用户名: 密码: 验证码:
中微双孔分子筛的纳米制备、结构建模及构-效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于沸石分子筛受限于自身的微孔孔道,在参与化学反应过程中存在巨大的传质阻力,而有序中孔分子筛虽然将孔径尺寸扩展到了中孔范围,但其孔壁结构无定形,导致了有序中孔分子筛的水热稳定性较差、酸催化活性较低,无法满足工业催化反应的需要,因此,开发兼具沸石分子筛的强酸催化活性和可降低传质阻力的中孔结构的新型中微双孔分子筛对于处理复杂气体组分吸附与分离、大分子传递与输送以及大分子多级反应等方面具有重要的意义。鉴于此,本文综合运用多种实验技术及分子模拟技术,开展中微双孔分子筛的纳米制备、结构建模以及构-效关系等方面的研究。
     本文创新地将水热合成法用于限制域生长,以三维有序介孔碳为硬模板,成功制备了一系列具有不同晶相结构和相同三维高度有序中孔结构的3DOm-i分子筛(3DOm-i LTA, 3DOm-i MFI, 3DOm-i BEA, 3DOm-i FAU, 3DOm-i LTL),并通过控制反应条件实现3DOm-i分子筛的硅铝比及孔结构在一定范围内内自由调变。
     本文采用超声溶解的方法对水热合成出的3DOm-i分子筛进行了拆卸,制备了单分散的沸石纳米晶体,并创新地将密度梯度离心方法用于沸石纳米晶体的分离与提纯;本文还通过BEA纳米晶体与Silicalite-1纳米晶体Au纳米晶体相互复合,制备出新型的沸石/沸石、沸石/纳米金复合材料,有望将双重酸活性位、酸活性位/金属活性位之间的协同作用应用于特定的催化反应,实现双重/多重活性位的协同催化。
     本文采用限制域生长的方法,研究新类型的分子筛材料——片层状MFI分子筛,在有限空间内的生长,成功制备了具有中空结构、外壳为层状MFI的分子筛微球,这是目前对片层状MFI分子筛形貌控制的首次报道。
     本文采用沸石纳米微晶自组装的方法成功制备了中微双孔分子筛ZSM-5-MCM-41,并采用分子建模技术首次建立起具有稳定结构的原子级模型,并运用该结构模型研究了ZSM-5-MCM-41对气体的吸附性能。
     本文以双亲性表面活性剂P123为模板制备出高质量的中微双孔分子筛SBA-15,并通过建立其原子级结构模型从微观层面研究SBA-15微/中孔结构对气体吸附的影响。
     本文创新地采用介观动力学模拟方法研究了双亲性表面活性剂P123在中微双孔分子筛SBA-15形成过程中的致孔机理,深入研究了有机模板剂、硅酸物种的电荷效应以及它们之间的电荷匹配作用对SBA-15介观相结构的影响;此外,通过模拟温度对模板剂P123聚集结构的影响,找寻出了一种温控的方法调节SBA-15微/中孔结构,可望指导实验定向合成具有特定微/中孔搭配的中微双孔分子筛SBA-15。
     本文从分子工程学的角度出发,开发和制备了多种兼具沸石分子筛的酸催化活性和可降低传质阻力的中孔结构的中微双孔分子筛,并将分子模拟技术与实验技术相结合,从微观层面上研究了中微双孔分子筛的结构特点、结构与性能之间的关系以及形成机理。中微双孔分子筛的成功制备对于处理复杂气体组分吸附与分离、大分子传递与输送以及大分子多级反应等方面具有重要的意义,也为新材料(如膜材料、纳米功能材料、纳米复合催化剂材料等)的加工与制备开辟了广阔的前景;原子级模型的成功建立为中微双孔分子筛的结构研究提供了更多的微观信息,也为定量构-效关系的建立及材料性能的预测奠定了坚实的基础;采用分子模拟技术探索中微双孔分子筛的形成机理,弥补了现阶段实验表征技术的缺陷,为指导实验定向合成具有特定微/中孔搭配的中微双孔分子筛提供了重要的理论依据。
The micropore structures and high intrinsic activities frequently make zeolites subject to diffusion limitations that, for example, restrict reactant accessibility to the active sites on the interior surfaces of zeolites and inhibit the full utilization of zeolite catalysts, while the ordered mesoporous molecular sieves suffer from the poor hydrothermal stability due to their amorphous frameworks, which restricts their applications in refineries and petrochemical processes. Due to that, the nanofabrication of hierarchical zeolites with micro- and mesoporosity is a proven strategy for integrating shape selectivity (provided by the intrinsic micropore structures) and efficient mass transfer (facilitated by the mesopore structures).
     In this paper, three different approaches have been employed to synthesis a series of micro-mesoporous zeolites, including confined synthesis in hard templates, assembly of zeolite nanocrystals, and soft template methods. Moreover, molecular simulation technology has been used for structure exploration and structure-property relationship study of micro-mesoporous zeolites.
     Three-dimensionally ordered mesoporous-imprinted (3DOm-i) zeolites with LTA, MFI, BEA, FAU, and LTL topologies have been synthesized within the confined space of 3DOm carbon by conventional hydrothermal treatment. The mesoporosity can be easily tuned by varying the mesopore size of 3DOm carbon and mesoporous structure of the carbon template, and a wide range of crystal morphologies can be achieved by varying the nucleation and crystal growth rate. Moreover, zeolite suspensions of monodisperse nanocrystals with size range and uniformity have been obtained by disassembly of 3DOm-i zeolites, and further used in the fabrication of zeolite/Au and zeolite/zeolite nanocomposite catalysts.
     Steam-assisted crystallization treatment has been used for the confined synthesis of lamellar MFI zeolite spheres with hollow structures, and the treatment process demonstrated here has also provided a feasible approach for the morphology control of lamellar MFI zeolites.
     Micro-mesoporous zeolite ZSM-5-MCM-41 has been synthesized via assembly of zeolite nanocrystals on ordered mesoporous molecular sieve by microwave treatment. A structure model of ZSM-5-MCM-41 in atomicscale has been established for the first time and further used to investigate the adsorption properties of ZSM-5-MCM-41.
     Micro-mesoporous zeolite SBA-15 has been synthesized by soft template methods with P123 as the structure directing agent. An optimized structure model by Anneal Dynamics method has been built and used to demonstrate the effects of micropores located in the intrawall positions of SBA-15 on the adsorption properties of SBA-15
     Mesoscopic Dynamics (MesoDyn) method has been employed to simulate the aggregation behavior of triblock copolymer P123, and further explore the structure formation mechanism and analyze the feasibility of accurately adjusting the pore size of SBA-15. Moreover, the effects of charge matching interactions between surfactants and silicate species on mesophase morphologies of SBA-15 have been further discussed.
     Overall, the nanofabrication of hierarchical zeolites with micro- and mesoporosity will provide a possibility for quantitatively studying the mass-transfer limitation of porous materials on the adsorptive and catalytic process and may provide building blocks for the synthesis of zeolite thin-films and other nanomaterials, and the structure modeling of micro-mesoporous zeolite will demonstrate a proven strategy for the structure exploration and structure-property relationship investigation, while the formation mechanism study by molecular simulation will provided a theoretical basis for accurately adjusting the pore structure of micro-mesoporous zeolite.
引文
[1]徐如人,庞文琴,于吉红, et al.分子筛与多孔材料化学[M].科学出版社. 2004.
    [2] Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis [J]. Chemical Reviews, 1997, 97(6): 2373-2420.
    [3] Davis M.E. Ordered porous materials for emerging applications [J]. Nature, 2002, 417(6891): 813-821.
    [4] Cundy C.S.; Cox P.A. The Hydrothermal Synthesis of Zeolites:? History and Development from the Earliest Days to the Present Time [J]. Chemical Reviews, 2003, 103(3): 663-702.
    [5] Yoon K.B. Organization of Zeolite Microcrystals for Production of Functional Materials [J]. Accounts of Chemical Research, 2006, 40(1): 29-40.
    [6] Joaquín C. Present and future synthesis challenges for zeolites [J]. Chemical Engineering Journal, 2010, 156(2): 236-242.
    [7] Beck J.S., Vartuli J.C., Roth W.J., et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. Journal of the American Chemical Society, 1992, 114(27): 10834-10843.
    [8] Kresge C.T., Leonowicz M.E., Roth W.J., et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359(6397): 710-712.
    [9] Monnier A., Schüth F., Huo Q., et al. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures [J]. Science, 1993, 261(5126): 1299-1303.
    [10] Huo Q., Margolese D.I., Ciesla U., et al. Generalized synthesis of periodic surfactant/inorganic composite materials [J]. Nature, 1994, 368(6469): 317-321.
    [11] Tanev P.T.; Chibwe M.; Pinnavaia T.J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature, 1994, 368(6469): 321-323.
    [12] Tanev P.T.; Pinnavaia T.J. A Neutral Templating Route to Mesoporous Molecular Sieves [J]. Science, 1995, 267(5199): 865-867.
    [13] Zhao D., Feng J., Huo Q., et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores [J]. Science, 1998, 279(5350): 548-552.
    [14] Corma A.; Navarro M.T.; Pariente J.P. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons [J]. Journal of the Chemical Society, Chemical Communications, 1994, (2): 147-148.
    [15] Stein A.; Melde B.J.; Schroden R.C. Hybrid Inorganic–Organic MesoporousSilicates—Nanoscopic Reactors Coming of Age [J]. Advanced Materials, 2000, 12(19): 1403-1419.
    [16] Kozhevnikov I.V., Sinnema A., Jansen R.J.J., et al. New acid catalyst comprising heteropoly acid on a mesoporous molecular sieve MCM-41 [J]. Catalysis Letters, 1994, 30(1): 241-252.
    [17] Thomas J.M.; Sankar G. The Role of Synchrotron-Based Studies in the Elucidation and Design of Active Sites in Titanium?Silica Epoxidation Catalysts [J]. Accounts of Chemical Research, 2001, 34(7): 571-581.
    [18] Thomas J.M., Terasaki O., Gai P.L., et al. Structural Elucidation of Microporous and Mesoporous Catalysts and Molecular Sieves by High-Resolution Electron Microscopy [J]. Accounts of Chemical Research, 2001, 34(7): 583-594.
    [19] Wu C.-G.; Bein T. Conducting Polyaniline Filaments in a Mesoporous Channel Host [J]. Science, 1994, 264(5166): 1757-1759.
    [20] Li G., Bhosale S., Wang T., et al. Gram-Scale Synthesis of Submicrometer-Long Polythiophene Wires in Mesoporous Silica Matrices [J]. Angewandte Chemie International Edition, 2003, 42(32): 3818-3821.
    [21] Spange S. Insulated Nanowire Bundles through Consecutive Template Synthesis [J]. Angewandte Chemie International Edition, 2003, 42(37): 4430-4432.
    [22] Imperor-Clerc M., Bazin D., Appay M.-D., et al. Crystallization ofβ-MnO2 Nanowires in the Pores of SBA-15 Silicas:? In Situ Investigation Using Synchrotron Radiation [J]. Chemistry of Materials, 2004, 16(9): 1813-1821.
    [23] Xia Y.D.; Mokaya R. Ordered Mesoporous Carbon Hollow Spheres Nanocast Using Mesoporous Silica via Chemical Vapor Deposition [J]. Advanced Materials, 2004, 16(11): 886-891.
    [24] Bandyopadhyay M., Korsak O., van den Berg M.W.E., et al. Gold nano-particles stabilized in mesoporous MCM-48 as active CO-oxidation catalyst [J]. Microporous and Mesoporous Materials, 2006, 89(1-3): 158-163.
    [25] Delahaye E., Escax V., El Hassan N., et al.“Nanocasting”:? Using SBA-15 Silicas as Hard Templates to Obtain Ultrasmall Monodispersedγ-Fe2O3 Nanoparticles [J]. The Journal of Physical Chemistry B, 2006, 110(51): 26001-26011.
    [26] Lai X., Li X., Geng W., et al. Ordered Mesoporous Copper Oxide with Crystalline Walls [J]. Angewandte Chemie International Edition, 2007, 46(5): 738-741.
    [27] Takai A., Doi Y., Yamauchi Y., et al. Soft-Chemical Approach of Noble Metal Nanowires Templated from Mesoporous Silica (SBA-15) through Vapor Infiltration of a Reducing Agent[J]. The Journal of Physical Chemistry C, 2010, 114(17): 7586-7593.
    [28] Qu F., Zhu G., Huang S., et al. Controlled release of Captopril by regulating the pore size and morphology of ordered mesoporous silica [J]. Microporous and Mesoporous Materials, 2006, 92(1-3): 1-9.
    [29] Vallet-RegíM.; Balas F.; Arcos D. Mesoporous Materials for Drug Delivery [J]. Angewandte Chemie International Edition, 2007, 46(40): 7548-7558.
    [30] Slowing I.I., Vivero-Escoto J.L., Wu C.-W., et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers [J]. Advanced Drug Delivery Reviews, 2008, 60(11): 1278-1288.
    [31] Yang P., Quan Z., Lu L., et al. Luminescence functionalization of mesoporous silica with different morphologies and applications as drug delivery systems [J]. Biomaterials, 2008, 29(6): 692-702.
    [32] Vivero-Escoto J.L., Slowing I.I., Wu C.-W., et al. Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere [J]. Journal of the American Chemical Society, 2009, 131(10): 3462-3463.
    [33] Zhang Y., Zhi Z., Jiang T., et al. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan [J]. Journal of Controlled Release, 2010, 145(3): 257-263.
    [34] Huang X., Li L., Liu T., et al. The Shape Effect of Mesoporous Silica Nanoparticles on Biodistribution, Clearance, and Biocompatibility in Vivo [J]. ACS Nano, 2011, 5(7): 5390-5399.
    [35] Rim H.P., Min K.H., Lee H.J., et al. pH-Tunable Calcium Phosphate Covered Mesoporous Silica Nanocontainers for Intracellular Controlled Release of Guest Drugs [J]. Angewandte Chemie International Edition, 2011, 50(38): 8853-8857.
    [36] Schlossbauer A., Dohmen C., Schaffert D., et al. pH-Responsive Release of Acetal-Linked Melittin from SBA-15 Mesoporous Silica [J]. Angewandte Chemie International Edition, 2011, 50(30): 6828-6830.
    [37] Xiong X.-B.; Lavasanifar A. Traceable Multifunctional Micellar Nanocarriers for Cancer-Targeted Co-delivery of MDR-1 SiRNA and Doxorubicin [J]. ACS Nano, 2011, 5(6): 5202-5213.
    [38] Zheng H.; Wang Y.; Che S. Coordination Bonding-Based Mesoporous Silica for pH-Responsive Anticancer Drug Doxorubicin Delivery [J]. The Journal of Physical Chemistry C, 2011, 115(34): 16803-16813.
    [39] Zhu M., Wang H., Liu J., et al. A mesoporous silica nanoparticulate/β-TCP/BGcomposite drug delivery system for osteoarticular tuberculosis therapy [J]. Biomaterials, 2011, 32(7): 1986-1995.
    [40] Davis S.A., Burkett S.L., Mendelson N.H., et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases [J]. Nature, 1997, 385(6615): 420-423.
    [41] Imhof A.; Pine D.J. Ordered macroporous materials by emulsion templating [J]. Nature, 1997, 389(6654): 948-951.
    [42] Blanco A., Chomski E., Grabtchak S., et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres [J]. Nature, 2000, 405(6785): 437-440.
    [43] Holland B.T.; Blanford C.F.; Stein A. Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids [J]. Science, 1998, 281(5376): 538-540.
    [44] Frank P., Schuurmans, Vanmaekelbergh D., et al. Strongly Photonic Macroporous Gallium Phosphide Networks [J]. Science, 1999, 284(5411): 141-143.
    [45] Smith J.V. Structural and geometrical crystallography[M]. New York: Wiley. 1982.
    [46] Baerlocher C.; Olson D.H.; Meier W.M. Atlas of Zeolite Framework Types[M]. Elsevier. 2001.
    [47] Newsam J.M. The Zeolite Cage Structure [J]. Science, 1986, 231(4742): 1093-1099.
    [48] Karge H.G.; Weitkamp J. Zeolites as Catalysts, Sorbents and Detergent Builders[M]. EIservier. 1989.
    [49] Jacobs P.A., Jaeger N.I., KubelkováL., et al. Zeolite Chemistry and Catalysis[M]. EIservier. 1991.
    [50] ?hlmann G.; Pfeifer H.; Fricke R. Catalysis and Adsorption by Zeolites[M]. EIservier. 1991.
    [51] Davis M.E. New vistas in zeolite and molecular sieve catalysis [J]. Accounts of Chemical Research, 1993, 26(3): 111-115.
    [52] Baur R.; Krishna R. The effectiveness factor for zeolite catalysed reactions [J]. Catalysis Today, 2005, 105(1): 173-179.
    [53] Bennett J.M., Cohen J.M., Artioli G., et al. Crystal structure of AlPO4-21, a framework aluminophosphate containing tetrahedral phosphorus and both tetrahedral and trigonal-bipyramidal aluminum in 3-, 4-, 5-, and 8-rings [J]. Inorganic Chemistry, 1985, 24(2): 188-193.
    [54] Davis M.E., Saldarriaga C., Montes C., et al. A molecular sieve with eighteen-memberedrings [J]. Nature, 1988, 331(6158): 698-699.
    [55] Smith J.V. Topochemistry of zeolites and related materials. 1. Topology and geometry [J]. Chemical Reviews, 1988, 88(1): 149-182.
    [56] Freyhardt C.C., Tsapatsis M., Lobo R.F., et al. A high-silica zeolite with a 14-tetrahedral-atom pore opening [J]. Nature, 1996, 381(6580): 295-298.
    [57] Corma A., Diaz-Cabanas M.J., Martinez-Triguero J., et al. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst [J]. Nature, 2002, 418(6897): 514-517.
    [58] Strohmaier K.G.; Vaughan D.E.W. Structure of the First Silicate Molecular Sieve with 18-Ring Pore Openings, ECR-34 [J]. Journal of the American Chemical Society, 2003, 125(51): 16035-16039.
    [59] Corma A., Diaz-Cabanas M.J., Jorda J.L., et al. High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings [J]. Nature, 2006, 443(7113): 842-845.
    [60] Lobo R.F. Chemistry: The promise of emptiness [J]. Nature, 2006, 443(7113): 757-758.
    [61] Jiang J., Jorda J.L., Yu J., et al. Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43 [J]. Science, 2011, 333(6046): 1131-1134.
    [62] Pawelec B., Damyanova S., Mariscal R., et al. HDS of dibenzothiophene over polyphosphates supported on mesoporous silica [J]. Journal of Catalysis, 2004, 223(1): 86-97.
    [63] Anandan S.; Okazaki M. Dynamics, flow motion and nanopore effect of molecules present in the MCM-41 nanopores—An overview [J]. Microporous and Mesoporous Materials, 2005, 87(2): 77-92.
    [64] Hatton B., Landskron K., Whitnall W., et al. Past, Present, and Future of Periodic Mesoporous OrganosilicasThe PMOs [J]. Accounts of Chemical Research, 2005, 38(4): 305-312.
    [65] Taguchi A.; Schüth F. Ordered mesoporous materials in catalysis [J]. Microporous and Mesoporous Materials, 2005, 77(1): 1-45.
    [66] Melero J.A.; van Grieken R.; Morales G. Advances in the Synthesis and Catalytic Applications of Organosulfonic-Functionalized Mesostructured Materials [J]. Chemical Reviews, 2006, 106(9): 3790-3812.
    [67] Fan J., Boettcher S.W., Tsung C.-K., et al. Field-Directed and Confined Molecular Assembly of Mesostructured Materials: Basic Principles and New Opportunities? [J]. Chemistry of Materials, 2007, 20(3): 909-921.
    [68] Wan Y.; Zhao On the Controllable Soft-Templating Approach to Mesoporous Silicates[J].Chemical Reviews, 2007, 107(7): 2821-2860.
    [69] Thomas J.M.; Raja R. Exploiting Nanospace for Asymmetric Catalysis: Confinement of Immobilized, Single-Site Chiral Catalysts Enhances Enantioselectivity [J]. Accounts of Chemical Research, 2008, 41(6): 708-720.
    [70] Hruby S.L.; Shanks B.H. Acid–base cooperativity in condensation reactions with functionalized mesoporous silica catalysts [J]. Journal of Catalysis, 2009, 263(1): 181-188.
    [71] Gao C.; Che S. Organically Functionalized Mesoporous Silica by Co-structure-Directing Route [J]. Advanced Functional Materials, 2010, 20(17): 2750-2768.
    [72] Bacsik Z.n., Ahlsten N., Ziadi A., et al. Mechanisms and Kinetics for Sorption of CO2 on Bicontinuous Mesoporous Silica Modified with n-Propylamine [J]. Langmuir, 2011, 27(17): 11118-11128.
    [73] Gurinov A.A., Rozhkova Y.A., Zukal A.t., et al. Mutable Lewis and Br?nsted Acidity of Aluminated SBA-15 as Revealed by NMR of Adsorbed Pyridine-15N [J]. Langmuir, 2011, 27(19): 12115-12123.
    [74] Hamaed A., Hoang T.K.A., Moula G., et al. Hydride-Induced Amplification of Performance and Binding Enthalpies in Chromium Hydrazide Gels for Kubas-Type Hydrogen Storage [J]. Journal of the American Chemical Society, 2011, 133(39): 15434-15443.
    [75] Miao S.; Shanks B.H. Mechanism of acetic acid esterification over sulfonic acid-functionalized mesoporous silica [J]. Journal of Catalysis, 2011, 279(1): 136-143.
    [76] Shiju N.R., Alberts A.H., Khalid S., et al. Mesoporous Silica with Site-Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-Pot Tandem Reactions [J]. Angewandte Chemie International Edition, 2011, 50(41): 9615-9619.
    [77] Steiner E., Bouguet-Bonnet S., Blin J.-L., et al. Water Behavior in Mesoporous Materials As Studied by NMR Relaxometry [J]. The Journal of Physical Chemistry A, 2011, 115(35): 9941-9946.
    [78] Vasudevan M., Sakaria P.L., Bhatt A.S., et al. Effect of Concentration of Aminopropyl Groups on the Surface of MCM-41 on Adsorption of Cu2+ [J]. Industrial & Engineering Chemistry Research, 2011, 50(19): 11432-11439.
    [79] Lee J.; Kim J.; Hyeon T. Recent Progress in the Synthesis of Porous Carbon Materials [J]. Advanced Materials, 2006, 18(16): 2073-2094.
    [80] Tiemann M. Repeated Templating [J]. Chemistry of Materials, 2007, 20(3): 961-971.
    [81] Wan Y.; Shi Y.; Zhao D. Supramolecular Aggregates as Templates: Ordered Mesoporous Polymers and Carbons [J]. Chemistry of Materials, 2007, 20(3): 932-945.
    [82] Sun J.; Bao X. Textural Manipulation of Mesoporous Materials for Hosting of Metallic Nanocatalysts [J]. Chemistry– A European Journal, 2008, 14(25): 7478-7488.
    [83] Kimura T.; Kuroda K. Ordered Mesoporous Silica Derived from Layered Silicates [J]. Advanced Functional Materials, 2009, 19(4): 511-527.
    [84] Stein A.; Wang Z.; Fierke M.A. Functionalization of Porous Carbon Materials with Designed Pore Architecture [J]. Advanced Materials, 2009, 21(3): 265-293.
    [85] Feng D., Lv Y., Wu Z., et al. Free-Standing Mesoporous Carbon Thin Films with Highly Ordered Pore Architectures for Nanodevices [J]. Journal of the American Chemical Society, 2011, 133(38): 15148-15156.
    [86] Sun X., Shi Y., Zhang P., et al. Container Effect in Nanocasting Synthesis of Mesoporous Metal Oxides [J]. Journal of the American Chemical Society, 2011, 133(37): 14542-14545.
    [87] Wang H., Jeong H.Y., Imura M., et al. Shape- and Size-Controlled Synthesis in Hard Templates: Sophisticated Chemical Reduction for Mesoporous Monocrystalline Platinum Nanoparticles [J]. Journal of the American Chemical Society, 2011, 133(37): 14526-14529.
    [88] Fan J., Yu C., Gao F., et al. Cubic Mesoporous Silica with Large Controllable Entrance Sizes and Advanced Adsorption Properties [J]. Angewandte Chemie International Edition, 2003, 42(27): 3146-3150.
    [89] Yamada T., Zhou H., Uchida H., et al. Experimental and Theoretical NOx Physisorption Analyses of Mesoporous Film (SBA-15 and SBA-16) Constructed Surface Photo Voltage (SPV) Sensor [J]. The Journal of Physical Chemistry B, 2004, 108(35): 13341-13346.
    [90] Yuliarto B., Zhou H., Yamada T., et al. Synthesis of a Surface Photovoltage Sensor Using Self-Ordered Tin-Modified MCM-41 Films: Enhanced NO2 Gas Sensing [J]. ChemPhysChem, 2004, 5(2): 261-265.
    [91] Yuliarto B., Zhou H., Yamada T., et al. Effect of Tin Addition on Mesoporous Silica Thin Film and Its Application for Surface Photovoltage NO2 Gas Sensor [J]. Analytical Chemistry, 2004, 76(22): 6719-6726.
    [92] Kang E.-H., Shim J.-M., Kang H.-J., et al. Modification of mesostructure base on composition of silica materials and their applications to pH sensing [J]. Polymers for Advanced Technologies, 2006, 17(11-12): 845-849.
    [93] Ros-Lis J.V., Casasús R., Comes M., et al. A Mesoporous 3D Hybrid Material with Dual Functionality for Hg2+ Detection and Adsorption [J]. Chemistry– A European Journal, 2008, 14(27): 8267-8278.
    [94] Tan J.; Wang H.-F.; Yan X.-P. Discrimination of Saccharides with a Fluorescent Molecular Imprinting Sensor Array Based on Phenylboronic Acid Functionalized MesoporousSilica [J]. Analytical Chemistry, 2009, 81(13): 5273-5280.
    [95] Waitz T., Wagner T., Sauerwald T., et al. Ordered Mesoporous In2O3: Synthesis by Structure Replication and Application as a Methane Gas Sensor [J]. Advanced Functional Materials, 2009, 19(4): 653-661.
    [96] Du J., Cipot-Wechsler J., Lobez J.M., et al. Periodic Mesoporous Organosilica Films: Key Components of Fiber-Optic-Based Heavy-Metal Sensors [J]. Small, 2010, 6(11): 1168-1172.
    [97] Li Q., Zeng L., Wang J., et al. Magnetic Mesoporous Organic?Inorganic NiCo2O4 Hybrid Nanomaterials for Electrochemical Immunosensors [J]. ACS Applied Materials & Interfaces, 2011, 3(4): 1366-1373.
    [98] Liu R., Liao P., Liu J., et al. Responsive Polymer-Coated Mesoporous Silica as a pH-Sensitive Nanocarrier for Controlled Release [J]. Langmuir, 2011, 27(6): 3095-3099.
    [99] Xu P.; Yu H.; Li X. Functionalized Mesoporous Silica for Microgravimetric Sensing of Trace Chemical Vapors [J]. Analytical Chemistry, 2011, 83(9): 3448-3454.
    [100] Turner E.A.; Huang Y.; Corrigan J.F. Synthetic Routes to the Encapsulation of II–VI Semiconductors in Mesoporous Hosts [J]. European Journal of Inorganic Chemistry, 2005, 2005(22): 4465-4478.
    [101] Pénard A.-L.; Gacoin T.; Boilot J.-P. Functionalized Sol–Gel Coatings for Optical Applications [J]. Accounts of Chemical Research, 2007, 40(9): 895-902.
    [102] Furbert P., Lu C., Winograd N., et al. Label-Free Optical Detection of Peptide Synthesis on a Porous Silicon Scaffold/Sensor [J]. Langmuir, 2008, 24(6): 2908-2915.
    [103] Synak A., Gil M., Organero J.A., et al. Fast to Ultrafast Dynamics of Palladium Phthalocyanine Covalently Bonded to MCM-41 Mesoporous Material [J]. The Journal of Physical Chemistry C, 2009, 113(44): 19199-19207.
    [104] Scott B.J.; Wirnsberger G.; Stucky G.D. Mesoporous and Mesostructured Materials for Optical Applications [J]. Chemistry of Materials, 2001, 13(10): 3140-3150.
    [105] Trewyn B.G., Slowing I.I., Giri S., et al. Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release [J]. Accounts of Chemical Research, 2007, 40(9): 846-853.
    [106] Angelos S., Liong M., Choi E., et al. Mesoporous silicate materials as substrates for molecular machines and drug delivery [J]. Chemical Engineering Journal, 2008, 137(1): 4-13.
    [107] Salonen J., Kaukonen A.M., Hirvonen J., et al. Mesoporous silicon in drug delivery applications [J]. Journal of Pharmaceutical Sciences, 2008, 97(2): 632-653.
    [108] Klichko Y., Liong M., Choi E., et al. Mesostructured Silica for Optical Functionality,Nanomachines, and Drug Delivery [J]. Journal of the American Ceramic Society, 2009, 92: S2-S10.
    [109] Shaobin W. Ordered mesoporous materials for drug delivery [J]. Microporous and Mesoporous Materials, 2009, 117(1-2): 1-9.
    [110] Vallet-RegíM. Nanostructured mesoporous silica matrices in nanomedicine [J]. Journal of Internal Medicine, 2010, 267(1): 22-43.
    [111] Vivero-Escoto J.L., Slowing I.I., Trewyn B.G., et al. Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery [J]. Small, 2010, 6(18): 1952-1967.
    [112] Aznar E., Mondragón L., Ros-Lis J.V., et al. Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles [J]. Angewandte Chemie International Edition, 2011: n/a-n/a.
    [113] Guo X.; Huang L. Recent Advances in Nonviral Vectors for Gene Delivery [J]. Accounts of Chemical Research, 2011.
    [114] Limnell T., Santos H.A., M?kil? E., et al. Drug delivery formulations of ordered and nonordered mesoporous silica: Comparison of three drug loading methods [J]. Journal of Pharmaceutical Sciences, 2011, 100(8): 3294-3306.
    [115] Popovici R.F., Seftel E.M., Mihai G.D., et al. Controlled drug delivery system based on ordered mesoporous silica matrices of captopril as angiotensin-converting enzyme inhibitor drug [J]. Journal of Pharmaceutical Sciences, 2011, 100(2): 704-714.
    [116] Tsai C.-H., Vivero-Escoto J.L., Slowing I.I., et al. Surfactant-assisted controlled release of hydrophobic drugs using anionic surfactant templated mesoporous silica nanoparticles [J]. Biomaterials, 2011, 32(26): 6234-6244.
    [117] Huo Q., Margolese D.I., Ciesla U., et al. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays [J]. Chemistry of Materials, 1994, 6(8): 1176-1191.
    [118] Firouzi A., Kumar D., Bull L., et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies [J]. Science, 1995, 267(5201): 1138-1143.
    [119] Zhao D., Huo Q., Feng J., et al. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures [J]. Journal of the American Chemical Society, 1998, 120(24): 6024-6036.
    [120] Kruk M., Jaroniec M., Ko C.H., et al. Characterization of the Porous Structure of SBA-15 [J]. Chemistry of Materials, 2000, 12(7): 1961-1968.
    [121] Anne D. Modifying the walls of mesoporous silicas prepared by supramolecular-templating [J]. Current Opinion in Colloid & Interface Science, 2002,7(1-2): 92-106.
    [122] Jun S., Joo S.H., Ryoo R., et al. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure [J]. Journal of the American Chemical Society, 2000, 122(43): 10712-10713.
    [123] Soler-Illia G.J.d.A.A., Crepaldi E.L., Grosso D., et al. Block copolymer-templated mesoporous oxides [J]. Current Opinion in Colloid & Interface Science, 2003, 8(1): 109-126.
    [124] Kosuge K., Kubo S., Kikukawa N., et al. Effect of Pore Structure in Mesoporous Silicas on VOC Dynamic Adsorption/Desorption Performance [J]. Langmuir, 2007, 23(6): 3095-3102.
    [125] Kubo S.; Kosuge K. Salt-Induced Formation of Uniform Fiberlike SBA-15 Mesoporous Silica Particles and Application to Toluene Adsorption [J]. Langmuir, 2007, 23(23): 11761-11768.
    [126] Silvestre-Albero A., Jardim E.O., Bruijn E., et al. Is There Any Microporosity in Ordered Mesoporous Silicas? [J]. Langmuir, 2008, 25(2): 939-943.
    [127] Coustel N.; Di Renzo F.; Fajula F. Improved stability of MCM-41 through textural control [J]. Journal of the Chemical Society, Chemical Communications, 1994, (8): 967-968.
    [128] Ryoo R.; Kim J.M. Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium [J]. Journal of the Chemical Society, Chemical Communications, 1995, (7): 711-712.
    [129] Ryoo R., Kim J.M., Ko C.H., et al. Disordered Molecular Sieve with Branched Mesoporous Channel Network [J]. The Journal of Physical Chemistry, 1996, 100(45): 17718-17721.
    [130] Ryoo R.; Jeong Kim M. Generalised route to the preparation of mesoporous metallosilicates via post-synthetic metal implantation [J]. Chemical Communications, 1997, (22): 2225-2226.
    [131] Ryoo R.; Jun S. Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process [J]. The Journal of Physical Chemistry B, 1997, 101(3): 317-320.
    [132] Das D.; Tsai C.-M.; Cheng S. Improvement of hydrothermal stability of MCM-41 mesoporous molecular sieve [J]. Chemical Communications, 1999, (5): 473-474.
    [133] Mokaya R. On the extended recrystallisation of mesoporous silica: characterisation of restructured pure silica MCM-41 [J]. Journal of Materials Chemistry, 2002, 12(10): 3027-3033.
    [134] Xia Y.; Mokaya R. On the Hydrothermal Stability of Mesoporous Aluminosilicate MCM-48 Materials [J]. The Journal of Physical Chemistry B, 2003, 107(29): 6954-6960.
    [135] Choudhary V.R.; Jana S.K.; Kiran B.P. Highly active Si-MCM-41-supported Ga2O3 and In2O3 catalysts for friedel-crafts-type benzylation and acylation reactions in the presence or absence of moisture [J]. Journal of Catalysis, 2000, 192(2): 257-261.
    [136] Jun S.; Ryoo R. Aluminum Impregnation into Mesoporous Silica Molecular Sieves for Catalytic Application to Friedel–Crafts Alkylation [J]. Journal of Catalysis, 2000, 195(2): 237-243.
    [137] Selvaraj M.; Kawi S. Direct synthesis and catalytic performance of ultralarge pore GaSBA-15 mesoporous molecular sieves with high gallium content [J]. Catalysis Today, 2008, 131(1-4): 82-89.
    [138] Wu Z.Y., Wang H.J., Zhuang T.T., et al. Multiple Functionalization of Mesoporous Silica in One-Pot: Direct Synthesis of Aluminum-Containing Plugged SBA-15 from Aqueous Nitrate Solutions [J]. Advanced Functional Materials, 2008, 18(1): 82-94.
    [139] Handjani S., Marceau E., Blanchard J., et al. Influence of the support composition and acidity on the catalytic properties of mesoporous SBA-15, Al-SBA-15, and Al2O3-supported Pt catalysts for cinnamaldehyde hydrogenation [J]. Journal of Catalysis, 2011, 282(1): 228-236.
    [140] Silva-Rodrigo R., Calderón-Salas C., Melo-Banda J.A., et al. Synthesis, characterization and comparison of catalytic properties of NiMo- and NiW/Ti-MCM-41 catalysts for HDS of thiophene and HVGO [J]. Catalysis Today, 2004, 98(1-2): 123-129.
    [141] Zhu W.; Han Y.; An L. Silver nanoparticles synthesized from mesoporous Ag/SBA-15 composites [J]. Microporous and Mesoporous Materials, 2005, 80(1-3): 221-226.
    [142] Li F.; Yuan G. Hydrated Dibromodioxomolybdenum(VI) Supported on Zn-MCM-48 for Facile Oxidation of Methane [J]. Angewandte Chemie International Edition, 2006, 45(39): 6541-6544.
    [143] Sobczak I., Kusior A., Grams J., et al. The role of chlorine in the generation of catalytic active species located in Au-containing MCM-41 materials [J]. Journal of Catalysis, 2007, 245(2): 259-266.
    [144] Garg S., Soni K., Kumaran G.M., et al. Effect of Zr-SBA-15 support on catalytic functionalities of Mo, CoMo, NiMo hydrotreating catalysts [J]. Catalysis Today, 2008, 130(2-4): 302-308.
    [145] Guo H.; Sun Y.; Prins R. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pt supported onγ-Al2O3, SBA-15, and HZSM-5 [J]. Catalysis Today, 2008, 130(1): 249-253.
    [146] Li Y., Feng Z., van Santen R.A., et al. Surface functionalization of SBA-15-ordered mesoporous silicas: Oxidation of benzene to phenol by nitrous oxide [J]. Journal of Catalysis, 2008, 255(2): 190-196.
    [147] Sacaliuc-Parvulescu E., Friedrich H., Palkovits R., et al. Understanding the effect of postsynthesis ammonium treatment on the catalytic activity of Au/Ti-SBA-15 catalysts for the oxidation of propene [J]. Journal of Catalysis, 2008, 259(1): 43-53.
    [148] Gartmann N.; Brühwiler D. Controlling and Imaging the Functional-Group Distribution on Mesoporous Silica [J]. Angewandte Chemie International Edition, 2009, 48(34): 6354-6356.
    [149] Izabela S. The role of niobium in MCM-41 supported with Pt and Au—A comparative study of physicochemical and catalytic properties [J]. Catalysis Today, 2009, 142(3-4): 258-266.
    [150] Kemache N., Hamoudi S., Arul J., et al. Activity and Selectivity of Nanostructured Sulfur-Doped Pd/SBA-15 Catalyst for Vegetable Oil Hardening [J]. Industrial & Engineering Chemistry Research, 2009, 49(3): 971-979.
    [151] Yang X.K., Chen L.F., Wang J.A., et al. Study of the Keggin structure and catalytic properties of Pt-promoted heteropoly compound/Al-MCM-41 hybrid catalysts [J]. Catalysis Today, 2009, 148(1-2): 160-168.
    [152] Tao Y., Kanoh H., Abrams L., et al. Mesopore-Modified Zeolites:? Preparation, Characterization, and Applications [J]. Chemical Reviews, 2006, 106(3): 896-910.
    [153] Egeblad K., Christensen C.H., Kustova M., et al. Templating Mesoporous Zeolites [J]. Chemistry of Materials, 2008, 20(3): 946-960.
    [154] Perez-Ramirez J., Christensen C.H., Egeblad K., et al. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design [J]. Chemical Society Reviews, 2008, 37(11): 2530-2542.
    [155] Liu D., Bhan A., Tsapatsis M., et al. Catalytic Behavior of Br?nsted Acid Sites in MWW and MFI Zeolites with Dual Meso- and Microporosity [J]. ACS Catalysis, 2010, 1(1): 7-17.
    [156] Liu Y.; Zhang W.; Pinnavaia T.J. Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite Type Y Seeds [J]. Journal of the American Chemical Society, 2000, 122(36): 8791-8792.
    [157] Liu Y.; Zhang W.; Pinnavaia T.J. Steam-Stable MSU-S Aluminosilicate Mesostructures Assembled from Zeolite ZSM-5 and Zeolite Beta Seeds [J]. Angewandte Chemie International Edition, 2001, 40(7): 1255-1258.
    [158] Han Y., Xiao F.-S., Wu S., et al. A Novel Method for Incorporation of Heteroatoms into the Framework of Ordered Mesoporous Silica Materials Synthesized in Strong Acidic Media [J]. The Journal of Physical Chemistry B, 2001, 105(33): 7963-7966.
    [159] Zhang Z., Han Y., Xiao F.-S., et al. Mesoporous Aluminosilicates with Ordered Hexagonal Structure, Strong Acidity, and Extraordinary Hydrothermal Stability at High Temperatures [J]. Journal of the American Chemical Society, 2001, 123(21): 5014-5021.
    [160] Zhang Z., Han Y., Zhu L., et al. Strongly Acidic and High-Temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure [J]. Angewandte Chemie International Edition, 2001, 40(7): 1258-1262.
    [161] Choi M., Cho H.S., Srivastava R., et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity [J]. Nature Mater, 2006, 5(9): 718-723.
    [162] Choi M., Na K., Kim J., et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts [J]. Nature, 2009, 461(7265): 828-828.
    [163] Na K., Choi M., Park W., et al. Pillared MFI Zeolite Nanosheets of a Single-Unit-Cell Thickness [J]. Journal of the American Chemical Society, 2010, 132(12): 4169-4177.
    [164] Kim J.; Park W.; Ryoo R. Surfactant-Directed Zeolite Nanosheets: A High-Performance Catalyst for Gas-Phase Beckmann Rearrangement [J]. ACS Catalysis, 2011, 1(4): 337-341.
    [165] Na K., Jo C., Kim J., et al. MFI Titanosilicate Nanosheets with Single-Unit-Cell Thickness as an Oxidation Catalyst Using Peroxides [J]. ACS Catalysis, 2011, 1(8): 901-907.
    [166] Na K., Park W., Seo Y., et al. Disordered Assembly of MFI Zeolite Nanosheets with a Large Volume of Intersheet Mesopores [J]. Chemistry of Materials, 2011, 23(5): 1273-1279.
    [167] Varoon K., Zhang X., Elyassi B., et al. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane [J]. Science, 2011, 334(6052): 72-75.
    [168] Na K., Jo C., Kim J., et al. Directing Zeolite Structures into Hierarchically Nanoporous Architectures [J]. Science, 2011, 333(6040): 328-332.
    [169] Madsen C.; J. H. Jacobsen C. Nanosized zeolite crystals-convenient control of crystal size distribution by confined space synthesis [J]. Chemical Communications, 1999, (8): 673-674.
    [170] Jacobsen C.J.H., Madsen C., Janssens T.V.W., et al. Zeolites by confined space synthesis– characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy [J]. Microporous and Mesoporous Materials, 2000, 39(1-2): 393-401.
    [171] Schmidt I.; Madsen C.; Jacobsen C.J.H. Confined Space Synthesis. A Novel Route to Nanosized Zeolites [J]. Inorganic Chemistry, 2000, 39(11): 2279-2283.
    [172] Schmidt I., Boisen A., Gustavsson E., et al. Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals [J]. Chemistry of Materials, 2001, 13(12): 4416-4418.
    [173] Fan W., Snyder M.A., Kumar S., et al. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity [J]. Nature Mater, 2008, 7(12): 984-991.
    [174] Catlow C.R.A.; Price G.D. Computer modelling of solid-state inorganic materials [J]. Nature, 1990, 347(6290): 243-248.
    [175] Newsam J.M.; Freeman C.M.; Leusen F.J.J. Crystal structure solution and prediction via global and local optimization [J]. Current Opinion in Solid State and Materials Science, 1999, 4(6): 515-528.
    [176] Newsam J.M.; Wimmer E. Modelling and simulation of solids [J]. Current Opinion in Solid State and Materials Science, 1999, 4(6): 491-492.
    [177] Mellot Draznieks C., Newsam J.M., Gorman A.M., et al. De Novo Prediction of Inorganic Structures Developed through Automated Assembly of Secondary Building Units (AASBU Method) [J]. Angewandte Chemie International Edition, 2000, 39(13): 2270-2275.
    [178] Falcioni M.; Deem M.W. A biased Monte Carlo scheme for zeolite structure solution [J]. The Journal of Chemical Physics, 1999, 110(3): 1754-1766.
    [179] Feuston B.P.; Higgins J.B. Model Structures for MCM-41 Materials: A Molecular Dynamics Simulation [J]. The Journal of Physical Chemistry, 1994, 98(16): 4459-4462.
    [180] Maddox M.W.; Olivier J.P.; Gubbins K.E. Characterization of MCM-41 Using Molecular Simulation:? Heterogeneity Effects [J]. Langmuir, 1997, 13(6): 1737-1745.
    [181] Kleestorfer K.; Vinek H.; Jentys A. Structure simulation of MCM-41 type materials [J]. Journal of Molecular Catalysis A: Chemical, 2001, 166(1): 53-57.
    [182] Kuchta B., Llewellyn P., Denoyel R., et al. Modeling of pore wall amorphous structures: influence of wall heterogeneity on the mechanism of adsorption: Krypton and Argon adsorption in MCM-41 pore model [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241(1-3): 137-142.
    [183] Liu B.; Wang W.; Zhang X. A hybrid cylindrical model for characterization of MCM-41 by density functional theory [J]. Physical Chemistry Chemical Physics, 2004, 6(15): 3985-3990.
    [184] Schumacher C., Gonzalez J., Wright P.A., et al. Generation of Atomistic Models of Periodic Mesoporous Silica by Kinetic Monte Carlo Simulation of the Synthesis of the Material [J]. The Journal of Physical Chemistry B, 2005, 110(1): 319-333.
    [185] Sonwane C.G.; Jones C.W.; Ludovice P.J. A Model for the Structure of MCM-41 Incorporating Surface Roughness [J]. The Journal of Physical Chemistry B, 2005, 109(49):23395-23404.
    [186] Sonwane C.G.; Li Q. Molecular Simulation of RMM:? Ordered Mesoporous SBA-15 Type Material Having Microporous ZSM-5 Walls [J]. The Journal of Physical Chemistry B, 2005, 109(38): 17993-17997.
    [187] Bhattacharya S., Coasne B., Hung F.R., et al. Modeling Micelle-Templated Mesoporous Material SBA-15: Atomistic Model and Gas Adsorption Studies [J]. Langmuir, 2008, 25(10): 5802-5813.
    [188] Ugliengo P., Sodupe M., Musso F., et al. Realistic Models of Hydroxylated Amorphous Silica Surfaces and MCM-41 Mesoporous Material Simulated by Large-scale Periodic B3LYP Calculations [J]. Advanced Materials, 2008, 20(23): 4579-4583.
    [189] Doadrio A.L., Doadrio J.C., Sánchez-Montero J.M., et al. A rational explanation of the vancomycin release from SBA-15 and its derivative by molecular modelling [J]. Microporous and Mesoporous Materials, 2010, 132(3): 559-566.
    [190] Pellenq R.J.M.; Levitz P.E. Capillary condensation in a disordered mesoporous medium: a grand canonical Monte Carlo study [J]. Molecular Physics, 2002, 100(13): 2059-2077.
    [191] Coasne B.; Pellenq R.J.-M. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: Effect of pore size, pore morphology, and surface roughness [J]. Journal of Chemical Physics, 2004, 120(6): 2913-2922.
    [192] Cracknell R.F., Gubbins K.E., Maddox M., et al. Modeling Fluid Behavior in Well-Characterized Porous Materials [J]. Accounts of Chemical Research, 1995, 28(7): 281-288.
    [193] Pellenq R.J.M.; Nicholson D. Grand Ensemble Monte Carlo Simulation of Simple Molecules Adsorbed in Silicalite-1 Zeolite [J]. Langmuir, 1995, 11(5): 1626-1635.
    [194] Escobedo F.A.; Pablo J.J.d. Extended continuum configurational bias Monte Carlo methods for simulation of flexible molecules [J]. Journal of Chemical Physics, 1995, 102(6): 2636-2652.
    [195] Ju S.-g.; Zeng Y.-p.; Yao H.-q. Computer simulation of the adsorption of ethanethiol in silicalite of MFI and MOR [J]. Journal of Chemical Physics, 2004, 121(18): 9098-9102.
    [196] Jakobtorweihen S.; Hansen N.; Keil F.J. Combining reactive and configurational-bias Monte Carlo: Confinement influence on the propene metathesis reaction system in various zeolites [J]. Journal of Chemical Physics, 2006, 125(22): 224709.
    [197] Leyssale J.-M.; Papadopoulos G.K.; Theodorou D.N. Sorption Thermodynamics of CO2, CH4, and Their Mixtures in the ITQ-1 Zeolite as Revealed by Molecular Simulations [J]. The Journal of Physical Chemistry B, 2006, 110(45): 22742-22753.
    [198] Shah J.K.; Maginn E.J. A general and efficient Monte Carlo method for sampling intramolecular degrees of freedom of branched and cyclic molecules [J]. Journal of Chemical Physics, 2011, 135(13): 134121.
    [199] Krishna R.; van Baten J.M. Describing Binary Mixture Diffusion in Carbon Nanotubes with the Maxwell?Stefan Equations. An Investigation Using Molecular Dynamics Simulations [J]. Industrial & Engineering Chemistry Research, 2006, 45(6): 2084-2093.
    [200] Yue X.; Yang X. Molecular Simulation Study of Adsorption and Diffusion on Silicalite for a Benzene/CO2 Mixture [J]. Langmuir, 2006, 22(7): 3138-3147.
    [201] Smit B.; Maesen T.L.M. Molecular Simulations of Zeolites: Adsorption, Diffusion, and Shape Selectivity [J]. Chemical Reviews, 2008, 108(10): 4125-4184.
    [202] Coasne B., Hung F.R., Pellenq R.J.M., et al. Adsorption of Simple Gases in MCM-41 Materials:? The Role of Surface Roughness [J]. Langmuir, 2005, 22(1): 194-202.
    [203] Zhuo S., Huang Y., Hu J., et al. Computer Simulation for Adsorption of CO2, N2 and Flue Gas in a Mimetic MCM-41 [J]. The Journal of Physical Chemistry C, 2008, 112(30): 11295-11300.
    [204] Williams J.J., Wiersum A.D., Seaton N.A., et al. Effect of Surface Group Functionalization on the CO2/N2 Separation Properties of MCM-41: A Grand-Canonical Monte Carlo Simulation Study [J]. The Journal of Physical Chemistry C, 2010, 114(43): 18538-18547.
    [205] Williams J.J.; Seaton N.A.; Düren T. Influence of Surface Groups on the Diffusion of Gases in MCM-41: A Molecular Dynamics Study [J]. The Journal of Physical Chemistry C, 2011, 115(21): 10651-10660.
    [206] Jin L.; Auerbach S.M.; Monson P.A. Modeling Nanoparticle Formation during Early Stages of Zeolite Growth: A Low-Coordination Lattice Model of Template Penetration [J]. The Journal of Physical Chemistry C, 2010, 114(34): 14393-14401.
    [207] Jorge M.; Auerbach S.M.; Monson P.A. Modeling Spontaneous Formation of Precursor Nanoparticles in Clear-Solution Zeolite Synthesis [J]. Journal of the American Chemical Society, 2005, 127(41): 14388-14400.
    [208] Jorge M., Gomes J.R.B., Cordeiro M.N.D.S., et al. Molecular Simulation of Silica/Surfactant Self-Assembly in the Synthesis of Periodic Mesoporous Silicas [J]. Journal of the American Chemical Society, 2007, 129(50): 15414-15415.
    [209] Jorge M., Gomes J.R.B., Cordeiro M.N.D.S., et al. Molecular Dynamics Simulation of the Early Stages of the Synthesis of Periodic Mesoporous Silica [J]. The Journal of Physical Chemistry B, 2008, 113(3): 708-718.
    [210] Groot R.D.; Warren P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation [J]. Journal of Chemical Physics, 1997, 107(11): 4423-4435.
    [211] Groot R.D.; Madden T.J. Dynamic simulation of diblock copolymer microphase separation [J]. Journal of Chemical Physics, 1998, 108(20): 8713-8724.
    [212] Fraaije J.G.E.M. Dynamic density functional theory for microphase separation kinetics of block copolymer melts [J]. Journal of Chemical Physics, 1993, 99(11): 9202-9212.
    [213] Abe A.; Mark J.E. Conformational energies and the random-coil dimensions and dipole moments of the polyoxides CH3O[(CH2)yO]xCH3 [J]. Journal of the American Chemical Society, 1976, 98(21): 6468-6476.
    [214] Guo S.L.; Hou T.J.; Xu X.J. Simulation of the Phase Behavior of the (EO)13(PO)30(EO)13(Pluronic L64)/Water/p-Xylene System Using MesoDyn [J]. The Journal of Physical Chemistry B, 2002, 106(43): 11397-11403.
    [215] Zhao Y., Chen X., Yang C., et al. Mesoscopic Simulation on Phase Behavior of Pluronic P123 Aqueous Solution [J]. The Journal of Physical Chemistry B, 2007, 111(50): 13937-13942.
    [216] Li Y., Xu G., Zhu Y., et al. Aggregation behavior of Pluronic copolymer in the presence of surfactant: Mesoscopic simulation [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 334(1-3): 124-130.
    [217] Huiyong C., Jianghong W., Shaojuan L., et al. MesoDyn and Experimental Approach to the Structural Fabrication and Pore-size Adjustment of SBA-15 Molecular Sieves [J]. Adsorption Science & Technology, 2009, 27(6): 579-592.
    [218] Yuan S.-L.; Zhang X.-Q.; Chan K.-Y. Effects of Shear and Charge on the Microphase Formation of P123 Polymer in the SBA-15 Synthesis Investigated by Mesoscale Simulations [J]. Langmuir, 2009, 25(4): 2034-2045.
    [219] Lee P.-S., Zhang X., Stoeger J.A., et al. Sub-40 nm Zeolite Suspensions via Disassembly of Three-Dimensionally Ordered Mesoporous-Imprinted Silicalite-1 [J]. Journal of the American Chemical Society, 2010, 133(3): 493-502.
    [220] Newsam J.M., Treacy M.M.J., Koetsier W.T., et al. Structural Characterization of Zeolite Beta [J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1988, 420(1859): 375-405.
    [221] Green A.A.; Hersam M.C. Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation [J]. Nano Letters, 2009, 9(12): 4031-4036.
    [222] Fagan J.A., Huh J.Y., Simpson J.R., et al. Separation of Empty and Water-FilledSingle-Wall Carbon Nanotubes [J]. ACS Nano, 2011, 5(5): 3943-3953.
    [223] Lemasson F.A., Strunk T., Gerstel P., et al. Selective Dispersion of Single-Walled Carbon Nanotubes with Specific Chiral Indices by Poly(N-decyl-2,7-carbazole) [J]. Journal of the American Chemical Society, 2010, 133(4): 652-655.
    [224] Xiong B., Cheng J., Qiao Y., et al. Separation of nanorods by density gradient centrifugation [J]. Journal of Chromatography A, 2011, 1218(25): 3823-3829.
    [225] Kowalczyk B.; Lagzi I.; Grzybowski B.A. Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles [J]. Current Opinion in Colloid & Interface Science, 2011, 16(2): 135-148.
    [226] Huang L., Guo W., Deng P., et al. Investigation of Synthesizing MCM-41/ZSM-5 Composites [J]. The Journal of Physical Chemistry B, 2000, 104(13): 2817-2823.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700