005, 16(3):28-30.
    [136] A.A.Safavi, A.Nooraii, J.A.Romagonoli. A Hybrid Model Formulation for a Distillation Column and the On-line Optimisation Study, Journal of Process Control, 1998, 9(2):125~134.
    [137] G.M.Ostrovsky, M.Yu.et.al. Flexibility Analysis and Optimization of Chemical Plants with Uncertain Parameters, Computers Chem.Engng, 1994, 18(8):755-767.
    [138] K.H.Pang, C.L.E.Swartz, V.S.Verneuil. On-line Optimization of A Crude Distilation Unit, Proceedings of the ISA International Conference, 1980:719-748.
    [139] P.W.Gallier, T.P.Kisala. Process Optimization by Simulation, Chem.Eng, 1987:60-66.
    [140]周文,胡山鹰,李有润,沈静珠,燃料型减压塔模拟、在线修正和优化系统的开发,石化技术, 1999, 6(3):157-161.
    [141]李秀芝,林敏杰,王玉亮,常减压蒸馏装置减压深拔的研究,石化技术, 2005, 12(3):10-14.
    [142]赵晓军,陈伟军,杨敬一,徐心茹,常减压蒸馏装置负荷转移技术的模拟与优化,计算机应用, 2005, 35(12):40~44.
    [143]王健,陈宏,陈丙珍,何小荣,大型化工系统优化的并行算法开发,计算机应用与化学,2001, 18(3):210-213.
    [144]周传光,金思毅,赵文,韩方煜,常减压蒸馏装置在线数据校正与优化控制,青岛化工学院学报, 2000, 21(2):134-138.
    [145]潘立登,聂雪媛,马俊英,常减压蒸馏装置监控先进控制和优化控制,石油化工自动化,2001, 6:10-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700