用户名: 密码: 验证码:
锦州市铁合金厂土壤重金属污染分析、修复及植物产后利用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对目前锦州市铁合金厂周边土壤及蔬菜重金属污染严重、土壤重金属污染修复效率低及修复植物产后处理困难等问题,分别研究了锦州市铁合金厂周边及农田(大田、大棚内)土壤中典型重金属(Cu、Zn、Cr及Cd)的含量及分布,分析了Cu、Zn、Cr及Cd对土壤酶(脲酶、蛋白酶、蔗糖酶、过氧化氢酶)活性的影响,揭示了叶菜类蔬菜(不同生长期)及杂草对Cu、Zn、Cr及Cd的吸收、分布及富集规律,并对该地区叶菜类蔬菜重金属污染程度进行了系统评价,探讨了钼酸铵、邻苯二甲酸氢钾-氢氧化钠、磷酸二氢钠-柠檬酸对土壤重金属化学形态变化的影响,以及化学强化物质(钼酸铵及磷酸二氢钠-柠檬酸)对植物修复重金属污染土壤的诱导规律,发现了灯笼草是一种新的Zn超累积植物,以富集Zn的灯笼草为原料,成功制备了氧化锌纳米粒子与多壁碳纳米管。具体研究结果如下:
     1、重金属复合污染对土壤酶活性的影响
     (1)铁合金厂不同区域土壤酶活性存在较大差异。随土壤样品和酶类型不同,酶活性变化幅度相差较大。其中过氧化氢酶变化幅度最大,蛋白酶变化幅度最小。铁合金厂土壤环境下,随着土壤中Cu、Zn、Cr及Cd浓度增加,脲酶、蛋白酶、蔗糖酶、过氧化氢酶活性显著降低。
     (2)在钼酸铵作用下,四种酶活性均呈不规律变化。其中,蔗糖酶与脲酶活性基本呈上升趋势(激活效应),过氧化氢酶和蛋白酶活性均减小(抑制效应)。
     2、重金属在土壤-植物体系中的迁移转化研究
     (1)苦苣、生菜、菠菜及小白菜对土壤中重金属的吸收规律不同。铁合金厂周边农田种植的四种叶菜类蔬菜均受到重金属严重污染。其中Cr与Cd对四种叶菜类蔬菜的污染贡献最大。
     (2)车前草、蒲公英、野艾蒿、皱叶酸模及灯笼草五种杂草对土壤中的重金属有一定的富集作用。同种杂草对不同重金属的富集作用不同,不同杂草对不同重金属的富集作用也不同。五种杂草中灯笼草叶对Zn和Cd的富集作用最强;野艾蒿根对Cr的富集作用最强;车前草根对Cu的富集作用最强。
     3、铁合金厂土壤重金属污染的修复
     (1)钼酸铵对土壤中的Cr与Zn起固定作用,而对Cd、Cu、Ni起活化作用。
     (2)邻苯二甲酸氢钾-氢氧化钠缓冲体系(pH=5.2-6.2)对土壤中Cr、Cu、Hg、Pb的酸可提取态的转化有明显的促进作用;对土壤中As、Hg的氧化结合态及有机结合态的转化有明显的促进作用。
     (3)磷酸二氢钠-柠檬酸缓冲体系(pH=5.2-7.2)可提高土壤中Zn、Mo、Ni、Pb、Cu、As、Cr、Cd和Hg酸可提取态的含量。其中,柠檬酸对土壤重金属化学形态变化起主要作用。
     (4)在土壤Zn含量为5000 mg/kg的条件下,植物生长12周后,灯笼草地上部Zn含量达到10976 mg/kg,对土壤中Zn的富集系数及转运系数均大于1,由此证明灯笼草是一种Zn的超累积植物。
     (5)钼酸铵有助于苜蓿草对生物量的积累,而且增强了苜蓿草对重金属的富集能力。磷酸二氢钠-柠檬酸(pH=5.2-7.2)也有助于苜蓿草对生物量的积累。在磷酸二氢钠-柠檬酸的影响下,苜蓿草对As、Cr、Hg、Mo和Zn的转运系数增加,但降低了对Cd、Cu、Ni和Pb的转运系数。
     4、修复植物的产后处理
     (1)以富集Zn的灯笼草地上部分为原料,制得较纯净的氧化锌纳米粒子,其平均粒径为72.5 nm。
     (2)以灯笼草体内的维管束为原料,制备了纯净的多壁碳纳米管。多壁碳纳米管的结构为:中空、外径范围为20-500 nm,内径范围为10-200 nm,管壁上存在着缺陷,且直径与管长不统一。
In this thesis, we focus on the problem in the soil and vegetables contaminated seriously by heavy metals, the low efficiency of remediation, and difficulty of the reuse phytoremediation. The contents and distributions of heavy metals (Cu, Zn, Cr, and Cd) in the farmland (field and greenhouse) and soil around ferroalloy plant (Jinzhou, China) were studied. The influences of Cu, Zn, Cr, and Cd on soil enzyme (urease, protease, sucrose, and catalase) activities were analyzed. The regular patterns of absorption, distribution, and enrichment of heavy metals (Cu, Zn, Cr, and Cd) in leafy vegetables (in different growth phase) and weeds were revealed. The pollution degree of vegetables by heavy metals was assessed. The effects of ammonium molybdate, potassium acid phthalate-sodium hydroxide, and sodium dihydrogen phosphate-citric acid on the transformation of chemical states in heavy metals were discussed. The inducement patterns of chemical substances (ammonium molybdate and sodium dihydrogen phosphate-citric acid) on phytoremediation of soil contaminated by heavy metals were studied. Physalis alkekengi L. was a newly found zinc hyperaccumulator. ZnO nanoparticles and multi-walled carbon nanotubes were synthesized using Physalis alkekengi L. which had enriched Zn fron soil. The findings are shown as follows:
     1. Effect of combined heavy metal contamination on soil enzyme activities
     (1) The soil enzyme activities in different areas were extremely different. The change amplitudes of soil enzyme activities were varied significantly with different soil and enzyme: the change amplitudes of catalase activities were significant, but the change amplitudes of protease activities were minimum. In the soil of ferroalloy plant, the activities of urease, protease, sucrose, and catalase were decreasing significantly with the increasing of the contents of Cu, Zn, Cr, and Cd in soil.
     (2) With the additions of ammonium molybdate into soil, the changes of soil enzyme (urease, protease, sucrose, and catalase) activities were not regulation. The activities of urease and sucrose were increased (activate effect), but the activities of protease and catalase were decreased (inhibit effect).
     2. The study of the migration and transformation of heavy metals in soil-plant
     (1) The regular patterns of absorption of heavy metals by Endive, Lettuce, Spinach, and Chinese Cabbage were different. Endive, Lettuce, Spinach, and Chinese Cabbage growing in the soil of ferroalloy plant were contaminated seriously by heavy metals. The contributions of Cd and Cr on contamination in four leafy vegetables were maximum.
     (2) The heavy metals in soil were accumulated in Plantago asiatica L., Taraxacum mongolicum, Artemisia lavandula, Artemisia Lavandulaefolia and Physalis alkekengi L.. The enrichment on different heavy metals by the same weed and different weeds were not alike. For the five kinds of weeds, enrichment on Zn and Cd by leaf of Physalis alkekengi L. was powerful; enrichment on Cr by root of Artemisia lavandula was powerful; enrichment on Cu by root of Plantago asiatica L. was powerful.
     3. The remediation of soil contaminated by heavy metals in ferroalloy plant
     (1) The effects of ammonium molybdate on Cr and Zn in soil were immobilization, but the effects of it on Cd, Cu, and Ni in soil were mobilization.
     (2) The promoting effects of potassium acid phthalate-sodium hydroxide (pH ranged from 5.2 to 6.2) on the transformation of both the acid soluble fractions in Cr, Cu, Hg, Pb and the oxidation associated as well as organic associated fractions in As, Hg were significant.
     (3) With addition of sodium dihydrogen phosphate-citric acid (pH ranged from 5.2 to 7.2) into soil, the contents of acid soluble fractions in Zn, Mo, Ni, Pb, Cu, As, Cr, Cd, and Hg were increased. Citric acid played a leading role in the transformation of chemical states in heavy metals.
     (4) The zinc concentrations in the aerial parts of P. alkekengi plants growing in soil spiked with 5000 mg/kg zinc increased to 10976 mg/kg (dry weight) within 12 weeks. The values of bioconcentration factor and translocation factor were greater than 1, which confirmed that Physalis alkekengi L. was a zinc hyperaccumulator.
     (5) With addition of ammonium molybdate into soil, both the biomass of alfalfa and the enrichment on heavy metals by alfalfa were enhanced. The sodium dihydrogen phosphate-citric acid (pH ranged from 5.2 to 7.2) could promote alfalfa to produce more biomass. The translocation factors of As, Cr, Hg, Mo, and Zn in alfalfa were increased, but them of Cd, Cu, Ni, and Pb were decreased after sodium dihydrogen phosphate-citric acid was added into soil.
     4. The reuse of phytoremediation
     (1) The pure ZnO nanoparticles were synthesized using the shoot of Physalis alkekengi L., which had enriched Zn from soil, as material. ZnO nanoparticles had a mean size of 72.5 nm.
     (2) The pure multi-walled carbon nanotubes were synthesized using the vascular bundles in Physalis alkekengi L. as material. The structure of synthesized multi-walled carbon nanotubes was middle-hollow. The inner diameter ranged from 10 to 200 nm, and the outer diameter ranged from 20 to 500 nm. There were a few defects in the walls of the multi-walled carbon nanotubes. The diameter and length of the multi-walled carbon nanotubes were ununiform.
引文
[1] Peng J F, Song Y H, Yuan P, et al. The remediation of heavy metals contaminated sediment[J]. Journal of Hazardous Materials, 2009, 161(2-3): 633-640.
    [2]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社, 1999.
    [3] Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal contaminated soils and groundwater: an evaluation[J]. Engineering Geology, 2001, 60 (1-4): 193-207.
    [4] Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As,Cr,Cu,Pb and Zn in soil using amendments-A review[J]. Waste Management, 2008, 28(1): 215-225.
    [5] Al-Hamdan A Z, Reddy K R. Transient behavior of heavy metals in soils during electrokinetic remediation[J]. Chemosphere, 2008, 71(5): 860-871.
    [6]房存金.土壤中主要重金属污染物的迁移转化及治理[J].当代化工, 2010, 39(4): 458-460.
    [7]魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志, 2004, 23(1): 65-72.
    [8]张群芳.生物反应器填埋场中重金属固定和释放规律实验研究[J].清华大学学报自然科学版, 2007, 47(9): 1466-1472.
    [9]滕应,骆永明.污染土壤的微生物修复原理与技术进展[J].土壤, 2007, 39(4): 497-502.
    [10]郭平.长春市土壤重金属污染机理与防治对策研究[D]. [博士学位论文].长春:吉林大学资源与环境学院, 2005.
    [11] Diaz X, Johnson W, Oliver W, et al. Volatile Selenium Flux from the Great Salt Lake, Utah[J]. Environmental Science and Technology, 2009, 43(1), 53-59.
    [12] Mirlean N, Robinson D, Kawashita K, et al. Identification of local sources of lead in atmospheric deposits in an urban area in Southern Brazil using stable lead isotope rations [J]. Atmospheric Environment, 2005, 39(33): 6204-6212.
    [13]杨景辉.土壤污染与防治[M].北京:科学出版社, 1995.
    [14]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004, 35(3):365-370.
    [15] Pyeong K L. Heavy metal contamination of settling particle in a retention pond along the A-71 motorway in Sologne, France[J]. Science of the Total Environment, 1997, 201(1): 1-15.
    [16] Fakoyade S O, Olu-Owolabi B I. Heavy metal contamination of roadside topsoil in Osagbo, Nigeria: its relationship to traffic density and proximity to highways[J]. Environmental Geology, 2003, 44(2): 150-157.
    [17]杨卓. Cd、Pb、Zn污染潮褐土的植物修复及其强化技术研究[D]. [博士学位论文].保定:河北农业大学资源与环境科学学院, 2009.
    [18] Kloke A D R, Sauerbeck D K, Vetter H. Changing Metal Cycles and Human health[M]. Berlin: Springer-verlag, 1984. 113-141.
    [19] Wang Q, Kim D, Dionysiou D D, et al. Sources and remediation for mercury contamination in aquatic systems-a literature review[J]. Environmental Pollution, 2004, 131(2): 323-326.
    [20]郑顺安,李仪,普锦成,等.污水灌溉条件下Cu在农田土壤中的运移及其模拟研究[J].浙江大学学报农业与生命科学版, 2011, 37(3): 343-354.
    [21]国家环境保护总局.中国环境状况公报2002[N].中国环境报, 2003-6-9.
    [22]孙强,马腾,祁志冲,等.污水灌溉区包气带中重金属元素空间分布特征-以太原市某污水灌溉区为例[J].地质科技情报, 2010, 29(3): 86-90.
    [23]赵兴敏.典型重金属在包气带和含水层中的迁移转化特征[D]. [博士学位论文].长春:吉林大学环境与资源学院, 2008.
    [24]李丽霞,郝明德,薛晓辉.黄土高原沟壑区苹果园土壤重金属含量特征研究[J].土壤保持学报, 2007, 21(6): 65-69.
    [25]付华,吴雁华,魏立华.北京南部地区农业土壤重金属分布特征与评价[J].农业环境科学学报, 2006, 25(1): 182-185.
    [26]杨庆娥,任振江,高然.污水灌溉对土壤和蔬菜中重金属积累和分布影响研究[J].中国农村水利水电, 2007, 5: 74-75.
    [27] Fakoyade S O, Onianwa P C. Heavy metal contamination of soil and bioaccumulation in Guinea grass (Panicumacium) around Ikeja Industrial Estate, Lagos, Nigeria[J]. Engineering Geology, 2002, 43: 145-150.
    [28]马旭红,吴云海,杨凤.土壤重金属污染的探讨[J].环境科学与管理. 2006, 3l(5): 52-54.
    [29]廖国礼.典型有色金属矿山重金属迁移规律与污染评价研究[D]. [博士学位论文].长沙:中南大学资源与安全工程学院, 2005.
    [30]王哲,张国盛,王颖.包钢尾矿坝土壤重金属污染诊断[J].安徽农业科学. 2008, 36(12): 5149-5150.
    [31]林晓峰,胡恭任,于瑞莲,赵阳.泉州市主要工业区土壤重金属健康风险评价[J].有色金属. 2011, 63(2): 297-300.
    [32]任福民,汝宜红,许兆义,吕伟.北京市生活垃圾重金属元素调查及污染特性分析[J].北方交通大学学报, 2001, 25(4): 66-68.
    [33]张辉,马东升.城市生活垃圾向土壤释放重金属研究[J].环境化学, 2001, 20(1): 43-47.
    [34] Ure A M, Queauviller P H, Muntsu H, et al. Speciation of heavy metal in soils and sediments[J]. International Journal of Environmental Analytical Chemistry, 1993, 51: 135-151.
    [35]陈怀满,郑春荣.中国土壤重金属污染现状与防治对策[J]. AMBIO:人类环境杂志, 1999, 28(2): 130-134.
    [36]何峰.重庆市农田土壤-粮食作物重金属关联特征与污染评价[D]. [博士学位论文].重庆:西南农业大学农学院, 2004.
    [37] Long C, Wang Y J, Zhou D M, et al . Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province[J]. China Journal of Environmental Sciences, 2004, 16: 371-374.
    [38]王登启.设施菜地土壤重金属的分布特征与生态风险评价研究[D]. [博士学位论文].泰安:山东农业大学资源与环境学院, 2008.
    [39]孙铁绗,李培军,周启星.土壤污染形成机理与修复技术[M].北京:科学出版社, 2005.
    [40] Kabata P I A, PEND I H. Trace Elements in Soils and Plants[M]. 2nd ed. Boca Raton: CRC Press, 1992.
    [41]刘毅.镉的危害及其研究进展[J].中国城乡企业卫生, 2003, 8(4): 34-38.
    [42]洪春来,贾彦博,杨肖娥,等.菜园土壤对铅的吸附与解吸特性研究[J].中国农学通报, 2006, 22(9): 412-414.
    [43]韦朝阳.重金属超富集植物及植物修复技术研究进展[J].生态学报, 2001, 21(7): 1197-1203.
    [44]张增强,张一平.氟在土壤中吸持的动力学特征研究[J].环境科学学报, 2000, 20(3): 370-375.
    [45]孙秉志.陕西东岭冶炼是造成凤翔儿童血铅超标的主因[N].西安晚报, 2009-08-16.
    [46]王涵,王果,黄颖颖,等. pH变化对酸性土壤酶活性的影响[J].生态环境, 2008, 17(6): 2401-2406.
    [47]徐冬梅,刘广深,许中坚,等.模拟酸雨对土壤酸性磷酸酶活性的影响及机理[J].中国环境科学, 2003, 23(2): 176-179.
    [48] Frankenberger W T, Jr, Johanson J B. Effect of pH on enzyme stability in soils[J]. Soil Biology and Biochemistry, 1982, 14(5): 433-437
    [49] George T S, Richardson A E, Simpson R J. Behaviour of plant-derived extracellular phytase upon addition to soil[J]. Soil Biology and Biochemistry, 2005, 37(5): 977-988.
    [50] Leprince F, Quiquampoix H. Extracellular enzyme activity in soil: effect of pH and ionic strength on the interaction with montmorillonite of two acid phosphatases secreted by the ectomycorrhizal fungus Hebeloma cylindrosporum[J]. European Journal of Soil Science, 1996, 47(4): 511-522.
    [51] Lozzi I, Calamai L, Fusi P, et al. Interaction of horseradish peroxidase with montmorillonite homoionic to Na+ and Ca2+: effects on enzymatic activity and microbial degradation[J]. Soil Biology and Biochemistry, 2001, 33(7-8): 1021-1028.
    [52]张桂山,贾小明,马晓航,等.山东棕壤重金属污染土壤酶活性的预警研究[J].植物营养与肥料学报, 2004, 10(3):272-276.
    [53]杨志新,刘树庆.重金属Cd、Zn、Pb复合污染对土壤酶活性的影响[J].环境科学学报, 2001, 21(1):60-63.
    [54]杨正亮,冯贵颖.重金属对土壤脲酶活性的影响[J].干旱地区农业研究, 2002, 20(3): 41-43.
    [55]李博文,刘树青.潮褐土镉、锌、铅复合污染与土壤酶活性的关系[J].吉林农业科学,2000, 25(1): 38-41.
    [56] Mireles A, Solís C, Andrade E, et al. Heavy metal accumulation in plants and soil irrigated with wastewater from mexico city[J]. Nuclear Instruments and Methods in Physics Research B, 2004, 220(6):187-190.
    [57]张成娥,陈小利.黄土丘陵区不同撂荒年限自然恢复的退化草地土壤养分及酶活性特征[J].草地学报, 1997, 5(3): 195-1991.
    [58]晋松,吴克,俞志敏.铜胁迫对白茅根际和非根际土壤酶活性影响的研究[J].土壤通报, 2011, 42(4): 937-941.
    [59]夏增禄.土壤环境容量及其应用[M].北京:气象出版社, 1988.
    [60] Moreno J L, Garcia C, Hernandez T. Toxic effect of cadmium and nickel on soil enzymes and the influence of adding sewage sludge[J]. European Journal of Soil Biology, 2003, 54(2): 377-386.
    [61] Kitagish. Heavy metal pollution in soil of Japan[M]. Japan scientific societies press, 1981.
    [62]刘树庆.保定市污灌区土壤的Pb、Cd污染与土壤酶活性关系研究[J].土壤学报, 1996, 33(2): 175-182.
    [63]周礼恺,张志明,曹承绵,等.土壤的重金属污染与土壤酶活性[J].环境科学学报, 1985, 5(2): 176-183.
    [64] Kandeler E, Luftenegger G, Schwarz S. Influence of heavy metales on the functional diversity of soil microbial communities[J]. Biology and Fertility of Soils, 1997, 23(3): 299-306.
    [65]和文祥,朱铭莪,张一平.土壤酶与重金属关系的研究现状[J].土壤与环境, 2000, 9(2): 139-142.
    [66]杨志新,刘树庆. Cd、Zn、Pb单因素及复合污染对土壤酶活性的影响[J].土壤与环境, 2000, 9(1):15-18.
    [67] Raskin I, Ensley B D. Phytoremediation of toxic metals: using plants to clean up the environment[M]. New York: John Wiley and Sons, 2000: 23-25.
    [68]李海华,刘建武,李树人,等.土壤-植物系统中重金属污染及作物富集研究进展[J].河南农业大学学报, 2000, 34(1):30-34.
    [69]赵志强,赵慧敏,全燮.土壤中氯代有机化合物的环境行为[J].土壤, 2000, 32(5): 231-235.
    [70] Van Elsas Trevors J T, Wllington E M H. Modern soil microbiology[M]. New York: Marcel Dekker, 1997: 153-201.
    [71]周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态, 1999, 10(3): 21-27.
    [72]张乃明.土壤-植物系统重金属污染研究现状与展望[J].环境科学进展, 1998, 7(4): 30-33.
    [73]周艺敏.天津市园田土壤和几种蔬菜中的重金属含量状况的调查研究[J].农业环境保护, 1990, 9(6): 30-34.
    [74]冯恭衍.宝山区菜区土壤重金属污染的环境质量评价[J].上海农学院学报, 1993, 11(1): 35-42.
    [75]王丽凤,白俊贵.沈阳市蔬菜污染调查及防治途径研究[J].农业环境保护, 1994, 13(2): 84-88.
    [76]戴军,刘腾辉.广州菜地生态环境的污染特征[J].土壤通报, 1995, 26(3): 102-104.
    [77]周建利,陈同斌.我国城郊菜地土壤和蔬菜重金属污染研究现状与展望[J].湖北农学院学报, 2002, 22(5): 476-480.
    [78]阮俊华,张志剑,陈英旭,等.受污染土壤的农业损失评估法初探[J].农业环境保护, 2002, 21(2): 163-165.
    [79]马往校,段敏,李岚.西安市郊区蔬菜中重金属污染分析与评价[J].农业环境保护, 2000, 19(2): 96-98.
    [80]马往校,周乐,段敏,等.西安市蔬菜中重金属污染状况分析[J].西北农林科技大学学报, 2003, 31(6): 178-180.
    [81]何冰,杨肖娥,魏幼璋.铅污染土壤的修复技术[J].广东微量元素科学, 2001, 8(9): 12-17.
    [82] Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal contaminated soils and groundwater: an evaluation[J]. Engineering Geology, 2001, 60(1-4): 193-207.
    [83]龙新宪,杨肖娥,倪吾钟.重金属污染土壤修复技术研究的现状与展望[J].应用生态学报, 2002, 13(6): 57-762.
    [84]姜楠,王鹤立,廉新颖.地下水铅污染修复技术应用与研究进展[J].环境科学与技术, 2008, 2(31): 56-60.
    [85] Conner J R. Chemical fixation and solidification of hazardous wastes[M]. Van Nostr and Reinhold, New York, 1990.
    [86] Wheeler P. Leach repellent[J]. Ground Engineering. 1995, 28: 20-22.
    [87] Valls S, Vazquez E. Leaching Properties of stabilised/solidified cement admixtures sewage sludges systems[J]. Journal of Waste Management, 2002, 22(1): 37-45.
    [88]乔秀臣,林宗寿,寇世聪,等.废弃粗粉煤灰-水泥系统固化重金属废弃物的探讨[J].武汉理工大学学报, 2005, 27(3): 23-26
    [89] Andres A, OrtizI, Viguri JR, et al. Long term behavior of toxic metalsin stabilized steel foundry dusts[J]. Journal of Hazardous Materials, 1995, 40(1): 31-42.
    [90] Salaita G N, Tate P H. Spectroscopic and microscopic characterization of portland cement based unleached and leached solidified waste[J]. Applied Surface Science, 1998, 133(1-2): 33-46
    [91]张青.改良剂对福锌复合污染土壤修复作用及机理研究[D]. [博士学位论文].北京:中国农业科学院农业资源与农业区划研究所, 2006.
    [92] Rogoz A. The content and uptake of some micronutrients and heavy metals in sunflowers and maize depending on the dose of lime[J]. Zeszyty Problem owe Nauk Rolnicryc, 1996, 434(1): 213-218.
    [93] Oliver D P, Tiller K G, Alston A M, et a1. Effects of soil pH and applied cadmium concentration in wheat Brain[J]. Australian Journal of Soil Research, 1998, 36(4): 571-583.
    [94] Lindsay W L. Chemical equilibria in soils. John Whey and Sons[M]. New York, 1979.
    [95] Cabrera D, Young S D, Rowell D L. The toxicity of cadmium to barley plant as affected by complex for-mations with humic acid[J]. Plant and Soil, 1988, 105(8): 195-204.
    [96] Bolan N S, Adriano D C, Naidu R. Role of phosphorus in (im)mobilization and bioavailable of heavy mrtals in soil-plant system[J]. Reviews of Environmental Contamination and Toxicology, 2003, 177: 1-44.
    [97] Jurate K, Anders L, Christian M. Stabilization of As,Cr,Cu,Pb and Zn in soil using amendments-a review[J]. Waste Management, 2008, 28(1): 215-225.
    [98] Casagrande L. The application of electro-osmosis to practical problems in foundations and earthworks (Department of Scientific and Industrial Research; Building Research, Technical Paper No. 30) [M]. London.
    [99] Cabrera-Guzman D, Swartzbaugh J T, Andrew W W. The use of electrokineics for hazardous waste site remediation[J]. Journal of the Air and Waste Management Association, 1990, 40(1): 1670-1676.
    [100] Yalcin B. Acar, Akram N. Alshawabkeh. Principles of electrokinetics remediation[J]. Environmental Science and Technology, 1993, 27(13): 2638-2647.
    [101] Hansen H K, Ottosen L M, Klein B K. Electrodialytic remediation of soils polluted With Cu,Cr,Hg,Pb and Zn[J]. Journal of Chemical Technol and Biotechnol, 1997: (70): 67-73.
    [102] Ottosen L, Lemaire M T, Moyne C, Stemmelen D. Modelling of electro-osmosis in clayey materials including pH effects[J]. Physics and Chemistry of the Earth, 2007 32: 441-452.
    [103] Reinout Lageman, Robert L Clarke.Wiebe Pool. Electro remediation,a versatile soil remediation solution[J]. Engineering Geology, 2005, 77(3-4):191-201.
    [104] Jurate Virkutyte, Mlka Sillanpaa, Petri Latostenmaa. Electro kineticsoil remediation-critical overview[J]. Science of the Total Environment, 2002, 289(1-3): 97-121.
    [105] Li R S, Li L Y. Enhancement of electrokinetic extraction from leads piked soils[J]. Journal of Environmental Engineering, 2000, 126(9): 849-857.
    [106] Altin A, Degirmenci M. Lead(II) removal from natural soils by enhanced electro kinetic remediation. Science of the Total Environment, 2005, 337(1-3): 1-10.
    [107] Zhou D M, Deng C F, Cang L, et al. Electrokinetic remediation of a Cu-Zn contaminated red soil by controlling thevoltage and conditionin catholyte pH[J].Chemosphere, 2005, 61(4): 519-527.
    [108] Dermont G, Bergeron M, Mercier G, et al. Soil washing for metal removal: A review of physical/chemical technologies and eld applications[J]. Journal of Hazardous Materials, 2008, 152(1): 1-31.
    [109] Peters R W. Chelant extraction of heavy metals from contaminated soils[J]. Journal of Hazardous Materials, 1999, 66(2): 151-210.
    [110] Reed B E, Carriere P C, Moore R. Flushing of a Pb (Ⅱ) contaminated soil using HCl, EDTA, and CaCl2[J]. Journal of Environmental Engineering. 1996, 122(1): 48-50.
    [111]林琦,陈英旭,陈怀满,等.有机酸对Pb、Cd的土壤化学行为和植株效应的影响[J].应用生态学报, 2001, 12(4): 619-622.
    [112] Mulligan C N, Yong R N, Gibbs B F. Heavy metal removal from sediment s by bio-surfactants[J]. Journal of Hazardous Materials, 2001, 85(1-2): 111-123.
    [113] Mulligan C N. Surfactant enhanced remediation of contaminated soil: a review [J]. Engineering Geology, 2001, 60(1-4): 371-380.
    [114]王伟,曾光明,黄国和,等.生物表面活性剂在土壤修复及堆肥中应用现状展望[J].环境科学与技术, 2005, 28(6): 99-101.
    [115] Dirilgen, N. Effect of pH and chelator EDTA on Cr toxicity and accumulation in Lemma minor[J]. Chemosphere, 1998, 37(4):771-783.
    [116] Fin?gar N, ?umer A, Le?an D. Heap leaching of Cu contaminated soil with [S,S]-EDDS in a closed process loop. Journal of Hazardous Materials, 2006, 135 (1–3): 418-422.
    [117] Peters R W. Chelant extraction of heavy metals from contaminated soils[J]. Journal of Hazardous Materials, 1999, 66 (1–2): 151-210.
    [118] Neilson J W, Artiola J F, Maier R M. Characterization of lead removal from contaminated soils by non toxic soil washing agents[J]. Journal of Environmental Quality, 2003, 32(3): 899-908.
    [119] Di Palma L, Mecozzi R. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents[J]. Journal of Hazardous Materials, 2007, 147(3):768-775.
    [120]杨居荣,薛纪渝,夸田共之.日本公害病发源地的今天[J].农业环境保护, 1999, 18(6): 268-271.
    [121]李玲,路婕.矿区重金属污染土壤的修复[J].安徽农学通报, 2006, 12(12): 54-156.
    [122]何冰.东南景天对铅的耐性和富集特性及其对铅污染土壤修复效应的研究[D]. [博士学位论文].杭州:浙江大学环境与资源学院, 2003.
    [123] Chaney R L. Plant uptake of in organic waste constituents. Land treatment of hazardous wastes[M]. Noyes Data Corp: Park Ridge, 1983.
    [124] Baker A J M,Reeves R D, Mcgrath S P. In situ decontamination of heavy metal polluted soils using corps of metal accumulating plants-a feasibility study. In situ bioremediation Boston[M]. Butter worth Heinemann, 1988.
    [125] Kumar P B A N, Dushenkov V, Motto H, et al. Phytoextraction: the use of plants to remove heavy metals from soils[J]. Environmental Science and Technology, 1995, 29(5): 1232-1238
    [126]周启星,宋玉芳.污染土壤植物修复.污染土壤修复原理与方法[M].北京:科学出版社, 2004.
    [127]林春梅.重金属污染土壤生物修复技术研究现状[J].环境与健康杂志, 2008, 25(3): 273-275.
    [128]唐世荣.土-水介质中低放核素污染物的生物修复[J].应用生态学报, 2002, 13(2): 243-246
    [129] Meagher R. Phytoremediation of toxic elemental and organic pollutants[J]. Current Opinion in Plant Biology, 2000, 3(2): 153-162.
    [130]滕应,骆永明.污染土壤的微生物修复原理与技术进展[J].土壤, 2007, 39(4): 497-502.
    [131]桑伟莲,孔繁翔.植物修复研究进展[J].环境科学进展, 1999, 7(3): 40-44
    [132] Greger M, Landberg T. Use of willow in phytoremediation[J]. International Journal of Phytoremediation, 1999, 1(2): 115-123
    [133] Robinson B H, Mills T M, Petit D, et al. Natural and induced cadmium-accumulation in poplar and willow: Implications for phytoremediation[J]. Plant and Soil, 2000, 227(1-2): 301-306.
    [134] EBBS P A. A Citizen’s Guide to Phytoremediation[M]. London: DRV Press, 1998.
    [135]张永利,戴九兰.土壤重金属污染的微生物生态效应研究进展[J].生态科学, 2007, 26(2): 186-188.
    [136] Dushenkov V, Kumar P B A N, Motto H, et al. Rhizofiltration: the use of plants to remove heavy metals from aqueous streams[J]. Environmental Science and Technology, 1995, 29(5): 1239-1245.
    [137]姜虎生. Cd胁迫对玉米生理特性的影响[J].辽宁石油化工大学学报, 2004, 24(2): 35-39.
    [138] Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements–a review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1(2): 81-126.
    [139] Wei S H, Zhou Q X, Koval P V. Flowering stage characteristics of cadmium hyperaccumulat or Solanum nigrum L . and their significance to phytoremediation[J]. Science of the Total Environment, 2006, 369(1-3), 441-446.
    [140] Wei S H, Zhou Q X, Mathews S. A newly found cadmium accumulator Taraxacum mongolicum[J]. Journal of Hazardous Materials, 2008, 159(2-3), 544-547.
    [141] Long X X, Yang X E, Ye Z Q. et al. Differences of uptake and accumulation of zinc in four species of Sedum[J]. Acta Botanica Sinica, 2002, 44(2), 152-157.
    [142] Ajay S, Owen P W. Applied Bioremediation and Phytoremediation (Soil Biology)[M]. Heidelberg: Springer, 2004.
    [143] Rohelio C G, Leonm J C. Heavy metals in soils and alfalfa (Medicago sativa L.) irrigated with three sources of wastewater[J]. Journal of Environmental Science and Health, 1992, 27(7): 1771-1783.
    [144] Angle J S, Chaney R L. Heavy metal effects on soil population and heavy metal tolerance of Rhizobium meliloti, nodulation and growth of alfalfa[J]. Water, Air and Soil Pollution, 1991, 57-58(1): 597-604.
    [145] Baligar V C, Campbell T A, Wrigth R J. Differential responses of alfalfa clones to aluminum-toxic acid soil[J]. Plant Nutrition, 1993, 16(2): 219-223.
    [146] Gardea-Torresdey J L, Gonzalez J H, Tiemann K J, et al. Phytofiltration ofhazardous cadmium, chromium, lead and zinc ions by biomass of Medicago sativa (Alfalfa)[J]. Journal of Hazardous Materials, 1998, 57(1-3): 29-39.
    [157] Gardea-Torresdey J L, Tiemann K J, Gamez G, et al. Effects of chemical competition for multi-metal/ binding by Medicago sativa alfalfa[J]. Journal of Hazardous Materials, 1999, 69(1): 41-51.
    [148] Gardea-Torresdey J L, Tiemann K J, Gonzalez J H, et al. Phytofiltration of hazardous metal ions by alfalfa: a study of cadmium and magnesium interferences[J]. Journal of Hazardous Materials, 1997, 56(1): 169-179.
    [149]杨肖娥,龙新宪,倪吾钟.古老铅锌矿山生态型东南景天对锌耐性及超积累特性的研究[J].植物生态学报, 2001, 25(6): 665-672.
    [150]杨肖娥,龙新宪,倪吾钟,等.东南景天(Sedum alfredii H)一种新的锌超积累植物[J].科学通报, 2002, 47(13): 1003-1007.
    [151] Yang X E, Long X X, Ye Z Q, et al. Cadmium uptake and accumulationin the zinc–hyper accumulating species Sedum alfredii Hance[J]. Plant and Soil, 2004, 259(1-2): 181-189.
    [152]孙健.灯心草对土壤重金属污染的抗性及其修复潜力研究[D]. [硕士学位论文].长沙:湖南农业大学资源环境学院, 2006.
    [153] Ebbs S D, Lasat M M, Brady D J, et al. Phytoextraction of cadmium and zinc from a contaminated soil[J]. Journal of Environmental Quality, 1997, 26(5): 1424- 1430.
    [154]蒋先军,骆永明,赵其国.镉污染土壤植物修复及其EDTA调控研究:Ⅰ镉对富集植物印度芥菜的毒性[J].土壤, 2001, 33 (4): 197-201.
    [155] Ma LQ, Komar KM, Tu C, et al. A fern that hyperaccumulates arsenic[J]. Nature, 2001, 409(6822): 579.
    [156] Srivastava M, Ma L Q, Singh N, et al. Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic[J]. Journal of Experimental Botany, 2005, 56(415): 1335-1342.
    [157] Tu C, Ma L Q. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator Ladder brake[J]. Journal of Environmental Quality, 2002, 31(2): 641-647.
    [158]魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志, 2004, 23(1): 65-72.
    [159] Wang D Y, Shi X J, Wei S Q. Accumulation and transformation of atmospheric mercury in soil[J]. Science of the Total Environment, 2003, 304(1-3): 209-214.
    [160] Xiao Z F, Sommar J, Lindqvist O, et al. Atmosphere mercury deposition on Fanjing mountain nature reserve, GuiZhou, China. Chemosphere, 1998, 36(10): 2191-2200.
    [161]张群芳.生物反应器填埋场中重金属固定和释放规律实验研究[J].清华大学学报自然科学版, 2007, 47(9): 1466-1472.
    [162] Siegel S M, Keller P, Siegel B Z, et al. Metal Speciation, Separation and Recovery. Proc Intern Symp. Chicago[M]. Kluwer Academic Publishers, 1986.
    [163] Chanmugathas P, Bollag J M. A column study of biological mobilization of cadmium in soil suspension[J]. Archives of Environmental Contamination and Toxicology, 1991, 21(2): 549-555.
    [164] Woolfolk C A, Whiteley H R. Reduction of inorganic compounds with molecular hydrogen by micrococcus lactilyticus[J]. Journal of Bacteriology, 1962, 84(4): 647-658.
    [165]戴欣,王保军,黄燕,等.普通和稀释培养基研究太湖沉积物可培养细菌的多样性[J].微生物学报, 2005, 45(2): 161-165.
    [166] Zhao F J, Lombi E, Breedon T, et al. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri[J]. Plant Cell and Environment, 2000, 23(5): 507-514.
    [167] Speir TW, Kettles HA, Parshotam A. Simple kinetic approach to determine the toxicity of As V to soil biological properties[J]. Soil Biology and Biochemistry, 1999, 31(5): 705-713.
    [168] Reijnders L. Disposal, uses and treatments of combustion ashes: a review[J]. Resources, Conservation and Recycling, 2005, 43(3): 313-336.
    [169] Stuchi S, Jakob A. Thermal treatment of incinerator fly ash: factors influencing the evaporation of ZnCl2[J]. Waste Management, 1997, 17(4): 231- 236.
    [170] Sarret G, Vangronsveld J, Manceau A, et al. Accumulation forms of Zn and Pbin Phaseolus vulgaris in the presence and absence of EDTA[J]. Environmental Science and Technology, 2001, 35(13): 2854-2859.
    [171] Lakshmi K L. Davis C. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part I: Preparation of synthetic hyperaccumulator biomass[J]. Biomass and Bioenergy, 2003, 24(1): 69-79.
    [172] Lakshmi K L. Davis C. Pyrolysis as a technique for separating heavy metals fromhyperaccumulators. Part II: Lab-scale pyrolysis of synthetic hyperaccumulator biomass[J]. Biomass and Bioenergy, 2003, 25(6): 651-663.
    [173]戴文娇,刘晓海,曾向东,等.超积累植物在植物冶金中的研究进展[J].环境科学导刊, 2008, 27(2): 12-14.
    [174] Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices[J]. Journal of Applied Physics, 2005, 98(4): 041301.
    [175] Pearton S J, Norton D P, Lp, et al. Recent progress in processing and properties of ZnO[J]. Progress in Materials Science, 2005, 50(3): 293-340.
    [176] Koudelka L, Horak J. Morphology of polyerystalline ZnO and its physical properties[J]. Joumal of Materials Science, 1994, 29(13): 1497-1499.
    [177]周树学,武利民.纳米复合涂料的发展述评[J].涂料工业, 2001, 31(9):28-30.
    [178]刑宏龙,徐国财.纳米粉体的分散及纳米复合材料的成型技术[J].材料导报, 2001, 15(9):62-64.
    [179]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社. 2002.
    [180]杜仕国.超细粉制备技术及其进展[J].功能材料, 1997, 28(3):237-241.
    [181]段兴,赵兴中,李兴国,等.超细粉制各技术的现状和展望[J].材料导报, 1993, 8(1):111.
    [182]程敬泉,严会娟,魏雨.氧化锌超细粒子的制备及应用[J].河北师范大学学报, 2000, 24(4): 509-501.
    [183]王玉棉,王胜,侯新刚,等.并流沉淀法制备纳米氧化锌[J].有色金属, 2003, 55(6): 43-46.
    [184]卫志贤,雷闫盈,李晓蛾,等.均匀沉淀法制备纳米氧化物工艺分析[J].西北大学学报, 1998, 28(5): 407-411.
    [185]刘素琴,黄可龙,宋志方,等. Sol-Gel法制备ZnO压敏陶瓷及其电性[J].无机材料学报, 2000, 15(2): 376-380.
    [186]Chung H L, Chi H Y. Emulsion precipitation of submicron zinc oxide powder[J]. Materials Letters, 1997, 33(3): 129-132.
    [187]沈茹娟,贾殿赠,梁凯.纳米氧化锌的固相合成及其气敏特性[J].无机化学学报, 2000, 16(6): 906-910.
    [188]刘家祥,丁德玲,王震,等.均匀沉淀法制备纳米氧化锌[J].有色金属, 2006, 58(1): 49-52.
    [189] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
    [190] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363(6430): 603-605.
    [191] Bethune D S, Kiang C H, DeVries M S,et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls[J]. Nature, 1993, 363(6430), 605-605.
    [192] Xu F, Sun L X, Zhang J, et al. Thermal stability of carbon nanotubes[J]. Journal of Thermal Analysis and Calorimetry, 2010, 102(3): 785-791.
    [193] Rajangam T, Hyun-Jong P, Seong A. An application and toxicity of CNTs in human body[J]. Journal of Toxicology and Environmental Health Sciences, 2010, 96(2): 126-130.
    [194] Vygodskiia Y S, Volkovaa T V, Zabegaevab O N, et al. Synthesis and haracteristics of the composites based on poly(caproamide) and multiwalled carbon nanotubes[J]. Polymer Science Series, 2009, 51(1): 63-73.
    [195]余颖,贾志杰,曾艳,张平.碳纳米管增强PA6复合材料的机理[J].高分子材料科学与工程, 2003, 19(3): 198-200.
    [196] Zhou Z H, Li W S, Guo P P, et al. Catalytic activity and stability toward methanol oxidation of PtRu/CNTs prepared by adsorption in aqueous solution and reduction in ethylene glycol[J]. Solid-State Electronics, 2010, 14(20): 191-196.
    [197]李凤仪,彭年才.催化剂制备条件对碳纳米管的影响[J].分子催化, 2003,17(1): 65-69.
    [198] Bertoni G, Cepek C, Romanato F. Fast and efficient procedure to grow single- and multi-wall carbon nanotubes[J]. Carbon, 2004, 42 (2): 440-443.
    [199] Shao M W, Wang D B, Yu G H, et al. The synthesis of carbon nanotubes at low temperature via carbon suboxide disproportionation[J]. Carbon, 2004, 42(2): 183-185.
    [200] Eun Joo P, Sanghyun H, Dong W P, et al. Preparation of conductive PTFE nanocomposite containing multi-walled carbon nanotube via latex heterocoagulation approach[J]. Colloid and Polymer Science, 2010, 288(1): 47-53.
    [201] Zheng R, Liu X S, Hu F. One-step preparation of carbon nanotubes with nickel as the core[J]. Technology and Science, 2011, 54(1): 76-80.
    [202] Kang J L, Li J J, Wu X W. In situ synthesis of ceria decorated carbon nanotubes by chemical vapor deposition[J]. Materials Letters, 2009, 63(2): 182-184.
    [203] Kang Z H, Wang E B, Mao, B D, et al. Obtaining carbon nanotubes from grass[J]. Nanotechnology, 2005, 16(8): 1192-1195.
    [204]刘尧兰,陈焕晟,蒋建华.环鄱阳湖区部分叶菜类蔬菜重金属污染评价与来源分析[J].安徽农业科学, 2011, 39(20): 12310-12314.
    [205] Str?mberg B, Banwart S. Kinetic modeling of geochemical processes at the Aitik mining waste rock site in northern Sweden[J]. Applied Geochemistry, 1994, 9 (2): 583-595.
    [206]关松荫.土壤酶及其研究方法[M].北京:农业出版社, 1983.
    [207]Adriana. Trace elements in the terrestrial environment[M]. New York: Springer-Verlag Inc. 1986.
    [208]Lovely DR. Microbial reduction of iron, manganese, and other metals[J]. Advances in Agronomy, 1995, 54(2): 175-231.
    [209]弓晓峰,陈春丽, Barbara Zimmermann,等. ICP-AES测定湖泊沉积物中微量元素的样品微波消解研究[J].光谱学与光谱分析, 2007, 27(1): 155-159.
    [210]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社, 1983.
    [211]尔·维·加里乌林.根据土壤酶的活性监测土壤的重金属污染[J].国外农业环境保护, 1992, 27(7): 977-979.
    [212] Speir T W, Kettles H A, Parshotam A. A simple kinetic approach to derive the ecological dose value, ED50, for the assessment of Cr VI toxicity to soil biological properties[J]. Soil Biology and Biochemistry, 1995, 27(6): 801-810.
    [213]史长青.重金属污染对水稻酶活性的影响[J].土壤通报, 1995, 26(1): 34-35.
    [214]刘登义,严密,王友保,等.铜陵铜矿区凤丹根际和非根际土壤酶活性[J].应用生态学报, 2006, 17(7):1315-1320.
    [215]滕应,骆永明,李振高.土壤重金属复合污染对脲酶、磷酸酶及脱氢酶的影响[J].中国环境科学, 2008, 28(2): 147-152.
    [216]朱铭获.重金属浓度对土壤酶活性影响[M].北京:科学出版社, 1980.
    [217]龄忠祥,汪维云.合肥郊区菜园土壤酶活性研究[J].土壤通报, 1996, 27(4): 179-181.
    [218] Caldwell B A, Griffiths R P, Sollins P. Soil enzyme response to vegetation disturbance in two lowland Costa Rican soils[J]. Soil Biology and Biochemistry, 1999, 31 (12):1603-1608.
    [219]焦如珍,杨承栋,屠星南.杉木人工林不同发育阶段林下植被土壤微生物酶活性及养分的变化[J].林业科学研究, 1997, 10(4): 373-379.
    [220]杨涛,徐慧,李慧.樟子松人工林土壤养分、微生物及酶活性的研究[J].水土保持学报, 2005, 19(3): 50-53.
    [221]邱丽萍,刘军,王益权.土壤酶活性与土壤肥力的关系研究[J].植物营养与肥料学报, 2004, 10(3): 277-280.
    [222]林天,何园球,李成亮.红壤旱地中土壤酶对长期施肥的响应[J].土壤学报, 2005, 42(4): 682-686.
    [223]刘鹏,杨玉爱.土壤中的钼及其植物效应的研究进展[J].农业环境保护, 2001, 20(4): 280-282.
    [224]秦文淑,邹晓锦,仇荣亮.广州市蔬菜重金属污染现状及对人体健康风险分析[J].农业环境科学学报, 2008, 27(4): 1638-1642.
    [225]曲蛟,袁星,丛俏,等. ICP-AES测定邻苯二甲酸氢钾-氢氧化钠作用下土壤中重金属全量及形态分析[J].光谱学与光谱分析, 2008, 28 (11): 2674-2678.
    [226] Wei S H, Zhou Q X, Mathews S. A newly found cadmium accumulatorTaraxacum mongolicum[J]. Journal of Hazardous Materials, 2008, 159(2-3): 544-547.
    [227]宣建国,吕志华. 7种蔬菜中重金属铅和镉含量的分析研究[J].太原科技, 2005, 1(1): 71.
    [228]郭朝晖,肖细元,陈同斌,等.湘江中下游农田土壤和蔬菜的重金属污染[J].地理学报, 2008, 63(1): 3-11.
    [229]张治国,姚多喜,郑永红,等.煤矿塌陷复垦区6种菊科植物土壤重金属污染修复潜力研究[J].煤炭学报, 2010, 35(10): 1742-1746.
    [230] Chen H M, Zheng C R, Wang S Q, et al. Combined Pollution and Pollution Index of Heavy Metas in Red Soil[J]. Pedosphere, 2000, 10(2): 117-124.
    [231]许柱,肖昕,何莉苹,等.小麦富集重金属锌的特征分析[J].湖北农业科学, 2011, 50(6): 1117-1118.
    [232]董占荣.猪粪中的重金属对菜园土壤和蔬菜重金属积累的影响[D]. [硕士学位论文].杭州:浙江大学, 2006.
    [233]何昌福,蔡焕然,王健.白菜在不同生长阶段对重金属Cd的敏感性研究[J].灌溉排水学报, 2008, 4(2): 16-17.
    [234]张燕.温室大棚土壤重金属形态分布及其生物有效性[D]. [硕士学位论文].西安:西北农林科技大学, 2008.
    [235]姚春霞,陈振楼,张菊,等.上海浦东部分蔬菜重金属污染评价[J].农业环境科学学报, 2005, 24(4): 761-765.
    [236] Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry[J]. Biorecovery, 1989, 1(2): 811-826.
    [237] Chaney RL, MalikM, Li YM. Phytoremediation of soil metals[J]. Current Opinions in Biotechnology, 1997, 8(3): 279-284.
    [238] Wei S H, Zhou Q X. Identification of weed species with hyperaccumulative characteristics of heavy metals[J]. Progress in Natural Science, 2004, 14(6):495-503.
    [239]李法云,肖鹏飞,侯伟,等.典型工业区杂草对土壤中重金属吸收特性研究[J].辽宁工程技术大学学报, 2007, 26(2): 300-303.
    [240]王广林,王立龙,李征,等.杂草对土壤重金属的富集与含量特征研究[J].生态学杂志, 2005, 24(6): 639-643.
    [241]魏树和,周启星,王新,等.农田杂草的重金属超积累特性研究[J].中国环境科学, 2004, 24(1): 105-109.
    [242]李鸣,吴结春,李丽琴.鄱阳湖湿地22种植物重金属富集能力分析[J].农业环境科学学报, 2008, 27(6): 2413-2418.
    [243]魏树和,周启星,王新,等.某铅锌矿坑口周围具有重金属超积累特征植物的研究[J].环境污染治理技术与设备, 2004, 5(3): 33-39.
    [244]姚敏,张宇峰,崔志强,等. pH和有机配体对Cu-Pb复合污染土壤中Cu的解吸行为的影响[J].南京工业大学学报, 2006, 28(4): 9-12.
    [245] ?emberyováM, BartekováJ, HagarováI. The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins[J]. Talanta, 2006, 70(4): 973-978.
    [246]夏玉宇.化学实验室手册[M].北京:化学工业出版社, 2004.
    [247] Xu L, Xiao L S, Zhang Q X. Overall treatment of process effluent from ammonium molybdate[J]. Rare metals and cemented carbides, 2002, 38(2): 6-8.
    [248] Rubin J, Bartolome J, Tomkinson J. The dynamics of NH4+ in the NH4MF3 perovskites. II. Inelastic neutron scattering study[J]. Journal of Physics: Condensed Matter, 1995, 46(7): 8723-8740.
    [249] Yuan S, Xi Z, Jiang Y, et al. Desorption of copper and cadmium from soils enhanced by organic acids[J]. Chemosphere, 2007, 68(7):1289-1297.
    [250] Chen H M. Heavy Metal Pollution in Sol-Plant System[M]. Beijing, Science Press, 1996.
    [251] Seaman J C, Arey J S, Bertsch P M. Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition[J]. Journal of Environmental Quality, 2001, 30(2):460-469.
    [252] Hettiarachchi G M, Pierzynski G M, Ransom M D. In situ stabilization of soil lead using phosphorus[J]. Journal of Environmental Quality, 2001, 30(4):1214-1221.
    [253] Scheckel K G, Ryan J A. In vitro formation of pyromorphite via reaction of Pb sources with soft-drink phosphoric acid[J]. Science of the Total Environment, 2003,302(1-3): 253-265.
    [254] Van der Sloot H A, Heasman L, Quevauviller P. Harmonization of leaching/ extraction tests (Studies in Environmental Science)[M]. Elsevier, Amsterdam, 1997.
    [255]缪德仁.重金属复合污染土壤原位化学稳定化试验研究[D]. [博士学位论文].北京:中国地质大学环境学院, 2010.
    [256]陈亚华.重金属污染土壤的诱导性植物提取研究[D]. [博士学位论文].南京:南京农业大学,生命科学学院植物生物学系2006.
    [257] Chen Y X, Lin Q, Luo Y M. The role of citric acid on the phytoremediation of heavy metal contaminated soil[J]. Chemosphere, 2002, 50(6): 807-811.
    [258] Jean L, Bordas F, Bollinger J C. Chromium and nickel mobilization from a contaminated soil using chelants[J]. Environmental Pollution, 2007, 147(3): 729-736.
    [259] Jean L, Borda F, Gautier-Moussard C. Effect of citric acid and EDTA on chromium and nickel uptake and translocation by Datura innoxia[J]. Environmental Pollution, 2008, 153(3): 555-563.
    [260] Lindsay E B, Jason L B, Kerry L H, et al. Analysis of transgenic indian mustard plants for phytoremediation of metal-contaminated mine tailings[J]. Journal of Environmental Quality, 2003, 32(2): 432-440.
    [261] Knight B, Zhao FJ, McGrath S P, et al. Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution[J]. Plant and Soil, 1997, 197(1): 71-78.
    [262] Steffen K L. Avoidance of photo oxidative stress: balancing energy flux within the chloroplast. In: Pell, E.J., Steffen, K.L. (Eds.), Active Oxygen/Oxidative Stress, Plant Metabolism[M]. American Society of Plant Physiologists, Rockville, MD, USA, 1991.
    [263] Dat J, Vandenabeele S, Vranova E, et al. Dual action of the active oxygen species during plant stress responses[J]. Cellular and Molecular Life Sciences, 2000, 57(5): 779-795.
    [264] Karabal E, Y?cel M, ?ktem H V. Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity[J]. Plant Science, 2003, 164(6): 925-933.
    [265] Nguyen T N, Mohapatra P K, Fujita K, et al. Leaf necrosis is a visual symptom of the shift from growth stimulation to inhibition effect of Al in Eucalyptus camaldulensis[J]. Plant Science, 2003, 165(1): 147-157.
    [266] Peng J F, Song Y H, Yuan P, et al. The remediation of heavy metals contaminated sediment[J]. Journal of Hazardous Materials, 2009, 161(2-3): 633-640.
    [267] Lasat M M. Phytoextraction of toxic metals: a review of biological mechanisms[J]. Journal of Environmental Quality, 2002, 31(1): 109-120.
    [268] Peralta-Videa J R, Gardea-Torresdey J L, Gomez E, et al. Potential of alfalfa plant to phytoremediate individually contaminated montmorillonite-soils with cadmium (II), chromium (VI), copper (II), nickel (II), and zinc (II)[J]. Bulletin of Environmental Contamination and Toxicology, 2002, 69(1): 74-81.
    [269] Seregin I V, Kozhevnikova A D. Physiological role of nickel and its toxic effects on higher plants[J]. Russian Journal of Plant Physiology, 2006, 53(2): 257-277.
    [270] Krishnamurti G S R, Cieslinski G, Huang P M, et al. Kinetics of cadmium release from soil as influenced by organics acids: Implication in cadmium availability[J]. Journal of Environmental Quality, 1997, 26(1): 271-277.
    [271] Schwab A P, He Y H, Banks M K. The influence of organic ligands on the retention of lead in soil[J]. Chemosphere, 2005, 61(6): 856-866.
    [272] Labanowski J, Monna F, Bermond A, et al. Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate[J]. Environmental Pollution, 2008, 152(3): 693-701.
    [273] Evangelou M W H, Ebel M, Schaeffer A. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents[J]. Chemosphere, 2007, 68(6): 989-1003.
    [274] Pushenreiter M, St?ger G, Lombi E, et al. Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: Rhizosphere manipulation using EDTA and ammonium sulphate[J]. Journal of Plant Nutrition and Soil Science, 2001, 164(6): 615-621.
    [275] Chen C C, Liu P, Lu C H. Synthesis and characterization of nano-sized ZnO powders by direct precipitation method[J]. Journal of Chemical Engineering, 2008,144(3): 509-513.
    [276] He C, Sasaki T, Shimizu Y, et al. Synthesis of ZnO nanoparticles using nanosecond pulsed laser ablation in aqueous media and their self-assembly towards spindle-like ZnO aggregates[J]. Applied Surface Science, 2008, 254(7): 2196-2202.
    [277] Ye H B, Yang X E, He B, et al. Growth response and metal accumulation of Sedum alfredii to Cd/Zn complex-polluted ion levels[J]. Acta Botanica Sinica, 2003, 45(9): 1030-1036.
    [278]王久亮,刘宽,秦秀娟.纳米氧化锌的应用研究展望[J].哈尔滨工业大学学报, 2004, 36(2): 226-231.
    [279]孙天军.氧化锌微/纳米材料的气相合成与表征[D]. [博士学位论文].大连:大连理工大学化学学院, 2007.
    [280] Seo D J, Park S B, Kang YC. Formation of ZnO, MgO and NiO nanoparticles from aqueous droplets in flame reactor[J]. Journal of Nanoparticle Research, 2003, 23(5): 199-210.
    [281]牛新书,杜卫平,杜卫民.纳米ZnO的制备及其气敏性能[J].应用化学, 2003, 20(10): 968-971.
    [282] Sameera I, Bhatia R, Prasad V. Preparation, characterization and electrical conductivity studies of MWCNT/ZnO nanoparticles hybrid[J]. Physica B: Condensed Matter, 2010, 405(7): 1709-1714.
    [283] Dresselhaus M S, Dresselhaus G, Pimenta M A, et al. InAnalytical Applications of Raman Spectroscopy; Pelletier[M]. Blackwell Science: Oxford, 1999.
    [284] Kasuya A, Sasaki Y. Evidence for Size-dependent Discrete Dispersions in Single-wall Nanotubes[J]. Physical Review Letters, 1997, 78(23): 4434-4437.
    [285] Tuinstra F, Koening J L. Raman spectrum of graphite[J]. Journal of Chemical Physics, 1970, 53(3):1126-1130.
    [286] Liu J, Shao M, Chen X, et al. Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process[J]. Journal of the American Chemical Society, 2003, 125(27): 8088-8089.
    [287] Kroto H W, Heath J R, O'Brien S C, et al. C60: Buck minster full erene[J]. Nature, 1985, 318(6042): 162.
    [288] Zhou O, Shimoda H, Gao B, et al. Fabrication, integration, and properties of macroscopic structures of carbon nanotubes[J]. Accounts of Chemical Research, 2002, 35(12): 1045-1053.
    [289] Ebbesen T W, Ajayan P M. Large-Scale Synthesis of carbon nanotubes[J]. Nature, 1992, 358(6383): 220-222.
    [290] Eklund P C, Pradhan B K, Kim U J, et al. Large-scale production of single-walled carbon nanotubes using ultrafast pulses from a free electron laser[J]. Nano Letters, 2002, 2(6): 561-566.
    [291] Wal V R L, Berger G M, Hall L J. Single-walled carbon nanotube synthesis via a multi-stage flame configuration[J]. Journal of Physical Chemistry: B, 2002, 106(14): 3564-3568.
    [292] Gogotsi Y, Libera J A, Yoshimura M. Hydrothermal synthesis of multiwall carbon nanotubes[J]. Journal of Materials Research, 2000, 15(12): 2591-2593.
    [293] Calderon-Moreno J M, Yoshimura M. Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon[J]. Journal of the American Chemical Society, 2001, 123(4): 741-742.
    [294] Yuan A, Zhang Q. A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte[J]. Electrochemistry Communications, 2006, 8(7): 1173-1178.
    [295] Liu Y, Jiang W, Wang Y. Magnetism and magnetic materials[J]. Journal of Materials Science, 2009, 321(5): 408-412.
    [296] Pederson M R, Broughton J Q. Nano capillarity in fullerene tubules[J]. Physical Review Letters, 1992, 69(18): 2689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700