用户名: 密码: 验证码:
吸附催化协同低温等离子体降解有机废气
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代工业的快速发展也使每年排入环境的有毒有害废气大幅增加,尤其是挥发性有机废气(VOCs)的排放,严重干扰居民的日常生活,恶化人们的生存环境,进而对人体健康和生态环境造成危害。低温等离子体技术工艺流程简单、开停方便、运行费用低、去除效率高,在VOCs治理上具有明显优势,是国内外目前的研究热点之一。本论文采用高压脉冲电源和线筒式介质阻挡反应器对甲硫醚在空气中的降解情况、背景气对甲硫醚降解的影响和等离子体+吸附复合技术降解甲硫醚做了基础研究;对皮革厂产生的VOCs废气进行实验室小试;建立光电一体化去除木业行业喷漆VOCs废气示范工程。论文取得以下主要结论:
     (1)在本实验条件下,甲硫醚去除率随着峰值电压、脉冲频率、停留时间的增加而提高。甲硫醚初始浓度过高会导致去除率的下降,但是在出气达标的情况下,适当增加初始浓度有利于提高能量利用率。在本体系中,甲硫醚由等离子体反应器降解后的主要副产物是O3、NOx、SO2。甲硫醚的初始浓度增加可以降低出气中O3、NOx的含量,SO2浓度则会提高。在较高峰值电压下,出气中SO2选择性会提高。流量为1000mL/min,甲硫醚初始浓度为832mg/m3,峰值电压为40kV时,甲硫醚去除率为100%,SO2选择性为70%。
     (2)甲硫醚的浓度一定时,在不同的背景气中,等离子体反应器的起晕电压均与总气压成正比。当甲硫醚浓度为832mg/m3,标准大气压下,本实验中反应器的起晕充电电压为2.4kV。在相同的峰值电压下,甲硫醚在介电常数小的背景气中容易降解。等离子体环境下,背景气中不同的湿度条件对甲硫醚的降解有较大影响。适当的湿度可以提高去除率和能量利用率。本实验的最佳湿度为0.3vol%。O2在等离子体降解甲硫醚的过程中具有重要作用。O2在高能电子和自由基的作用下生成具有强氧化性的O3和含氧自由基,促进甲硫醚的降解。背景气中O2含量直接决定副产物O3、NOx、SO2的生成量。当背景气中O2含量为5%时,甲硫醚去除率较高,同时副产物O3、NOX、SO2生成量相对较少。
     (3)峰值电压和初始浓度是影响皮革废气(主要成分二甲胺)去除率和能量利用率的重要因素。在峰值电压为41.25kV时,761mg/m3的二甲胺去除率可达100%;高的氧气含量可促进含氧活性粒子的生成,从而提高二甲胺的去除率;背景气中的高湿度会增加等离子体反应器中OH自由基的浓度,抑制臭氧生成,从而影响二甲胺的去除效果。在实验条件下,0.3vo1%为低温等离子体降解二甲胺的最佳湿度;低温等离子体降解二甲胺和甲硫醚混合废气时存在协同作用,可以提高去除率、能量利用率并减少副产物生成,总污染物的能量利用率从2.13mg/kJ提高到5.20mg/kJ。
     (4)吸附饱和甲硫醚的活性炭在介质阻挡放电区域内可以有效再生,活性炭经过4次再生后再生效率保持在90%以上。活性炭再生效率随着等离子体反应器中能量密度的增加而提高。在本实验条件下,背景气中含有适当的湿度可以促进活性炭的再生。另外,背景气中低氧气含量(≤5vo1%)对活性炭再生起促进作用,而高氧气含量(>5vo1%)起抑制作用。活性炭在低温等离子体再生过程中比表面积和微孔孔容增加,但是持续的再生过程会引起活性炭表面结构坍塌和微孔堵塞,从而降低活性炭对甲硫醚的吸附能力。同时介质阻挡放电过程也会削弱活性炭对甲硫醚的亲和力。
     (5)活性炭协同介质阻挡放电能显著提高甲硫醚去除率。湿度极大地影响甲硫醚在活性炭协同低温等离子体体系中的降解。在20℃时,25%的相对湿度最有利于促进甲硫醚去除。活性炭协同等离子体可以有效控制出气中的副产物。在合理的能量密度下,等离子体会改变活性炭表面性质,使活性炭长时间保持吸附活性。
     (6)低温等离子体与紫外光催化技术相结合可以有效去除木业家具厂产生的喷漆VOCs废气,最终实现VOCs废气达标排放。
With the industry developing, the emission of hazardous gasous pollutants grows fast, especially the emission of volatile organic compounds (VOCs), which causes detrimental influences on both human health and global environment. Non-thermal plasma (NTP) techniques have great industrial potential for VOCs removal with relatively low power consumption and high removal efficiency. At present, many researches have been focused on NTP techniques applying in VOCs control. In this study, a wire-cylinder dielectric barrier discharge (DBD) reactor was adopted to investigate the decomposition of dimethyl sulfide (DMS), the influence of balance gas on decomposition of DMS and decomposition of DMS by NTP+activated carbon (AC). A laboratory scale experiment on removal of leather industrial waste gas was carried out. A demonstration project on spray painting VOCs control by NTP techniques was established. The main conclusions of this paper are as follows:
     (1) Under the experimental condition, the conversion of DMS increases with a increasemnt of peak voltage, pulse frequency and resident time. High initiate concentration causes a reduction of DMS conversion. However, energy cost decreases with increasing of the initial DMS concentration. In the cases of DMS removal, the main byproducts are NOx, SO2 and O3. The concentration of O3 and NOX in outlet gas decreases and SO2 concentration increases with an increasement of the initial DMS concentration. The selection of SO2 is enhanced at a higher peak voltage. High energy electrions and free radicals play important roles in decomposition of DMS in NTP.
     (2) The breakthrough voltage of DMS in Ar is lower than that of DMS in N2, both of which are proportional to the gas pressures. The breakthrough voltage in this DBD reactor with DMS in air is 2.4 kV at a 1 atm. At a fixed peak voltage, DMS in smaller dielectric strength balance gas is easier to decomposition by NTP. The humidity in balance gas strongly affects DMS decomposition by NTP. Proper humidity improves conversion and energy efficiency. The highest DMS removal efficiency is achieved with the gas stream containing 0.3 vol% H2O in air. Oxygen plays an important role in decomposition of DMS in NTP. Oxygen reacts with high energy electrons to form O3 and O radical, resulting in boosting DMS decomposition. The presence of O2 in balance gas determines the amount of NOx, SO2 and O3 produced.5% oxygen is the optimum concentration in decomposition of DMS, due to relatively higher conversion of DMS and fewer yields of O3, NOx and SO2.
     (3) Peak voltage and initial dimethylamine (DML) concentration are important factors that influence the DML removal efficiency and energy yield. The conversion of DML of 761 mg/m3 reaches 100% at a peak-voltage of 41.25 kV. Higher oxygen content (0-21%) promotes production of active species such as ozone, leading to higher DML conversion. Humidity enhances the amount of OH radicals and inhibits ozone production in reactor, which codetermines the optimum humidity of 0.3% under the experiment conditions (0-0.8%). When DML and DMS were decomposed together, synergistic actions exist in the processes, leading to higher conversion, higher energy yield and less byproducts formation. The energy yield is promoted from 2.13 to 5.20 mg/kJ.
     (4) The DMS exhausted AC is regenerated efficiently in the discharge zone by DBD. The regeneration efficiency keeps above 90% after 4 regeneration cycles. The regeneration efficiency increases with the energy density increasing. Under the experimental conditions, an appropriate humidity level in balance gas promotes AC regeneration. A promoting effect of low O2 concentration (<5%) and a adverse effect of high O2 concentration (>5%) on AC regeneration are obtained in the study. DBD process can make surface area, pore volume of AC increase. And successive AC regeneration processes cause wall destruction and pores blockage, resulting in reduction of adsorption capacity. Surface chemistry of AC also plays an important role in adsorption capacity. Increasing carboxylic groups produced by DBD weakens the affinity of DMS toward the surface of AC.
     (5) NTP assistanted by AC can improve DMS conversion dramasticly. The humidity in balance gas strongly influences DMS decomposition by NTP+AC system.25% of relative humidity is optimum for DMS decomposition in NTP+AC system. NTP+AC system can effectively control the byproducts. NTP at a propriate energy density can modify AC surface and keep AC adsorbable for long term.
     (6) NTP combined UV can efficiently remove spray painting VOCs. In demonstration project, the emission of waste gas from plant reaches the standard after treatment.
引文
曹静,杨建涛,陈杰,等.介质阻挡放电低温等离子体降解甲硫醚.高校化工学报,2007,21(6):1060-1064.
    陈文兴,张利,姚玉元,等.四羧基金属酞菁负载纤维素纤维的制备及其消臭性能研究.高分子学报,2006,9(12):1069-1072.
    陈运根,姜一飞.DMF的应用与生产.化工催化剂及甲醇技术,2004,5:15-19.
    傅荣兴.从DMF废水中回收DMF方法的简介.化工环保,1998,5:312-313.
    傅菁菁.吹脱法及其工程应用.建设科技,2002,8:60-62.
    高华生,汪大晕,叶芸春,等.用修正的Polanyi-Dubinin方程描述有机蒸气-水蒸气在活性炭上的吸附平衡.化工学报,2001,52(4):357-362.
    高华生,汪大晕,叶芸春,等.空气湿度对低浓度有机蒸气在活性炭上吸附平衡的影响.环境科学学报,2002,22(2):194-198.
    高武龙,董坤伦.活性炭纤维吸附-冷凝技术在有机废气回收净化中的应用.广东化工,2010,37(8):242-243.
    郭兵兵,王毓仁,和凤友,等.生物法净化石化企业污水处理场恶臭废气的中型试验.石油炼制与化工,2005,36(5):66-70.
    郭建光,李忠,奚红霞,等.催化燃烧VOCs的三种过渡金属催化剂的活性比较.华南理工大学学报,2004,32(5):56-59.
    巩宗强,胡筱敏,徐新阳.应用活性炭再生含多环芳烃植物油的可行性及性能评价.环境污染与防治,2008,30(10):5-7.
    郝吉明,马广大.大气污染控制工程.北京:高等教育出版社,2002.
    何怪,季学李,羌宁.生物滴滤池洼处理挥发性有机荇染物的进展.上海环境科学,1999,18(6):261-263.
    何杰,赵俊斌,兰允祥.二甲基硫和乙硫醉在层状Ki_2xMxTiNbO5 (M=Mn2+、Ni2+)上的吸附与光催化氧化作用.燃料化学学报,2009,37(4):485-488.
    黄立维,谭火恩.脉冲电晕法治理甲苯的实验研究.中国环境科学,1997,17(5):449-452.
    黄立维,谭天恩.三种电晕反应器去除有机废气比较.电工电能新技术, 1998a,17(1):61-63.
    黄立维,谭天恩,施耀.高压脉冲电晕法治理有机废气实验研究.环境污染与防治,1998b,20(1):4-7.
    蒋晓原,于庆瑞,郑小明,等.催化氧化法处理甲硫醇废气.中国环境科学,1995,15(3):221-224.
    蒋洁敏,侯健,郑光云,等.介质阻挡放电常压分解苯、二甲苯.中国环境科学,2001,21(6):531-534.
    黎维彬,鄢龚浩.催化燃烧去除VOCs污染物的最新进展.物理化学学报,2010,26(4):885-894.
    李笛,张发根,陈迪云.甲醇气体的电晕放电分解特性模拟.化学工程,2009,37(6):28-32.
    湘凌,林岗,周元详,等.复方液吸收法处理低浓度苯类废气.合肥工业大学学报(自然科学版),2002,25(5):795-796.
    李阳,许根慧,刘昌俊,等.等离子体技术在催化反应中的应用.化学工业与工程,2002,19(1):65-70.
    李战国,胡真,闫学峰,等.介质阻挡放电净化恶臭气体的实验研究.化学研究与应用,2006,18(8):958-961.
    李战国,胡真,曹鹏,等.脉冲电晕反应器结构对乙硫醇消除效果的影响.环境工程学报,2009,3(6):1065-1068.
    刘志国.DMF废水资源化无害化处理研究.南京,南京工业大学出版社,2005.
    刘书海,吴彦.电晕等离子体活化法脱硫脱硝的研究进展.环境科学进展,1994,2(5):75-81.
    吕唤春,潘洪明,陈英旭.低浓度挥发性有机废气的处理进展.化工环保,2001,21(6):324-327.
    陆彬,季民,于欣,等.介质阻挡等离子体放电与催化联用技术分解苯.中国环境科学,2006,26(6):703-707.
    马会宣,胡道道,房喻.负载型壳聚糖双水杨叉乙二胺合钴配合物的制备及其对乙硫醇的催化氧.化应用化学,2001,18(4):290-295.
    梅凡民,傅成诚,杨青莉,等.活性炭表面酸性含氧官能团对吸附甲醛的影 响.环境污染与防治,2010,32(3):18-22.
    聂勇,李伟,施耀,等.等离子体反应器的改进及其与脉冲电源问的匹配.电工电能新技术,2004,23(2):64-68.
    聂勇,施耀,李伟,等.不同电极结构等离子体反应器的放大试验研究.浙江大学学报(工学版),2005,39(2):277-282.
    聂亚峰,张晋华,杨震.挥发性有机硫化合物释放及对全球环境的影响.上海环境科学,2000,19(10):466-468.
    平树水.吸附回收法处理甲硫醚废气.化工环保,2003,23(1):22-24.
    任朝峰,王升建.汽车涂装有机废气的治理方法.节能环保技术,2008,12:25-28.
    阮建军,施耀,任先文,等.线板式脉冲电晕反应器放电特性研究.浙江大学学报(工学版),2006,40(3):537-540.
    施耀,阮建军,李伟,等.乙硫醇在脉冲电晕反应器内的降解特性.化学反应工程与工艺,2004,20(4):316-320.
    施耀,王鑫,杨建涛,等.脉冲等离子体反应器放电特性研究.电工电能新技术,2006,26(1):59-62.
    宋姗姗,张林生.N,N-二甲基甲酰胺(DMF)废水处理研究进展.江苏环境科技,2007,20:67-70.
    孙骊石,杨显万,谢蕴国,等.生物洁净化低浓度挥发性有机废气的动力学模式研究.上海环境科学,1997,16(8):13-17.
    孙骊石,黄兵,黄若华,等.生物法净化挥发性有机废气的吸附-生物膜理论模型与模拟研究.环境科学,2002,23(3):14-17.
    田森林,宁平.有机废气治理技术及其新进展.环境科学动态,2000,1:23-28.
    王德民,赵一先,李定邦.生物滴滤池法处理废气动力学模式研究.上海环境科学,1999,18(7):309-311.
    王丽燕,王爱杰,任南琪,等.有机废气(VOC)生物处理研究现状与发展趋势.哈尔滨工业大学学报,2004,36(6):732-735.
    王为,谢凯娜.DMF对制革废水处理的影响及处理方法.中国皮革,2005,34(19):36-37.
    王晓暾,康颖,吴祖成.氧化还原氛围下直流电晕等离子体脱除硫化氢.浙江大学学报(工学版),2008,42(10):1801-1804.
    王元元,张立志.室内空气净化技术的研究与进展.暖通空调,2006,36(12):24-28.
    王勇,金一中,赵青宁.乳状液膜吸收有机废气的实验研究.环境科学研究,2008,21(3):170-174.
    汪晶.环境评价数据手册.北京:化学工业出版社,1998.
    吴康跃,陈根良,陈杰,等.农药厂废气污染综合治理系统设计与应用.环境污染与防治,2009,31(10):97-99.
    吴忠标.实用环境工程手册——大气污染控制工程.北京:化学工业出版社,2001.
    乌锡康.有机废水治理技术.北京.化学工业出版社,1998.
    杨汉祥,杜凌君,唐文清,等.生物洗涤器处理挥发性有机废气的应用研究.衡阳师范学院学报,2008,29:76-79.
    晏乃强,吴祖成,施耀,等.电晕-催化技术治理甲苯废气的实验研究.环境科学,1999,20:11-14.
    衣新宇,赵修华,朱登磊.表面活性剂吸收法治理含苯废气的中试实验.能源环境保护,2004,18(3):25-28.
    俞筱筱,高华生,朱建林,等.活性炭对有机废气的吸附-缓冲实验及其模拟.环境科学研究,2007,20(5):124-128.
    章建华,沈本贤,刘纪昌.高酸性天然气中有机硫在溶剂吸收中的选择性研究.石油与天然气化工,2009,38(3):203-206.
    周勇平,高翔,吴祖良,等.直流电晕自由基簇射治理甲苯的试验研究,环境科学,2003,24(4):135-138.
    朱益民.脉冲电晕法脱硫脱硝研究概述.环境科学进展,1997,5(5):75-80.
    竹涛,梁文俊,李坚,等.等离子体联合纳米技术降解甲苯废气的研究.中国环境科学,2008a,28(8):699-703.
    竹涛,李坚,梁文俊,等.低温等离子体技术控制污水处理厂恶臭气体.环境工程,2008b,26(5):9-12.
    Aguado S, Polo AC, Bernal MP, et al. Removal of pollutants from indoor air using zeolite membranes. J Membrane Sci,2004,240(1-2):159-166.
    Akyuz M, Cortet PP, Cooray V. Positive streamer discharges along liquid dielectric surfaces:Effect of dielectric constant and surface properties. IEEE Trans Dielectr Electr Insul,2005,12:579-585.
    Atkinson R, Arey J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds:a review. Atmos Environ,2003,37:197-219.
    Blair, DTA. Breakdown voltage characteristics. In:Meek JM, Craggs JD. Electrical Breakdown of Gases. New York, Wiley,1978:533.
    Blin-Simiand N, Tardiveau P, Risacher A, et al. Removal of 2-heptanone by dielectric barrier discharges-The effect of a catalyst support. Plasma Process Plasma Polym,2005,2:256-262.
    Boehm HP. Surface oxides on carbon and their analysis:a critical assessment. Carbon,2002,40:145-149.
    Centeno MA. Catalytic combustion of volativle organic compounds on Au/ CeO2/A12O3 and Au/Al2O3 catalysts. Appl catal A:General,2002,234:65-78.
    Chae JO, Demidiouk V, Yeulash M, et al. Experimental study for indoor air control by plasma-catalyst hybrid system. IEEE T Plasma Sci,2004,32:493-497.
    Chang JS, Lawless PA, Yamamoto T, et al. Corona discharge processes. IEEE T Plasma Sci,1991,19(6):1152-1165.
    Chang MB, Lee HM. Abatement of perfluorocarbons with combined plasma catalysis in atmospheric-pressure environment. Catal Today,2004,89:109-115.
    Chavadej S, Kiatubolpaiboon W, Rangsunvigit P, et al. A combined multistage corona discharge and catalytic system for gaseous benzene removal. J Mol Catal A: Chem,2007a,263:128-136.
    Chavadej S, Saktrakool K, Rangsunvigit P, et al. Oxidation of ethylene by a multistage corona discharge system in the absence and presence of Pt/TiO2. Chem Eng,2007b,132:345-353.
    Chen J, Su QF, Pan H, et al. Influence of balance gas mixture on decomposition of dimethyl sulfide in a wire-cylinder pulse corona reactor. Chemosphere,2009,75: 261-265.
    Chen J, Yang J, Pan H, et al. Abatement of malodorants from pesticide factory in dielectric barrier discharges. J Hazard Mater,2010,177:908-913.
    Chiang Y, Chiang PC, Huang CP. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon,2001,39:523-534.
    Chinn D, King CJ. Adsorption of glycols, sugar, and related multiple-OH compounds onto activated carbons.2. Solvent regeneration. Ind Eng Chem Res,1999, 38:3746-3753.
    Chu H, Hao GH, Tseng TK. The kinetics of catalytic incineration of dimethyl sulfide and dimethyl disulfide over an MnO/Fe2O3 catalyst. J Air Waste Manage,2001, 51(4):574-581.
    Delagrange S, Pinard L, Tatibouet JM. Combination of a non-thermal plasma and a catalyst for toluene removal from air:Manganese based oxide catalysts. Appl Catal B:Environ,2006,68:92-98.
    Demeestere K, Dewulf J, Ohno T, et al. Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide. Appl Catal B:Environ,2005,61:140-149.
    Dhali S, Sardja I. Dielectric-barrier discharge for processing of SO2/NOX. J Appl Phys,1991,69(9):6319-6324.
    Ding HX, Zhu AM, Lu FG, et al. Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams. J Phys D:Appl Phys,2006,39: 3603-3608.
    Du L, Xu YF, Ge MF, et al. Rate constant of the gas phase reaction of dimethyl sulfide (CH3SCH3) with ozone. Chem Phys Lett,2007,436(2):36-40.
    Evans D. Plasma remediation of trichloroethylene in silent discharge plasma. J Apple Phys,1993,74(9):5378-5386.
    Faria P, Orfao J, Pereira M. Catalytic ozonation of sulfonated aromatic compounds in the presence of activated carbon. Appl Cata B:Eviron,2008,83: 150-159.
    Foest R, Kindel E, Ohl A, et al. Non-thermal atmospheric pressure discharges for surface modification. Plasma Phys Control Fusion,2005,47:525-536.
    Gonzalez JF, Encinar JM, Ramiro A, et al. Regeneration by wet oxidation of an activated carbon saturated with p-nitrophenol. Ind Eng Chem Res,2002,41: 1344-1351.
    Grossmannova H, Neirynck D, Leys C, et al. Atmospheric discharge combined with Cu-Mn/Al2O3 catalyst unit for the removal of toluene. J Phys 2006,56: 1156-1161.
    Guo YF, Ye DQ, Chen KF, et al. Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ. J Mol Catal A-Chem,2006a,245:93-100.
    Guo YF, Ye DQ, Chen KF, et al. Humidity effect on toluene decomposition in a wire-plate dielectric barrier discharge reactor. Plasma Chem Plasma P,2006b,26: 237-249.
    Guo YF, Liao XB, Ye DQ. Detection of hydroxyl radical in plasma reaction on toluene removal. J Environ Sci,2008,20:1429-1432.
    Hammer T, Kappes T, Baldauf M. Plasma catalytic hybrid processes:gas discharge initiation and plasma activation of catalytic processes. Catal Today,2004, 89:5-14.
    Han SB, Oda T. Decomposition mechanism of trichloroethylene based on by-product distribution in the hybrid barrier discharge plasma process. Plasma Sources Sci Technol,2007,16:413-421.
    Hao XL, Zhang XW, Lei LC. Degradation characteristics of toxic contaminant with modified activated carbons in aqueous pulsed discharge plasma process. Carbon, 2009,47:153-161.
    Helfritch DJ. Pulsed corona discharge for hydrogen sulfide decomposition. IEEE T Ind Appl,1993,29:882-886.
    Hensel K, Katsura S, Mizuno A. DC microdischarges inside porous ceramics. IEEE T Plasma Sci,2005,33:574-575.
    Herron JT. Modeling studies of the formation and destruction of NO in pulsed barrier discharges in nitrogen and air. Plasma Chem Plasma P,2001,21:581-609.
    Heymem F, Demoustier PM. A new efficient absorption liquid to treat exhaust air loaded with toluene. Chem Eng,2006,115:225-231.
    Hibert C, Gaurand I, Motret O, et al. [OH] measurements by resonant absorption spectroscopy in a pulsed dielectric barrier discharge. J Appl Phys,1999,85: 7070-7075.
    Holzer F, Kopinke FD, Roland U. Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants. Plasma Chem Plasma P,2005,25:595-611.
    Hsieh CT, Teng H. Influence of mesopore volume and adsorbate size on adsorptioncapacities of activated carbons in aqueous solutions. Carbon,2000,38: 863-869.
    Huang L, Nskajyo K, Hari T, et al. Decomposition of carbon tetrachloride by a pulsed corona reactor incorporated with in situ absorption. Ind Eng Chem Res,2001a, 40:5481-5486.
    Huang L, Nskajo K, Ozawa S, et al. Decomposition of dichloromethane in a wire-in-tube pulsed corona reactor. Environ Sci Technol,2001b,5:1276-1281.
    Intriago L, Diaz E, Ordonez S, et al. Combustion of trichloroethylene and dichloromethane over protonic zeolites:Influence of adsorption properties on the catalytic performance. Microporous Mesoporous Mater,2006,91:161-169.
    Jarrige J, Vervisch P. Decomposition of gaseous sulfide compounds in air by pulsed corona discharge. Plasma Chem Plasma P,2007.27:241-255.
    Jun J, Kim JC, Shin JH, et al. Effect of electron beam irradiation on CO2 reforming of methane over Ni/Al2O3 catalysts. Radiat Phys Chem,2004,71: 1095-1101.
    Kachina A, Preis S, Kallas J. Catalytic TiO2 oxidation of ethanethiol for environmentally begnin air pollution control of sulphur compounds. Environ Chem Lett,2006,4(2):107-110.
    Kanazawa S, Chang JS, Round GF, et al.Removal of NOx from flue gas by corona discharge activated methane radical shower. J Electrostat,1997,40:651-656.
    Kang M, Ko YR, Jeon MK, et al. Characterization of Bi/TiO2 nanometer sized particle synthesized by solvothermal method and CH3CHO decomposition in a plasma-photocatalytic system. J Photochem Photobiol A,2005,173:128-136.
    Kawamura K, Hirasawa A, Aoki S, et al. Pilot plant experiment of NOx and SO2 removal from exhaust gases by electron beam irradiation. Radia Phys Chem,1979,13: 5-12.
    Kim D, Choi Y, Kim K. Effects of process variables on NOx conversion by pulsed corona discharge process. Plasma Chem Plasma P,2001,21(4):625-650.
    Kim HH. Nonthermal plasma processing for air-pollution control:a historical review, current issures and future prospects. Plasma process Polym,2004,1:91-110.
    Kim HH, Ogata A, Futamura S. Atmospheric plasma-driven catalysis for the low temperature decomposition of dilute aromatic compounds. J Phys D:Appl Phys,2005, 38:1292-1300.
    Kim HH, Ogata A, Futamura S. Effect of different catalysts on the decomposition of VOCS using flow-type plasma-driven catalysis. IEEE T Plasma Sci, 2006,34:984-995.
    Kodama S, Habaki H, Sekiguchi H, et al. Surface modification of adsorbents by dielectric barrier discharge. Thin Solid Films,2002,407:151-155.
    Kogoma M, Okazaki S, Tanaka K, et al. Ozone, ammonia and NOx destruction in corona discharge tubes coated with ozone catalyst. Thin Solid Films,2001,386(2): 200-203.
    Kozlov DV, Vorontsov AV, Smirn IPG, et al. Gas phase photocatalytic oxidation of diethyl sulfide over TiO2 kinetic investigations and catalyst deactivation. Appl Catal B:Environ,2003,42(1):77-87.
    Kwak JH, Peden CHF, Szanyi J. Non-thermal plasma-assisted NOx reduction over Na-Y zeolites:the promotional effect of acid sites. Catal Lett,2006,109:1-6.
    Lahousse C. Evaluation of γ-MnO2 as a VOC removal catalyst:comparison with anobel metal catalyst. J Catal,1998,178:214-225.
    Lee HM, Chang MB. Abatement of gas-phase p-xylene via dielectric barrier discharges. Plasma Chem Plasma P,2003,23:541-558.
    Lee D, Honga SH, Paek KH, et al. Adsorbability enhancement of activated carbon by dielectric barrier discharge plasma treatment. Surf Coat Technol,2005,200: 2277-2282.
    Liao PH, Chen A, Lo KV. Removal of nitrogen from swine manure wastewaters by ammonia stripping. Bioresource Technol,1995,54:17-20.
    Locke BR, Sato M, Sunka P, et al. Electrohydraulic discharge and non-thermal plasma for water treatment. Ind Eng Chem Res,2006,45:882-905.
    Lu B, Zhang X, Yu X, et al. Catalytic oxidation of benzene using DBD corona discharges. J Hazard Mater,2006,137:633-637.
    Magda C, Zagorc J, Zgajnar A. The relationship between composition and toxicity of tannery wastewater. Water Sci Technol,2004,49(1):39-46.
    Magureanu M, Mandache NB, Eloy P, et al. Plasma-assisted catalysis for volatile organic compounds abatement. Appl Catal B:Environ,2005,61:12-20.
    Magureanu M, Mandache NB, Parvulescu VI, et al. Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene:Optimization of the reactor geometry and introduction of catalytic electrode. Appl Catal B:Environ, 2007,74:270-277.
    Malik MA, Minamitani Y, Schoenbach KH. Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic reactor. IEEE T Plasma Sci,2005,33:50-56.
    Marotta E, Callea A, Rea M, et al. DC corona electric discharges for air pollution control. Part 1. Efficiency and products of hydrocarbon processing. Environ Sci Technol,2007,41:5862-5868.
    Masuda S, Nakao H. Control of NOx by positive and negative pulsed corona discharge. IEEE T Ind Appl,1990,26(2):374-383.
    Masuda S, Hosokawa S, Tu X, et al. Destruction of gaseous pollutants by surface-induced plasma chemical process. IEEE T Ind Appl,1993,29(4):781-786.
    Mathias K, Daniel RC, Richard M, et al. Electron beam atmospheric pressure cold plasma decomposition of carbon tetrachloride and trichloroethylene. Environ Sci Technol,1995,29(12):2946-2952.
    Metts TA, Batterman SA. Effect of VOC loading on the ozone removal efficiency of activated carbon filters. Chemosphere,2006,6(1):34-44.
    Miranda B, Diaz E, Ordonez S, et al. Oxidation of trichloroethene over metal oxide catalysts:Kinetic studies and correlation with adsorption properties. Chemosphere,2007,66:1706-1715.
    Mizuno A, Clements JS, Davis RH. A method for the removal of sulfur dioxide from exhaust gas utilizing pulsed streamer corona for electron energization. IEEE T Ind Appl,1986,22(3):516-522.
    Mohseni M, Allen DG, Nichols KM. Biofiltration of a-pinene and its application to the treatment of pulp and paper air emissions. Tappi J,1998,81(8):205-211.
    Mok YS, Nam CM, Cho MH, et al. Decomposition of volatile organic compounds and nitric oxide by nonthermal plasma discharge processes. IEEE T Plasma Sci,2002,30:408-415.
    Morent R, Dewulf J, Steenhaut N, et al. Hybrid plasma-catalyst system for the removal of trichloroethylene in air. J Adv Oxid Technol,2006,9:53-58.
    Morent R, Leys C, Dewulf J, et al. DC-excited non-thermal plasmas for VOC abatement. J Adv Oxid Technol,2007,10:127-136.
    Moshe S, Yurii I, Matatov M. Comparison of catalytic processes with other regeneration methods of activated carbon. Catal Today,1999,53:73-80.
    Nourbakhsh S, Norwood K, Yin HM, et al. Vacuum ultraviolet photodissociation and photoionization studies of CH3SH and SH. J Chem Phys,1991,95(2):946-954.
    Oda T, Takahashi T, Nakano H, et al. Decomposition of fluorocarbon gaseous contaminants by surface discharge induced plasma chemical processing. IEEE T Ind Appl,1993,29(4):787-792.
    Oda T, Takahashi T, Tada K. Decomposition of dilute trichloroethylene by nonthermal plasma. IEEE T Ind Appl,1999,35 (2):373-379.
    Ogata A, Shintani N, Mizuno K, et al. Decomposition of benzene using a nonthermal plasma reactor packed with ferroelectric pellets. IEEE T Ind Appl,1999, 35:753-759.
    Ogata A, Ito D, Mizuno K, et al. Removal of dilute benzene using a zeolite-hybrid plasma reactor. IEEE T Ind Appl,2001,37(4):959-964.
    Oh SM, Kim HH, Ogata A, et al. Effect of zeolite in surface discharge plasma on the decomposition of toluene. Catal Lett,2005,99:101-104.
    Ohdubo T, Kanazawa S, Nomoto Y, et al. NOx removal by a pipe with nozzle-plate electrode corona discharge system. IEEE T Ind Appl,1994,30(4): 856-861.
    Ohdubo T, Kanazawa S, Nomoto Y, et al. Time dependence of NOx removal rate by a corona radical shower system. IEEE T Ind Appl,1996,32(5):1058-1062.
    Ono R, Oda T. Measurement of hydroxyl radicals in pulsed corona discharge. J Electrostat,2002,55:333-342.
    Ottengraf SP, Van D, Oever A. Kinetics of organic compound removal from waste gases with a biological filter. Biotechnol Bioeng,1983,25:165-170.
    Penetrante BM. Electro beam and pulsed corona processing of volatile organic compounds gas stream. Pure Appl Chem,1996,65(8):1083-1087.
    Pekarek S, Pospisil M, Krysa J. Non-thermal plasma and TiO2-assisted n-heptane decomposition. Plasma Process Polym,2006,3:308-315.
    Pradhan BK, Sandle NK. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon,1999,37:1323-1332.
    Pribytkov AS, Baeva GN, Telegina NS, et al. Effect of electron irradiation on the catalytic properties of supported Pd catalysts. Kinet Catal,2006,47:765-769.
    Qu G, Li J, Wu Y, et al. Regeneration of acid orange 7-exhausted granular activated carbon with dielectric barrier discharge plasma. Chem Eng J,2009,148: 168-173.
    Rodrigo H, Tan BH, Allen NL. Negative and positive impulse corona development along cylindrical insulator surfaces. IEEE Proc Sci Meas Technol,2005, 152:201-206.
    Roland U, Holzer F, Kopinke F. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds Part 2. Ozone decomposition and deactivation of gamma-Al2O3. Appl Catal B:Environ,2005,58: 217-226.
    Ruan JJ, Shi Y, Li W, et al. Decomposition of simulated odors in municipal wastewater treatment plants by a wire-plate pulse corona reactor. Chemosphere,2005, 59(3):327-333.
    San MG, Lambert SD, Graham NJD. The regeneration of field spent activated carbons. Water Res,2001,35:2740-2748.
    Sano T, Negishi N, Sakai E, et al. Contributions of photocatalytic/catalytic activities of TiO2 and gamma-Al2O3 in nonthermal plasma on oxidation of acetaldehyde. J Mol Catal A:Chem,2006,245:235-241.
    Scholz M, Martin RJ. Control of bio-regenerated columned granular activated carbon by spreadsheet modeling. J Chem Technol Biot,1998,71:253-261.
    Shi Y, Ruan JJ, Wang X, et al. Decomposition of mixed malodorants in a wire-plate pulse corona reactor. Environ Sci Technol,2005,39(17):6786-6791.
    Shi Y, Ruan JJ, Wang X, et al. Evaluation of multiple corona reactor modes and the application in odor removal. Plasma Chem Plasma P,2006,26:187-196.
    Shih A, Ciobanu C, Tao FM. Theoretical mechanisms and kinetics for the reaction of dimethyl sulfide and ozone in water vapor. J Theor Comput Chem,2005, 4(4):1101-1117.
    Snyder HR, Anderson GK. Effect of air and oxygen content on the dielectric barrier discharge decomposition of chlorobenzene. IEEE T Plasma Sci,1998,26: 1695-1699.
    Song YH, Kim SJ, Choi KI, et al. Effects of adsorption and temperature on a nonthermal plasma process for removing VOCs. J Electrostat,2002,55:189-201.
    Staack D, Farouk B, Gutsol AF, et al. Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air. Plasma Sources Sci Technol,2006,15:818-827.
    Subrahmanyam C, Magureanu M, Renken A, et al. Catalytic abatement of volatile organic compounds assisted by non-thermal plasma Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode. Appl Catal B:Environ,2006, 65:150-156.
    Subrahmanyam C, Renken A, Kiwi-Minsker L. Novel catalytic non-thermal plasma reactor for the abatement of VOCs. Chem Eng J,2007,134:78-83.
    Suprenant N. Shutting off fugitive emission. Chem Eng J,1990,97(9):199-202.
    Suzuki M, Misic DM, Koyama O, et al. Study of thermal regeneration of spent activated carbons:thermogravimetric measurement of various single component organics loaded on activated carbons. Chem Eng Sci,1978,33:271-279.
    Tsai CH, Lee WJ, Chen CY, et al. Difference in conversions between dimethyl sulfide and methanethiol in a cold plasma environment. Plasma Chem Plasma P,2003, 23:141-157.
    Tomio F. Removal of NOx by DC corona reactor with water. J Electrostat,2001, 51:8-14.
    Urashima K, Chang JS. Destruction of volatile organic compounds in air by a superimposed barrier discharge plasma reactor and activated carbon filter hybrid system. IEEE Ind Appl Soc Ann Meet New Orleans, LA October 5-9,1997: 1969-1974.
    Urashima K, Chang JS. Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology. Trans Dielectr Electr Insul,2000,7:602-614.
    Valdes H, Sanchez PM, Rivera UJ, et al. Effect of ozone treatment on surface properties of activated carbon. Langmuir,2002,18:2111-2116.
    Wallis AE, Whitehead JC, Zhang K. Plasma-assisted catalysis for the destruction of CFC-12 in atmospheric pressure gas streams using TiO2. Catal Lett,2007a,113: 29-33.
    Wallis AE, Whitehead JC, Zhang K. The effect of temperature on the removal of DCM using non-thermal, atmospheric-pressure plasma-assisted catalysis. Appl Catal B:Environ,2007b,74:111-116.
    Van-Durme GP, McNamara BF, McGinley CG. Bench-scale removal of odor and volatile organic compounds at a composting facility. Water Environ Technol,1992, 64(1):19-27.
    Van-Durme J, Dewulf J, Sysmans W, et al. Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Appl Catal B:Environ,2007,74:161-169.
    Van-Durme J, Dewulf J, Leys C, et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment:A review. Appl Catal B:Eviron,2008, 78:324-333.
    Volodin NL, Puzyreva VM. Absorption treatment of gases to remove impurities of organic solvents. Russ J Appl Chem,1997,70:1745-1747.
    Wu X, Ding X, Qin W, et al. Enhanced photo-catalytic activity of TiO2 films with doped La prepared by micro-plasma oxidation method. J Hazard Mater,2006, 137:192-197.
    Yamamoto T, Ramanathan K, Lawless PA, et al. Control of volatile organic compounds by an AC energized ferroelectric pellet reactor and a pulsed corona reactor. IEEE T Ind Appl,1992,28(3):528-534.
    Yamamoto T, Mizuno K, Tamori I, et al. Catalysis-assisted plasma technology for carbon tetrachloride destruction. IEEE T Ind Appl,1996,32(1):100-105.
    Yamamoto T, Ben WL. Aerosol generation and decomposition of CFC-113 by the ferroelectric plasma reactor. IEEE T Ind Appl,1999,35(4):736-742.
    Yenisoy S, Aygiin A, Giines M, et al. Physical and chemical characteristics of polymer-based spherical AC and its ability to adsorb organics. Carbon,2004,42: 477-484.
    Ye ZL, Zhang Y, Li P, et al. Feasibility of destruction of gaseous benzene with dielectric barrier discharge. J Hazard Mater,2008,156:356-364.
    Zhao GB, John S, Zhang JJ, et al. Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor. Chem Eng Sci,2007,62:2216-2227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700