用户名: 密码: 验证码:
低浓度磷化氢吸附材料开发及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷煤化工尾气中富含的一氧化碳(CO)是潜在的一碳化工原料气,但尾气中磷化氢等杂质的存在限制了其作为一碳化工原料气的使用。吸附法在磷煤化工尾气净化方面应用前景较好,但此法存在饱和吸附剂的再生和后续处理问题,因此开发对磷化氢吸附容量较大、选择性较好、易于再生且稳定性较高的吸附剂成为本课题研究的重点和难点。再者,在磷化氢气固相吸附净化研究中,磷化氢在吸附剂上的吸附热力学行为和吸附机理的研究不够深入,若能在大量实验研究的基础上,结合吸附热力学理论计算和样品分析测试表征结果,明确磷化氢在吸附剂上的吸附热力学行为和吸附机理,这将对实际磷煤化工尾气中磷化氢吸附净化具有较大的理论指导意义。
     针对上述问题,本课题主要进行了以下四部分内容的研究:煤质活性炭吸附剂制备和性能研究、核桃壳活性炭吸附剂制备和性能研究、磷化氢吸附热力学研究和磷化氢吸附机理研究。
     煤质活性炭吸附剂制备和性能研究:以煤质活性炭为载体,考察了活性组分种类、活性组分铜前驱体种类、铜负载量、焙烧温度、锌添加量和稀土元素(铈或镧)添加量对煤质活性炭吸附剂吸附净化磷化氢的影响;在煤质活性炭吸附剂的最佳制备条件和活性组分的最佳配方确定的基础上,考察了气固相吸附过程条件(吸附温度、氧含量和进口浓度)对磷化氢吸附性能的影响;初步探索了煤质活性炭吸附剂的再生情况,结果表明,再生吸附剂对磷化氢有一定的净化效果,但和新鲜吸附剂相差较大,可能是因为煤质活性炭吸附剂上杂质含量较高,不利于吸附剂的再生。因此开发一种新型的木质活性炭——核桃壳活性炭吸附剂用于磷化氢的吸附净化。
     核桃壳活性炭吸附剂制备和性能研究:以农林废弃物核桃壳为原料,采用炭化和氢氧化钾活化两步法制得核桃壳活性炭,利用煤质活性炭吸附剂的最佳制备条件和活性组分的最佳配方,改性制得的核桃壳活性炭吸附剂用于气固相吸附净化磷化氢。考察了核桃壳活性炭制备过程条件(炭化温度、活化温度和碱碳比)对核桃壳活性炭性能(孔结构、表面化学性质和微晶结构)和核桃壳活性炭吸附剂吸附磷化氢性能的影响;初步探索了微波加热活化方式和常规加热活化方式制得的核桃壳活性炭吸附剂对磷化氢吸附性能的影响;在核桃壳活性炭最佳制备条件的基础上,考察了气固相吸附过程条件(空速、氧含量、进口浓度和吸附温度)对磷化氢吸附性能的影响;分析了不同载体(核桃壳活性炭、椰壳活性炭和煤质活性炭)制备的吸附剂对磷化氢吸附性能的影响;系统研究了核桃壳活性炭吸附剂的选择性、再生性和稳定性。
     磷化氢吸附热力学研究:采用动态穿透曲线法,测定了磷化氢在核桃壳活性炭吸附剂上的吸附等温线;利用Toth吸附等温方程对吸附等温线进行了拟合;采用Clapeyron-Clausius方程计算了磷化氢在核桃壳活性炭吸附剂上的等量吸附热;采用Factsage 6.0热力学平衡软件计算了磷化氢在活性炭吸附剂上的吸附热力学平衡状态下的平衡物种和过程发生的焓变、熵变和吉布斯自由能变化值。在此基础上,初步分析了磷化氢在活性炭吸附剂上的吸附产物和吸附机理。
     磷化氢吸附机理研究:在大量实验研究的基础上,结合不同时段样品的分析测试表征和吸附热力学平衡计算结果,提出了磷化氢在活性炭吸附剂上吸附机理。
     主要研究结论如下:
     (1)煤质活性炭吸附剂的最佳制备条件和活性组分的最佳配方为:硝酸铜、硝酸锌和硝酸镧为活性组分前驱体,等量浸渍法制备,30℃超声波辅助浸渍40min,110℃干燥12h,350℃焙烧6h,铜、锌和镧在煤质活性炭吸附剂上的负载量分别为2.5%、0.167%和0.0833%。煤质活性炭吸附剂较适宜的吸附过程条件为:吸附温度70℃,空速5000h-1,磷化氢进口浓度1300ppm,氧含量1%,此时磷化氢在煤质活性炭吸附剂上的穿透吸附容量为95.74mg/g。
     (2)核桃壳活性炭制备实验结果表明:适宜的炭化温度为700℃;当活化温度在600~900℃范围内时,所制得的核桃壳活性炭孔结构参数相差不大;而碱碳比为3和4时,可制得比表面积较大、孔结构发达且呈无定形状态的核桃壳活性炭。以磷化氢净化效率和穿透吸附容量为评判指标,可得较佳的核桃壳活性炭制备条件为:炭化温度700℃,活化温度700℃,碱碳比3。此时制得的核桃壳活性炭的BET比表面积为1636m2/g,微孔孔容为0.641cm3/g,微孔孔容所占比例为81.97%。采用微波加热和常规加热活化方式均可制备出有利于磷化氢吸附的核桃壳活性炭吸附剂。核桃壳活性炭吸附剂较适宜的吸附过程条件为:吸附温度70℃,空速21000h-1,磷化氢进口浓度1040ppm,氧含量0.5%,此时磷化氢在MWSAC吸附剂上的穿透吸附容量为219.44mg/g。磷化氢在核桃壳活性炭吸附剂、椰壳活性炭吸附剂和煤质活性炭吸附剂上的穿透吸附容量分别为284.12mg/g,176.38mg/g和193.49mg/g。具有最大比表面积、总孔体积和微孔容积的核桃壳活性炭吸附剂对磷化氢的穿透吸附容量最大。本文开发出了对磷化氢吸附容量较高、选择性较好、易于再生且稳定性较高的核桃壳活性炭吸附剂。
     (3)吸附等温线实验结果表明:当吸附温度在60~90℃范围内时,磷化氢在核桃壳活性炭吸附剂上的吸附过程存在一个最佳吸附温度70℃,此温度下磷化氢在核桃壳活性炭吸附剂上的饱和吸附容量最大,为595.56mg/g; Toth吸附等温方程对吸附平衡数据拟合结果较好;磷化氢在核桃壳活性炭吸附剂上的等量吸附热随着吸附量的增加而减小,表明了核桃壳活性炭吸附剂表面的能量不均匀性;磷化氢在核桃壳活性炭吸附剂上的吸附过程确实为放热过程,且等量吸附热的数值范围为43-90kJ/mol,表明磷化氢在核桃壳活性炭吸附剂上的吸附为化学吸附过程。根据热力学平衡状态的计算可知,磷化氢在活性炭吸附剂上的吸附过程是一个放热的、混乱度降低的自发过程。当气流中氧含量与磷化氢的摩尔比不低于2时,吸附态的磷化氢会与活性组分中的氧发生反应生成H3PO4和(P2O5)2,而气流中的氧气补充了活性组分中消耗的氧,活性组分在吸附过程起着氧传递的作用。
     (4)磷化氢在活性炭吸附剂上的吸附机理是磷化氢和氧气先通过物理吸附吸附在吸附剂上,之后吸附态的磷化氢与活性组分中的晶格氧发生氧化反应生成比磷化氢更易吸附在吸附剂上的氧化产物H3PO4和(P2O5)2,按照还原-氧化(Redox)模式,气流中吸附下来的氧正好补充了氧化反应过程消耗的晶格氧,使失去晶格氧的活性组分被氧化到初始的高价状态,从而使吸附过程不断持续进行。磷化氢吸附净化效率的降低包括两方面的原因:其一是随着吸附过程的进行,吸附剂孔道被吸附产物H3PO4和(P2O5)2充满而使吸附过程不再进行:其二是反应生成的吸附产物将活性组分包裹,使活性组分中的晶格氧得不到气相中氧的补充,从而使化学吸附过程不再继续进行。水洗加热空气干燥的再生方法可将再生样对磷化氢的吸附效果恢复到较佳的状态,且再生液中磷酸浓度可达20%,本课题开发的核桃壳活性炭吸附剂有利于磷煤化工尾气中磷化氢的吸附净化和吸附产物的资源化。
     本课题的研究得到了国家高技术研究发展计划(863计划)重点项目(2008AA062602)和云南省中青年学术和技术带头人后备人才项目(2007PY01-10)的支持,在此表示感谢。
The tail gas derived from phosphorus-coal-based chemical industry contained high content carbon monoxide (CO), which could be used as a potential raw material gas for C1 chemical industry. However, the reuse of tail gas was restricted strictly because the tail gas contains phosphine (PH3) that was a potent catalyst poison in CO synthesizing chemistry. An attractive purification technology would be gas-solid dry adsorption, but there was a disadvantage about regeneration and subsequent treatment of exhausted adsorbent. Therefore, the key and difficult points in gas-solid dry adsorption lay in developing the excellent adsorbent, which had the well property of PH3 adsorption capacity, adsorption selectivity, regeneration performance, and adsorption stability. Moreover, in the process of PH3 gas-solid dry adsorption, it was not thorough enough for adsorption thermodynamics and adsorption mechanism. If a lot of experimental research, theoretical calculation of adsorption thermodynamics, together with analysis and measurement characterization of adsorbent samples had been investigated, adsorption thermodynamics and adsorption mechanism were accurately proposed. The results of this thesis were of great theoretical significance for PH3 adsorption removal from tail gas of phosphorus-coal-based chemical industry.
     In order to resolve these above problems, there were four parts of research contents: preparation and PH3 adsorption performance of modified coal-based activated carbon adsorbents (MCACs), preparation and PH3 adsorption performance of modified walnut-shell activated carbon adsorbents (MWSACs), PH3 adsorption thermodynamics, and PH3 adsorption mechanism.
     Preparation and PH3 adsorption performance of MCACs. A series of MCAC adsorbents were prepared by wet impregnation method and used for PH3 adsorption removal from tail gas. The effects of preparation conditions (kinds of active component, different precursors of copper, copper loading amounts, and calcination temperature) on the property of MCAC adsorbents for phosphine adsorption removal were investigated. Moreover, copper-modified activated carbon adsorbents were prepared in order to investigate the effect of Zn, Ce, and La addition on Cu-modified CAC adsorbent for PH3 adsorption removal. Base on the optimal adsorbent preparation conditions, the effects of adsorption operation condition (adsorption temperature, oxygen content, and PH3 inlet concentration) were carried out. Regeneration of exhausted MCACs was preliminarily studied. The regeneration result showed that there was a great adsorption capacity difference between fresh MCACs and regenerated MCACs. The reason might be that high content impurities existed in the MCACs were disadvantageous for regeneration of exhausted MCACs. Therefore, a novel wooden activated carbon, modified walnut-shell activated carbon adsorbents, was prepared and used for PH3 adsorption removal.
     Preparation and PH3 adsorption performance of MWSACs. Walnut-shell activated carbons (WSACs) were prepared by KOH chemical activation and MWSACs were used for PH3 adsorption removal from tail gas. The effects of carbonization temperature, activation temperature, and ratio of KOH to chars on physical and chemical characteristic of WSACs were studied. The effects of carbonization temperature, activation temperature, and ratio of KOH to chars on PH3 adsorption performance of MWSACs were investigated. Criteria for determining the optimum preparation conditions were PH3 removal efficiency and PH3 breakthrough adsorption capacity of MWSACs. The effects of microwave heating activation and conventional heating activation on PH3 adsorption performance of MWSACs were preliminarily studied. Base on the optimal WSACs preparation conditions, the effects of adsorption operation condition (gas hourly space velocity based on the actual adsorbent volume (GHSV), adsorption temperature, oxygen content, and PH3 inlet concentration) were investigated. Adsorption selectivity, regeneration performance, and adsorption stability of MWSAC adsorbent were also studied. The effect of three different adsorbent supports (walnut-shell activated carbon, coconut-shell activated carbon, and coal-based activated carbon) on PH3 adsorption removal was studied when active components and preparation conditions had been fixed.
     PH3 adsorption thermodynamics. PH3 adsorption isotherms over MWSAC adsorbent were measured by dynamic adsorption breakthrough curve at 60℃~90℃. PH3 adsorption equilibrium data at various temperatures were fitted to Toth Euqation and their isosteric heats of adsorption were determined by Clausius-Clapeyron Equation. Adsorbed species under the thermodynamic equilibrium state and energy function changes (enthalpy, entropy and Gibbs free energy) were calculated by Factsage 6.0. Based on these results, adsorption species and adsorption mechanism over the modified activated carbon were preliminarily analyzed.
     PH3 adsorption mechanism. A lot of experimental researches about PH3 adsorption were carried out. Theoretical calculation of adsorption thermodynamics were calculated by Factsage 6.0. Analysis and measurement characterization of adsorbent samples were investigated. According to these above results, PH3 adsorption mechanism over the modified activated carbon was accurately proposed.
     The main original conclusions of this thesis are as follows:
     (1) The optimal preparation conditions of MCACs are active component precursors of nitrates (copper nitrate, zinc nitrate, and lanthanum nitrate), an incipient wetness method of 30℃for 40min with the help of ultrasonic, a dried temperature of 110℃for 12h, a calcination temperature of 350℃for 6h. And copper, zinc, and lanthanum loading amounts are 2.5%,0.167%, and 0.0833%, respectively. The optimal adsorption operation conditions are an adsorption temperature of 70℃, a GHSV of 5000h-1, a PH3 inlet concentration of 1300ppm, and an oxygen content of 1%. Under this condition, PH3 breakthrough adsorption capacity over the optimal MCAC adsorbent is 95.74mg/g.
     (2) The result of WSACs preparation process shows that the suitable carbonization temperature of WSACs is 700℃. When activation temperature ranges from 700℃to 900℃, the pore development of WSACs almost keep unchanged. When the ratio of KOH to chars ranges from 3 to 4, WSACs with high surface area and well-developed pore structure is obtained and results in an amorphous structure. The result shows the optimum preparation conditions of WSACs are a carbonization temperature of 700℃, an activation temperature of 700℃, and a mass ratio of 3. The BET surface area, the micropore volume, and the micropore volume percentage of the optimal WASC are 1636m2/g,0.641cm3/g, and 81.97%, respectively. Both MWSACs activated by microwave heating activation and conventional heating activation are beneficial for PH3 adsorption removal. The optimal operation conditions are an adsorption temperature of 70℃, a GHSV of 21000h-1, a PH3 inlet concentration of 1040ppm, and an oxygen content of 0.5%. Under this condition, the PH3 breakthrough adsorption capacity over the optimal MWSAC adsorbent is 219.44mg/g. The result shows that PH3 breakthrough adsorption amounts over the MWSAC adsorbent, the MCAC adsorbent, and the modified coconut-shell activated carbon adsorbent are 284.12mg/g, 193.49mg/g, and 176.38mg/g, respectively. WSAC adsorbent owns the biggest PH3 breakthrough adsorption amount due to the biggest specific surface area, total pore volume and micropore volume. MWSAC adsorbent has the well property of PH3 breakthrough adsorption capacity, adsorption selectivity, regeneration performance, and adsorption stability. And this excellent MWSAC adsorbent has been identified.
     (3) According to PH3 adsorption equilibrium data, when the adsorption temperature ranges from 60℃to 90℃, the optimal adsorption temperature is 70℃and the equilibrium adsorption amount is 595.56mg/g at 70℃. It is found Toth Equation is suitable for description of phosphine adsorption process. The isosteric heat of adsorption decreases with an increase of the surface loading on the MWSAC adsorbent, which means that MWSAC adsorbent has an energetically heterogeneous surface. The isosteric heat of adsorption ranges from 43kJ/mol to 90 kJ/mol, which indicates adsorptive phosphine removal performance may be a dominant of chemical adsorption. According to the thermodynamic equilibrium calculation, the PH3 adsorption process over the modified activated carbon adsorbent is a spontaneous exothermic process of decreased entropy. When the molar ratio of O2 to PH3 is not less than 2, PH3 adsorbed will act with oxygen derived from the active component and the reaction products are H3PO4 and only a few (P2O5)2. Oxygen contained in the active component is added by pre-adsorbed O2 derived from tail gas. The active component plays an oxygen transmission role on PH3 adsorption process.
     (4) PH3 adsorption mechanism over modified activated carbon adsorbent has been proposed. PH3 and O2 contained in the tail gas adsorb firstly onto modified activated carbon adsorbent by physical adsorption. PH3 adsorbed act with lattice oxygen derived from the active component and the oxidation reaction products are H3PO4 and (P2O5)2. According to the reduction-oxidation (redox) mode, lattice oxygen contained in the active component is added by pre-adsorbed O2 derived from tail gas. The active component plays an oxygen transmission role on PH3 adsorption process mechanism. The reason of PH3 removal efficiency decreasing with increasing the adsorption time contains two points. On the one hand, the exhausted adsorbent can not adsorb H3PO4 and (P2O5)2 with the increasing of adsorption time. On the other hand, the active component is coated by adsorbed species of H3PO4 and (P2O5)2, resulting in interruption of oxygen transmission. The exhausted adsorbent can be regenerated by water washing together with heated air drying. Concentration of H3PO4 in regeneration liquid achieved 20%. MWSAC adsorbent would be beneficial for PH3 adsorption removal from tail gas of phosphorus-coal-based chemical industry and recycling of adsorption species.
     The authors would like to acknowledge financial support from the Key Program of National High Technology Research and Development Program of China (863 Program) (2008AA062602), the Young and Middle-aged Academic and Technical Back-up Personnel Program of Yunnan Province (2007PY01-10).
引文
[1]宁平,李彬,王学谦.负载酸活性炭净化磷化氢实验研究[J].环境工程,2005,23(4):41-43.
    [2]蒋明,宁平,徐浩东等.催化氧化净化黄磷尾气现场实验[J].现代化工,2009,29(03):68-71.
    [3]陈中明,武立新,魏玺群等.变温和变压吸附法从黄磷尾气净化回收一氧化碳[J].天然气化工,2001,26(4):24-26,39.
    [4]任占冬,陈樑.催化氧化法脱除黄磷尾气中PH3、H2S催化剂的性能与再生[J].天然气化工,2005,30(5):27-29,33.
    [5]陈善继.黄磷尾气的综合利用[J].磷肥与复肥,2008,23(1):45-48.
    [6]YU Q F, TANG X L, YI H H, et al. Equilibrium and heat of adsorption of phosphine on CaCl2-modified molecular sieve [J]. Asia-Pacific Journal of Chemical Engineering,2009,4(5):612-617.
    [7]EISMANN F, GLINDEMANN D, BERGMANNT A, et al. Soils as source and sink of phosphine [J]. Chemosphere,1997,35(3):523-533.
    [8]GLINDEMANN D, EDWARDS M, LIU J-A, et al. Phosphine in soils, sludges, biogases and atmospheric implications--a review [J]. Ecological EngineeringRiparian buffer zones in agricultural watersheds,2005,24(5):457-463.
    [9]HAN C, GU X, GENG J, et al. Production and emission of phosphine gas from wetland ecosystems [J]. Journal of Environmental Sciences,22(9):1309-1311.
    [10]LI J-B, ZHANG G-L, ZHANG J, et al. Phosphine in the Lower Atmosphere of Qingdao—A Coastal Site of the Yellow Sea (China) [J]. Water, Air, and Soil Pollution, 2009,204(1):117-131.
    [11]曹海峰,刘季昂,庄亚辉等.环境中磷化氢的源及厌氧条件下前体物类型的研究[J].中国科学B辑,2000,30(1):63-68.
    [12]耿金菊,乔松,张蕤等.自然界磷化氢前体物类型的研究[J].南京大学学报(自然科学版),2007,43(4):338-344.
    [13]余琼粉,易红宏,唐晓龙等.磷化氢净化技术及其展望[J].环境科学与技术,2009,32(10):87-91,132.
    [14]HSU C-H, HAN B-C, LIU M-Y, et al. Phosphine-induced oxidative damage in rats:attenuation by melatonin [J]. Free Radical Biology and Medicine,2000,28(4): 636-642.
    [15]Matheson气体数据手册(原书第七版)[M].北京:化学工业出版社,2003.
    [16]SUDAKIN D L. Occupational exposure to aluminium phosphide and phosphine gas? A suspected case report and review of the literature [J]. Human & Experimental Toxicology,2005,24(1):27-33.
    [17]庞文渌.磷化氢熏蒸的安全防护[J].粮食流通技术,2002,(2):34-36.
    [18]HERMAN T, SODEN S. Efficieny handling effluent gases through chemical scrubbing [M]. AIP Conference Proceedings.1988:99-108.
    [19]张建华.溶解乙炔气生产过程中脱除硫化氢、磷化氢的新工艺[J].黎明化工1995,(5):40.
    [20]LAWLESS J J, SEARLE H J. Kinetics of the reaction between phosphine and sodium hypochlorite in alkaline solution [J]. Journal of the Chemical Society (Resumed),1962,4200-4205.
    [21]程建忠,张宝贵,张英喆.次磷酸钠生产过程中磷化氧尾气处理技术的研究
    [J].南开大学学报(自然科学版),2001,34(2):31-34.
    [22]熊辉,杨晓利,李光兴.次氯酸钠氧化脱除黄磷尾气中的硫、磷杂质[J].化工环保,2002,22(3):161-164.
    [23]CHANDRASEKARAN K, SHARMA M M. Absorption of phosphine in aqueous solutions of sodium hypochlorite and sulphuric acid [J]. Chemical Engineering Science,1977,32(3):275-280.
    [24]杨文书.溶解乙炔气中杂质的清除[J].河北化工,2010,33(5):36-37.
    [25]朱尔根·茨默门,温弗里得·利比格,比得·穆尔.从气体中,特别是从乙炔气气体中洗脱磷化氢的方法[P] CN:85105317A,1986-04-10.
    [26]丁百全,徐周,房鼎业等.熏蒸杀虫余气PH3的吸收净化研究[J].环境污染治理技术与设备,2003,4(1):30-32.
    [27]王成俊,郭爱红,王福生等.次磷酸钠工业生产过程中PH3尾气处理技术[J].天津化工,2003,17(5):37-38.
    [28]KYOWA KAKO K K. Method for removing arsine and/or phosphine [P]. JP: 01266836,1989-10-24.
    [29]李军燕,宁平,瞿广飞.Cu(II)-Co(II)液相催化氧化净化PH3研究[J].武汉理工大学学报,2007,29(10):63-65,9.
    [30]李军燕,宁平,瞿广飞.PH3液相催化氧化净化[J].昆明理工大学学报(理工版),2007,32(3):80-82,6.
    [31]瞿广飞,宁平,李军燕.Pd(Ⅱ)-Fe(Ⅲ)液相催化氧化净化磷化氢的研究[J].武汉理工大学学报,2008,30(5):70-73.
    [32]宁平,易玉敏,瞿广飞等.PdCl2-CuCl2液相催化氧化净化黄磷尾气中PH3[J].中南大学学报(自然科学版),2009,40(2):340-345.
    [33]瞿广飞,宁平,李军燕等.钯离子液相催化氧化低浓度磷化氢[J].化工环保,2008,28(2):102-105.
    [34]杨丽娜,易红宏,唐晓龙等.Fe-Cu混合氧化物催化湿式氧化低浓度磷化氢实验研究[J].中南大学学报(自然科学版),2009,40(6):1505-1509.
    [35]BOND E J, MILLER D M. A new technique for measuring the combustibility of gases at reduced pressures and its application to the fumigant phosphine [J]. Journal of Stored Products Research,1988,24(4):225-228.
    [36]王惠平,唐忠松.次磷酸钠生产中“三废”的综合治理[J].化学世界,1999,(3):159-62.
    [37]ELLIOT B, BALMA F, JOHNSON F. Exhaust gas incineration and the combustion of arsine and phosphine [J]. Solid State Technology,1990,33(1):89-92.
    [38]LI L, HAN C, HAN X, et al. Catalytic Decomposition of Toxic Chemicals over Metal-Promoted Carbon Nanotubes [J]. Environmental Science & Technology,2011, 45(3):726-731.
    [39]梁培玉,韩长秀,林徐明等.CoP非晶合金催化分解磷化氢制高纯磷的研究[J].南开大学学报(自然科学版),2006,39(4):20-23.
    [40]林徐明,韩长秀,任吉利等.钴磷合金催化剂的制备及其催化分解磷化氢的研究[J].环境污染与防治,2007,29(2):104-107.
    [41]梁培玉,王福生,宋兵魁等.磷化氢尾气催化分解为高纯磷的研究[J].天津化工,2004,18(4):31-33.
    [42]陈健,张剑锋,彭少成等.从黄磷尾气中脱除磷、磷化物、硫化物的方法[P].CN:1345619A,2002-04-24.
    [43]魏玺群,郑才平,张杰等.黄磷尾气净化回收新工艺探讨[J].化肥工业, 2001,28(6):29-32.
    [44]简马克·西雷索尔.破坏残留气中氢化物的方法及所用催化剂[P]. CN: 1040514A,1990-3-21.
    [45]陈健,张剑锋,彭少成等.从黄磷尾气中脱除磷、磷化物、硫化物的方法[P].CN:1345619A,2002-04-24.
    [46]WANG X, NING P, SHI Y, et al. Adsorption of low concentration phosphine in yellow phosphorus off-gas by impregnated activated carbon [J]. Journal of Hazardous Materials,2009,171(1-3):588-593.
    [47]MA L P, NING P, ZHANG Y, et al. Experimental and modeling of fixed-bed reactor for yellow phosphorous tail gas purification over impregnated activated carbon [J]. Chemical Engineering Journal,2008,137(3):471-479.
    [48]QUINN R, DAHL T A, DIAMOND B W, et al. Removal of arsine from synthesis gas using a copper on carbon adsorbent [J]. Industrial & Engineering Chemistry Research,2006,45(18):6272-6278.
    [49]任占冬,陈樑,宁平等.催化氧化法脱除黄磷尾气中的磷化氢和硫化氢[J].化工环保,2005,25(3):221-224.
    [50]张永,宁平,徐浩东等.改性活性炭吸附净化黄磷尾气中的PH3[J].环境工程学报,2007,1(5):74-78.
    [51]张永,宁平,王学谦等.酸碱改性碳吸附脱除黄磷尾气中的H2S和PH3[J].化学工程,2007,35(7):7-10,8.
    [52]HALL P G, GITTINS P M, WINN J M, et al. Sorption of phosphine by activated carbon cloth and the effects of impregnation with silver and copper nitrates and the presence of water [J]. Carbon,1985,23(4):353-371.
    [53]王学谦,宁平,徐浩东等.微氧下低浓度磷化氢在浸渍活性炭上的吸附及表征[J].林产化学与工业,2008,28(1):49-54.
    [54]WILDE J. Absorbent mass for phosphine [P]. WO:00/021644,2000-04-20.
    [55]郭坤敏,袁存乔,马兰等.氢气流中净化磷化氢、砷化氢的浸渍活性炭[P].CN:1076173,1993-09-15.
    [56]郭坤敏,袁存乔,马兰等.在氢气流中净化磷化氢和砷化氢的新型催化剂和净化罐的研究[J].化学通报,1994,(3):29-31.
    [57]高红,张永,宁平等.金属改性碳脱除PH3和H2S动力学及反应机理研究[J]. 环境工程学报,2009,3(2):301-305.
    [58]蒋明,宁平,徐浩东等.改性活性炭净化PH3实验研究[J].环境科学与技术,2008,31(9):87-89,112.
    [59]宁平,BART H-J O R,王学谦等.催化氧化净化黄磷尾气中的磷和硫[J].中国工程科学,2005,7(6):27-35.
    [60]徐浩东,宁平,蒋明等.净化PH3和H2S气体改性活性炭的制备与表征[J].环境科学学报,2008,28(7):1365-1369.
    [61]张永,宁平,王学谦等.改性活性碳吸附净化黄磷尾气中的磷化氢[J].武汉理工大学学报,2007,29(2):40-42.
    [62]DEL BUBBA M, ARIAS C A, BRIX H. Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm [J]. Water Research,2003,37(14):3390-3400.
    [63]谢兰英,LUO L,李忠.VOCs在MAC上吸附等温线的测定与拟合[J].化工学报,2006,57(6):1357-1363.
    [64]MAZZOTTI M. Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm [J]. Journal of Chromatography A, 2006,1126(1-2):311-322.
    [65]MESQUITA M E, VIEIRA E SILVA J M. Preliminary study of pH effect in the application of Langmuir and Freundlich isotherms to Cu-Zn competitive adsorption [J]. Geoderma,2002,106(3-4):219-234.
    [66]RUDZINSKI W, DOMINKO A, WOJCIECHOWSKI B W. Mixed-gas adsorption on real solid surfaces:Lack of correlations between adsorption energies of various components related to the wide applicability of the generalized Langmuir-Freundlich isotherm equation [J]. The Chemical Engineering Journal and the Biochemical Engineering Journal,1996,64(1):85-98.
    [67]LITO P F, SANTIAGO A S, CARDOSO S P, et al. New expressions for single and binary permeation through zeolite membranes for different isotherm models [J].
    Journal of Membrane Science,367(1-2):21-32.
    [68]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.
    [69]LABOY M M, SANTIAGO I, LOPEZ G E. Computing adsorption isotherms for benzene, toluene, and p-xylene in heulandite zeolite [J]. Industrial & Engineering Chemistry Research,1999,38(12):4938-4945.
    [70]李国印,支建平,张玉林.活性氧化铝孔结构的控制[J].无机化学学报,2007,23(4):563-568.
    [71]谭亚南,李枫,伊晓东等.一种制备活性氧化铝的新方法[J].催化学报,2008,29(10):975-978.
    [72]张建锋.氧化铁沉积对活性氧化铝氟吸附性能的影响[J].水处理技术,2009,35(9):33-36.
    [73]方玉堂,梁向晖,范娟等.陶瓷基Al3+掺杂硅胶吸附剂材料的制备与性能[J].硅酸盐学报,2004,32(11):1341-1346.
    [74]李宝宗,国永敏,庞文琴.NaX型沸石分子筛中吸附质分子结构与吸附热的关系[J].高等学校化学学报,2002,23(4):538-540.
    [75]张敏,卢允庄,王如竹.沸石分子筛-水吸附工质对的吸附性能及导热性能[J].太阳能学报,2003,24(1):37-40.
    [76]ADINATA D, WAN DAUD W M A, AROUA M K. Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3 [J]. Bioresource Technology,2007,98(1):145-149.
    [77]BACAOUI A, YAACOUBI A, DAHBI A, et al. Optimization of conditions for the preparation of activated carbons from olive-waste cakes [J]. Carbon,2001,39(3): 425-432.
    [78]MILENKOVIC D D, DASIC P V, VELJKOVIC V B. Ultrasound-assisted adsorption of copper(Ⅱ) ions on hazelnut shell activated carbon [J]. Ultrasonics Sonochemistry,2009,16(4):557-563.
    [79]IOANNIDOU O, ZABANIOTOU A. Agricultural residues as precursors for activated carbon production--A review [J]. Renewable and Sustainable Energy Reviews,2007,11(9):1966-2005.
    [80]苏伟.高比表面积活性炭制备技术的研究进展[J].化学工程,2005,33(2):44-47.
    [81]吴新华.活性炭生产工艺原理与设计[M].中国林业出版社,1994.
    [82]RODRIGUEZ-REINOSO F, MOLINA-SABIO M. Activated carbons from lignocellulosic materials by chemical and/or physical activation:an overview [J]. Carbon,1992,30(7):1111-1118.
    [83]WIGMANS T. Industrial aspects of production and use of activated carbons [J]. Carbon,1989,27(1):13-22.
    [84]TAY T, UCAR S, KARAGOZ S. Preparation and characterization of activated carbon from waste biomass [J]. Journal of Hazardous Materials,2009,165(1-3): 481-485.
    [85]GUO J, LUA A C. Textural and chemical characterisations of activated carbon prepared from oil-palm stone with H2SO4 and KOH impregnation [J]. Microporous and Mesoporous Materials,1999,32(1-2):111-117.
    [86]LILLO-R DENAS M A, CAZORLA-AMOR S D, LINARES-SOLANO A. Understanding chemical reactions between carbons and NaOH and KOH:An insight into the chemical activation mechanism [J]. Carbon,2003,41(2):267-275.
    [87]HUTTINGER K J, MINGES R. Catalytic water vapour gasification of carbon: Importance of melting and wetting behaviour of the catalyst [J]. Fuel,1985,64(4): 491-494.
    [88]AHMADPOUR A, DO D D. The preparation of activated carbon from macadamia nutshell by chemical activation [J]. Carbon,1997,35(12):1723-1732.
    [89]刘文宏,袁怀波,吕建平等.通过氧化改性提高载银活性炭的抗菌性能[J].离子交换与吸附,2008,24(2):124-130.
    [90]梅华,胡成刚,刘晓勤等.活性炭表面氧化改性对负载铜(Ⅰ)吸附剂及其乙烯吸附性能的影响[J].新型炭材料,2002,17(4):34-37.
    [91]单晓梅,张文辉,杜铭华等.湿氧化和热处理对煤基活性炭吸附SO2的影响[J].煤炭学报,2004,29(2):208-212.
    [92]HAYDAR S, FERRO-GARCIA M A, RIVERA-UTRILLA J, et al. Adsorption of p-nitrophenol on an activated carbon with different oxidations [J]. Carbon,2003, 41(3):387-395.
    [93]金璇,马鲁铭,王红武.表而化学改性活性炭对有机物吸附的研究进展[J].江苏环境科技,2006,19(z2):43-45.
    [94]周玉军,黄廷林,赵建伟等.还原改性粉末活性炭的净水效果研究[J].供水技术,2007,1(3):5-7.
    [95]黄廷林,周玉军,赵建伟等.改性PAC与03联用去除原水中有机物的试验研究[J].中国给水排水,2007,23(5):62-64.
    [96]潘红艳,李忠,夏启斌等.氨水改性活性炭纤维吸附苯乙烯的性能[J].功能材料,2008,39(2):324-327.
    [97]ZHU J L, WANG Y H, ZHANG J C, et al. Experimental investigation of adsorption of NO and SO2 on modified activated carbon sorbent from flue gases [J]. Energy Conversion and Management,2005,46(13-14):2173-2184.
    [98]TSAI J, JENG F, CHIANG H. Removal of H2S from Exhaust Gas by Use of Alkaline Activated Carbon [J]. Adsorption,2001,7(4):357-366.
    [99]TSENG H-H, WEY M-Y. Effects of acid treatments of activated carbon on its physiochemical structure as a support for copper oxide in DeSO2 reaction catalysts [J]. Chemosphere,2006,62(5):756-766.
    [100]姜良艳,周仕学,王文超等.活性炭负载锰氧化物用于吸附甲醛[J].环境科学学报,2008,28(002):337-341.
    [101]TSENG H-H, WEY M-Y. Study of SO2 adsorption and thermal regeneration over activated carbon-supported copper oxide catalysts [J]. Carbon,2004,42(11): 2269-2278.
    [102]张竞杰,张彭义,张博等.活性炭负载金催化分解空气中低浓度臭氧[J].催化学报,2008,29(004):335-340.
    [103]AYGUN A, YENISOY-KARAKAS S, DUMAN I. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties [J]. Microporous and Mesoporous Materials,2003, 66(2-3):189-195.
    [104]MARTINEZ M, TORRES M, GUZMAN C, et al. Preparation and characteristics of activated carbon from olive stones and walnut shells [J]. Industrial Crops and Products,2006,23(1):23-28.
    [105]信欣,何歆,崔钶等.核桃壳炭化吸附废水中Cr(VI)的性能研究[J].环境工程学报,4(10):2273-2277.
    [106]ZABIHI M, AHMADPOUR A, ASL A. Removal of mercury from water by carbonaceous sorbents derived from walnut shell [J]. Journal of Hazardous Materials, 2009,167(1-3):230-236.
    [107]HU Z, VANSANT E. Synthesis and characterization of a controlled-micropore-size carbonaceous adsorbent produced from walnut shell [J]. Microporous Materials,1995,3(6):603-612.
    [108]NOWICKI P, PIETRZAK R, WACHOWSKA H. Sorption properties of active carbons obtained from walnut shells by chemical and physical activation [J]. Catalysis Today,2010,150(1-2):107-114.
    [109]MOROZOV I, ZNAMENKOV K, KORENEV Y, et al. Thermal decomposition of Cu(NO3)2.3H2O at reduced pressures [J]. Thermochimica Acta,2003,403(2): 173-179.
    [110]KEELY W, MAYNOR H. Thermal Studies of Nickel, Cobalt, Iron and Copper Oxides and Nitrates [J]. Journal of Chemical and Engineering Data,1963,8(3): 297-300.
    [111]ZHU Z, LIU Z, LIU S, et al. NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures [J]. Applied Catalysis B: Environmental,2000,26(1):25-35.
    [112]ZHANG K, HONG J, CAO G, et al. The kinetics of thermal dehydration of copper (Ⅱ) acetate monohydrate in air [J]. Thermochimica Acta,2005,437(1-2): 145-149.
    [113]徐浩东.黄磷尾气吸附—催化氧化性能及机理研究[D].昆明;昆明理工大学,2007.
    [114]SIRIWARDANE R, POSTON JR J, FISHER E, et al. Decomposition of the sulfates of copper, iron (Ⅱ), iron (Ⅲ), nickel, and zinc:XPS, SEM, DRIFTS, XRD, and TGA study [J]. Applied Surface Science,1999,152(3-4):219-236.
    [115]OSTROFF A, SANDERSON R. Thermal stability of some metal sulphates [J]. Journal of Inorganic and Nuclear Chemistry,1959,9(1):45-50.
    [116]CONESA J, FULLANA A, FONT R. Reactivity of carbonaceous materials modified by copper chloride addition. A thermogravimetric study [J]. Journal of Analytical and Applied Pyrolysis,2001,58-59:553-68.
    [117]TSENG H, WEY M, FU C. Carbon materials as catalyst supports for SO2 oxidation:catalytic activity of CuO-AC [J]. Carbon,2003,41(1):139-149.
    [118]WANG Z, LIN Y. Sol-Gel Synthesis of Pure and Copper Oxide Coated Mesoporous Alumina Granular Particles [J]. Journal of Catalysis,1998,174(1):43-51.
    [119]DERAZ N. Surface and catalytic properties of Cu/Zn mixed oxide catalysts [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,190(3): 251-260.
    [120]EL-SHOBAKY G, FAGAL G, MOKHTAR M. Effect of ZnO on surface and catalytic properties of CuO/Al2O3 system [J]. Applied Catalysis A:General,1997, 155(2):167-178.
    [121]NING P, YI H H, YU Q F, et al. Effect of zinc and cerium addition on property of copper-based adsorbents for phosphine adsorption [J]. Journal of Rare Earths,2010, 28(4):581-586.
    [122]陈凤婷,曾汉民.几种植物基活性炭材料的孔结构与吸附性能比较——(Ⅰ)孔结构表征[J].离子交换与吸附,2004,20(2):104-112.
    [123]ZHI K, LIU Q, ZHAO R, et al. Preparation and characterization of Cu-Ce-La mixed oxide as water-gas shift catalyst for fuel cells application [J]. Journal of Analytical and Applied Pyrolysis,2008,26(4):538-543.
    [124]GUO J, LUA A C. Microporous activated carbons prepared from palm shell by thermal activation and their application to sulfur dioxide adsorption [J]. Journal of Colloid and Interface Science,2002,251(2):242-247.
    [125]LUA A C, YANG T. Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions [J]. Journal of Colloid and Interface Science,2005,290(2):505-513.
    [126]IOANNIDOU O, ZABANIOTOU A. Agricultural residues as precursors for activated carbon production-A review [J]. Renewable & Sustainable Energy Reviews, 2007,11(9):1966-2005.
    [127]陈学榕,黄彪,江茂生等.杉木间伐材炭化过程的FTIR光谱比较分析[J].化工进展,2008,27(3):429-434,39.
    [128]HWANG Y J, JEONG S K, NAHM K S, et al. Pyrolytic carbon derived from coffee shells as anode materials for lithium batteries [J]. Journal of Physics and Chemistry of Solids,2007,68(2):182-188.
    [129]汪树军.X射线衍射法对树脂炭微观结构测试分析[J].炭素技术,2000,(6):8-12.
    [130]STEPHAN A M, KUMAR T P, RAMESH R, et al. Pyrolitic carbon from biomass precursors as anode materials for lithium batteries [J]. Materials Science and Engineering:A Structural Materials:Properties, Microstructure and Processing,2006, 430(1-2):132-137.
    [131]YANG T, LUA A C. Characteristics of activated carbons prepared from pistachio-nut shells by potassium hydroxide activation [J]. Microporous and Mesoporous Materials,2003,63(1-3):113-124.
    [132]LUA A C, YANG T. Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell [J]. Journal of Colloid and Interface Science,2004,274(2): 594-601.
    [133]YI H H, YU Q F, TANG X L, et al. Phosphine Adsorption Removal from Yellow Phosphorus Tail Gas over CuO-ZnO-La2O3/Activated Carbon [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, DOI:10.1021/iel01622x.
    [134]余琼粉,易红宏,唐晓龙等.磷化氢在改性13X分子筛上的吸附行为[J].化学工程,2009,37(12):1-4,23.
    [135]HILL T. Statistical mechanics of adsorption. V. Thermodynamics and heat of adsorption [J]. The Journal of Chemical Physics,1949,17(6):520-535.
    [136]BAGREEV A, RAHMAN H, BANDOSZ T. Wood-based activated carbons as adsorbents of hydrogen sulfide:A study of adsorption and water regeneration processes [J]. Industrial & Engineering Chemistry Research,2000,39(10):3849-3855.
    [137]高正中.实用催化[M].化学工业出版社,1996.
    [138]董新法,简弃飞.甲醇水蒸汽重整制氢Cu/Zn/Ce/Al催化剂的XPS研究[J].分子催化,2002,16(5):335-338.
    [139]CHAPMAN A, THIRLWELL L. Spectra of phosphorus compounds-I the infra-red spectra of orthophosphates [J]. Spectrochimica Acta,1964,20(6):937-947.
    [140]STEFOV V. Infrared and Raman spectra of magnesium ammonium phosphate hexahydrate (struvite) and its isomorphous analogues. I. Spectra of protiated and partially deuterated magnesium potassium phosphate hexahydrate [J]. Journal of molecular structure,2004,689(1-2):1-10.
    [141]王金霞.磷酸锌化合物的低热固相合成与表征[D].太原;中北大学,2005.
    [142]沈师孔.烃类晶格氧选择氧化[J].化学进展,1998,10(2):137-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700