用户名: 密码: 验证码:
城市河道生物修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市河道是一个城市的标志之一,它们不仅仅具有供应水源、提供绿地、保护环境和开展旅游等生态功能,也是市民创造文体娱乐与亲近自然的空间。随着人口的增长和经济的快速发展,城市河道污染日趋严重,城市河道治理成为建设城市生态系统、提高城市环境质量的重点和难点。通过总结国内城市河道治理经验,城市河道治理应尊重河流系统的自然规律,注重河流自然生态和自然环境的恢复和保护。城市河道治理还应该结合我国经济发展阶段,选择安全、快速的治理方案。
     本文首先研究了水体的自净能力以及底泥在水体自净过程中的作用,在水体自净无法满足水体净化的基础上,研究了人工曝气及搅拌(扰动)对水体自净的强化。通过实验证明,在底泥存在条件下进行人工曝气可有效提高有机物、氨氮及总氮的去除效果,搅拌(扰动)无论在有底泥还是无底泥存在条件下均能强化水体自净能力,但是强化效果较人工曝气差。强化过程中底泥中的有机物及总氮大大降低,其中曝气的效果最为明显。人工曝气使底泥典型微生物数量增加、细菌种类增加。底泥在水体净化过程中起到不可替代的作用。
     通过微生物促生剂技术研究表明:微生物促生剂能够有效提高微生物活性,使底泥中微生物快速并大量的生长,加快了生化反应的进行,加速了污染物降解。但是,微生物生长产生大量的气泡使得底泥中有机物及含氮污染物向水体快速释放。造成上覆水中CODCr、TN、NH_3-N值大量增加,虽然上覆水中的污染在微生物的作用下能够得到最终降解,但是需要经过较长一段时间才能达到水质要求。
     通过投加微生物菌剂技术研究表明:在实际河道中投加酵母菌后,河水水质得到有效改善,并且所投加的酵母菌能够吸附在底泥上从而使酵母菌作用时间延长。投菌一年后,底泥中典型微生物数量增加,细菌种类增加,说明投加酵母菌使底泥环境得到改善,酵母菌能够发挥“头领”效应改善底泥中微生物环境。为了弥补微生物促生剂的不足,研究了微生物促生剂与投菌法的联用技术,实验表明:该联用技术可以加速上覆水中污染物降解,从而弥补微生物促生剂技术的不足。
Urban rivers are thought to be the symbol of one city. They are known not only for their ecological functions such as supplying water, providing green spaces, protecting environment and conducting tourism, but also they are the spaces where people can take entertainment and be close with nature. However, accompanying with the growth of the population and the economic development, the urban river was polluted more and more seriously. The remediation on the polluted urban river is very important but difficult to construct civil ecological system and improve the environmental quality. According to the remediation experiences from home and abroad, remediation on the urban river should be based on the laws of the ecology system in the river and emphasize the restoration and protection of the ecology. Furthermore, remediation of the urban river should be consistent with the development of the economic, where safe and high-speed remediation is needed.
     In this study, the water self-purification ability was discussed, and the role of sediment in the self-purification process was studied. When water could not complete the self-purification process, aeration technology and perturbation technology were introduced. It was shown that aeration technology was effective in improving the removal efficiency of organic substance, ammonia-nitrogen and total nitrogen when the sediment existed in the reactor. Comparing with the aeration technology, the perturbation technology was bad, although it was also effective in improving the removal efficiency no matter the sediment exists or not. Because of the intensification by aeration technology and perturbation technology, the organic substance and total nitrogen in the sediment were removed, among which the aeration technology was more effective. In the sediment where the aeration technology was used, the number of typical microorganisms and the species of bacterium increased. Moreover, the enzyme activity was improved. It was shown that sediment was irreplaceable in the purification process.
     The Bio-energizer technology was conducted, showing that the bio-energizer was helpful to improve the bioactive of the microorganism in the sediment. A lot of the microorganism was grown, thus, the biochemical reaction and the degradation of the contaminant were speeded up. However, a lot of bubbles were generated because of the florescence of the microorganism. Combined with the organic substance and nitrogen contaminant that were released in the water from the sediment, the values of CODCr、TN、NH3-N in the water increased. Although the contamination could be cleared finally by the microorganism, a long time was needed to reach the water standard.
     The Bio-agent technology was also conducted, showing that water quality can be improved when yeast cells were added into the field river, and the added yeast can absorb the sediment particles where they can exist for a long time. According to the detection after one year, the number of typical microorganisms and the species of bacterium increased, therefore, the enzyme activity was improved. It was believed that the yeast can behave as a leader to improve the bio-environment in the sediment.
     To make up for the shortage ability of Bio-energizer technology, the Bio-agent technology was added. The result showed that this combination technology was effective on the degradation of water contamination to moderate the inadequate of the Bio-energizer technology.
引文
[1]吴阿娜,车越,张宏伟,等.国内外城市河道整治的历史、现状及趋势[J].中国给水排水, 2008, 24(4): 13-18.
    [2]宋庆辉,杨志峰.对我国城市河流综合管理的思考[J].水科学进展, 2002, 13(3): 377-382.
    [3]张宗才.有机污染水体的生物修复[D].成都:四川大学, 2005.
    [4]解振华.中国环境保护工作1999年取得的进展[J].环境保护, 2000(2): 3-5.
    [5]王薇,李传奇.河流廊道与生态修复[J].水利水电技术, 2003, 34(9): 56-58.
    [6] Assessment and Watershed Protection Division Office of Wetlands, Oceans, and Watersheds US EPA. Watershed. Protection: a Statew ide Approach[R]. 1995.
    [7] Riley A L. Restoring streams in cities: a guide for planners, policy makers, and citizens[M]. 1 edition. Washington: Island Press, 1998.
    [8]贺缠生,傅伯杰.美国水资源政策演变及启示[J].资源科学, 1998, 20(1): 71-77.
    [9] Shrestha S, Kazama F. Assessment of surface water quality using multivariate statistical techniques-A case study of the Fuji river basin, Japan [J]. Environmental Modelling and Software, 2007, 22(4): 464-475.
    [10] Takahasi Y, Uitto J I. Evolution of river management in Japan: from focus on economic benefits to a comprehensive view[J]. Global Environmental Change Part A, 2004, 14(1): 63-70.
    [11] Barmuta L A, Imperilled rivers of Australia: challenges for assessment and conservation[J]. Aquatic Ecosystem Health & Management, 2003, 6(1): 55-68.
    [12] Roy A H, Wenger S J, Fletcher T D, et al. Impediments and solutions to sustainable, watershed-scale urban stormwater management: lessons from Australia and the United States[J]. Environmental Management, 2008, 42(2): 344-359.
    [13] Jmaes S L, Warren S B, Carol E P, et al. Environmental stress and recovery: the geochemical record of human disturbance in New Bedford Harbor and Apponagansett Bay, Massachusetts (USA)[J]. Science Total Environment, 2003, 313(1): 153-176.
    [14]柳惠青.湖泊污染内源治理中的环保疏浚[J].水运工程, 2000, 11: 21-27.
    [15]李浩霖.天津地区河道疏浚工程施工方案的选择[J].科技信息, 2010, 10: 293.
    [16]何文学,李茶青.底泥疏浚与水环境修复[J].中国环境管理干部学院学报,2006, 6(1): 70-73
    [17]孙傅,曾思育,陈吉宁.富营养化湖泊底泥污染控制技术评估[J].环境污染治理技术与设备, 2003, 14(8): 61-64
    [18] Murphy T P, Lawson A, Kumagai M, et a1. Review of emerging issues on sediment treatment[J]. Aquatic Ecosystem Health and Management, 1999, 4(2): 419-434.
    [19]敖静.污染底泥释放控制技术的研究进展[J].环境保护科学, 2004, 30(126): 29-35.
    [20]邢雅囡,阮晓红,赵振华.城市河道底泥疏浚深度对氮磷释放的影响[J].河海大学学报:自然科学版, 2006, 34(4): 378-382.
    [21]邢奕.滇池福保湾污染底泥原位固化治理技术的研究与应用[D].北京:北京科技大学, 2008.
    [22]钟继承,范成新.底泥疏浚效果及环境效应研究进展[J].湖泊科学, 2007, 19(1): 1-10.
    [23]赵新华,马伟芳,孙井梅,等.玉米修复河道疏浚底泥重金属-有机复合污染的根际效应[J].农业环境科学学报, 2006, 25(1): 100-106.
    [24]马伟芳,赵新华,孙井梅,等. EDTA在植物修复复合污染河道疏浚底泥中的调控作用[J].环境科学, 2006, 27(1): 85-90.
    [25]王春树.对上海市引清调水工作的初步思考[J].水利发展研究, 2004, 4(11): 52-54.
    [26]杜晓舜,王春树.上海市引清调水工作研究[J].水资源保护, 2006, 22(3): 92-94.
    [27]王道增,林卫青.苏州河综合调水与水环境治理研究[J].力学与实践, 2005, 27(5): 1-12
    [28]朱庆平,任建华,王建中等.我国内陆河流生态调水.中国水利, 2003, 6: 50-52.
    [29]徐贵泉,褚君达.上海市引清调水改善水环境探讨[J].水资源保护, 2001, 3: 26-30.
    [30]熊万永.福州内河引水冲污工程的实践与认识[J].中国给水排水, 2000, 16(7): 26-28.
    [31]林建伟,朱志良,赵建夫.天然沸石覆盖层控制底泥氮磷释放的影响因素[J].环境科学, 2006, 27(5): 880-884.
    [32]林建伟,朱志良,赵建夫.方解石活性覆盖系统抑制底泥磷释放的影响因素研究[J].环境科学, 2008, 29(1): 121-126.
    [33] Ingall E, Jahnke R. Evidence for enhanced phosphorus regeneration form marine sediments overlain by oxygen-depleted waters[J]. Geochimica etosmochimica Acta, 1994, 58(11): 2571-2575.
    [34]王曙光,栾兆坤. CEPT技术处理污染河水的研究[J].中国给水排水, 2001, 17(4): 16-18.
    [35]邱慎初.化学强化一级处理(CEPT)技术[J].中国给水排水, 2000, 16(1): 26-29.
    [36]沈玉梅,宋和平.化学强化一级处理法(CEPT)及其研究方向[J].环境污染与防治, 2000, 22(2): 26-27.
    [37]黎明,刘德启,沈颂东,等.国内富营养化湖泊生态修复技术研究进展[J].水土保持研究, 2007, 14(5): 350-355.
    [38]徐亚同,史家梁.生物修复技术的作用机理和应用(下)[J].上海化工, 2001, 26(20): 4-6.
    [39]徐亚同,史家梁.生物修复技术的作用机理和应用(中)[J].上海化工, 2001, 26(19): 4-7.
    [40]徐亚同,史家梁.生物修复技术的作用机理和应用(上)[J].上海化工, 2001, 26(18): 4-7, 19.
    [41]孙从军,张明旭.河道曝气技术在河流污染治理中的应用[J].环境保护, 2001(4): 12-14, 20.
    [42]刘延恺,陆苏.河道曝气法—适合我国国情的环境污水处理工艺[J].环境污染与防治, 1994, 16(1): 22-25.
    [43]张捷鑫,吴纯德,陈维平,等.污染河道治理技术研究进展[J].生态科学, 2005, 24(2): 178-181.
    [44] Lamping J, Worrall F, Morgan H, et al. Effectiveness of aeration and mixing in the remediation of a saline stratified river[J]. Environmental science and technology, 2005, 39(18): 7269-7278.
    [45] Pimpunchat B, Sweatman W L, Wake G C, et al. A mathematical model for pollution in a river and its remediation by aeration[J]. Applied Mathematics Letters, 2009, 22(3): 304-308.
    [46] Tang X, Huang S, Scholz M, et al. Nutrient removal in pilot-scale constructed wetlands treating eutrophic river water: assessment of plants, intermittent artificial aeration and polyhedron hollow polypropylene balls[J]. Water, Air, and Soil Pollution, 2009, 197 (1): 61-73.
    [47] Fang T, Xiao B D, Zhang X H, et al. Effect of aeration on heavy metals release from two different sediments[J]. China Environmental Science, 2002, 22(4): 355-359.
    [48] Griffiths I, Lloyd P. Mobile oxygenation in the Thames Estuary [J]. Effluent and water treatment journal, 1985(5): 165-169.
    [49] Rogers G R. Water quality management at Santa Cruz Harbor [J]. Aire-O2 News, 1990, 7(1): 4-5.
    [50]谌伟,李小平,孙从军,等.低强度曝气技术修复河道黑臭水体的可行性研究[J].中国给水排水, 2009, 25(1): 57-59.
    [51]王文林,殷小海,卫臻,等.太阳能曝气技术治理城市重污染河道试验研究[J].中国给水排水, 2008, 24(17): 44-48.
    [52]周志华,薛文政,温明霞.人工曝气与生态湿地相结合改善清河口水环境[J].北京水利, 2005(6): 31-33.
    [53] Arrojo B, Mosquera A, Garrido J M, et al. Aerobic granulation with industrial wastewater in sequencing batch reactors[J]. Water Research, 2004, 38(14): 3389-3399
    [54] Keller J, Subramaniam K, sswein J G, et al. Nutrient removal from industrial wastewater using single tank sequencing batch reactors[J]. Water science and technology, 1997, 35(6): 137-144.
    [55] Carrera J, Baeza J, Vicent T, et al. Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system[J]. Water Research, 2003, 37(17): 4211-4221.
    [56] Jennings L K. Culturing and enumeration of Polaromonas species strain JS666 for its use as a bioaugmentation agent in the remediation of cis-dichloroethene-contaminated sites[D]. New York: Cornell University, 2005.
    [57] Giddings C G, Liu F, Gossett J M. Microcosm assessment of polaromonas sp. JS666 as a bioaugmentation agent for degradation of cis-1, 2-dichloroethene in aerobic, subsurfaceenvironments[J]. Ground Water Monitoring and Remediation, 2010, 30(2): 106-113.
    [58] Simon M A, Bonner J S, Page C A, et al. Evaluation of two commercial bioaugmentation products for enhanced removal of petroleum from a wetland[J]. Ecological Engineering, 2004, 22(4): 263-277
    [59] Silva E, Fialho A M, Burns R G, et al. Combined bioaugmentation and biostimulation to cleanup soil contaminated with high concentrations of atrazine[J]. Environmental science and technology, 2004, 38(2): 632-637.
    [60]张琨玲.美国新型微生物净化水质技术[J].水污染与保护, 1996, 1: 87-91.
    [61]丁贵生,苏春东,王成涛,等.投菌法在污水处理中的应用与分析[J].污染防治技术, 2003, 16(3): 79-81.
    [62] Bestena P J, Postmab J F, Wegenerc J W M, et al. Biological and chemical monitoring after pilotremediations in the delta of the rivers Rhine and Meuseq[J]. Aquatic Ecosystem Health and Management, 2000, 3(3): 317-334.
    [63] Johnson C R, Lamar R T. Polymerization of pentachlorophenol and Ferulic acid by fungal extracellular lignin-degrading enzymes[J]. Applied and Environmental Microbiology, 1996, 62(10): 3890-3893
    [64] Yadav J S. Degradation of polychlorinated biphenyl mixtures by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-spcific analysis[J]. Applied and Environmental Microbiology, 1995, 61(7): 2560-2565
    [65]王银善.联合菌群处理聚乙烯醇废水的可行性研究[J].环境科学与技术. 1993, 2: 31-33
    [66]曹式芳,庞金钊,杨宗政等.生物技术治理富营养化景观水体的研究[J].天津轻工业学院学报, 2002, 4: 1-3.
    [67]李捍东,王庆生.优势复合菌群用于城市生活污水净化新技术的研究[J].环境科学出版社, 2000, 13(5): 14-16.
    [68]刘春梅.投菌法在水体富营养化防治的应用[J].辽宁城乡环境科技, 2005, 25(6): 30-31.
    [69]梁燕珍,孙国萍,岑英华,等.生物技术在微污染景观水处理中的应用[J].环境科学与技术, 2005, 28(2): 88-89.
    [70]廖日红,王培京,许志兰.固定化微生物处理河流微污染水体试验研究[J].北京水务, 2006, 2: 11-14.
    [71] Hirano T, Masho R, Koizumi D, et al. Ecotoxicity testing of bioremediation agents for shoreline oil-spill clean up [J]. Japanese Journal of Environmental Toxicology, 2006, 9(2): 115-131.
    [72]丁建清.外来生物的入侵机制及其对生态安全的影响[J].中国农业科技导报, 2002, 4(4): 16-20.
    [73]李弦,林逢凯,胥铮.复合酶生物促进剂在污染河道修复中的应用研究[J].净水技术, 2009, 28(4): 38-41.
    [74] Aronstein B N, Alexander M. Effect of a non-ionic surfactant added to the soil surface on the biodegradation of aromatic hydrocarbons within the soil [J]. Applied microbiology and biotechnology, 1993, 39 (3): 386-390.
    [75] Gerlach R, Steiof M, Zhang C, et al. Low aqueous solubility electron donors for the reduction of nitroaromatics in anaerobic sediments [J]. Journal of contaminant hydrology, 1999, 36 (1): 91-104.
    [76] Pritchard P H. Use of inoculation in bioremediation [J]. Current Opinion in Biotechnology, 1992, 3(3): 232-243.
    [77] Lewis R F, Site demonstration of slurry-phase biodegradation of PAH contaminated soil [J]. Journal of the Air & Waste Management Association, 1993, 43(4): 503-508.
    [78] Wenderoth D, Rosenbrock P, Abraham W R, et al. Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater [J]. Microbial ecology, 2003, 46(2): 161-176.
    [79] Yi H, Crowley D E. Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid [J]. Environmental science and technology, 2007, 41(12): 4382-4388.
    [80] Jin P. The impact of cadmium on a multi-species biofilm degrading naphthalene and the role of hydrogen peroxide in cadmium-biofilm interaction[D]. Cincinnati: University of Cincinnati, 2007.
    [81] Mwegoha W, Mbuya O S, Jain A, et al. Use of chicken manure extract for biostimulation and enhancement of perchlorate rhizodegradation in soil and water media[J]. Bioremediation journal, 2007, 11(2): 61-70.
    [82] Su Y, Ma S, Dong S. Variation of alkaline phosphatase activity in sediments of shrimp culture ponds and its relationship with the contents of C, N and P[J]. Journal of Ocean University of China (English Edition), 2005, 4(1): 75-79.
    [83]谭玉菲.城市景观水体生物修复技术探讨[J].中国高新技术企业, 2007(8): 83-83.
    [84] Michiels T, Breugelmans D. In situ bioremediation of an aquifer contaminated with dichloroethane[J]. Remediation Journal, 1994, 5(1): 101-110.
    [85]王美敬.受污染水体的沉水植物与促生剂的原位修复试验研究[D].成都:四川大学, 2005.
    [86]卢丽君,孙远军,李小平.用生物促生剂修复受污染底泥[J].中南民族大学学报:自然科学版, 2007, 26(4): 27-31.
    [87]王美敬,罗麟,陈进,等.生物促生剂修复受污水体净化效能研究[J].四川环境, 2006, 25(1): 14-16,19.
    [88]张丽,李勇.底泥对投加生物促生剂改善河道水质效果的影响研究[J].江苏环境科技, 2008, 21(2): 4-7.
    [89]徐亚同,袁磊.上澳塘水体生物修复试验[J].上海环境科学, 2000, 19(10): 480-484.
    [90]李开明,刘军,江栋,等.古廖涌黑臭水体生物修复及维护试验[J].应用与环境生物学报, 2005, 11(6): 742-746.
    [91]夏文香,李金成,宋志文,等.生物修复剂在清除海滩石油污染中的应用[J].环境工程学报, 2007, 1(8): 9-14.
    [92]李民良.生物促生剂在乙二醇废水生化处理上的应用[J].金山油化纤, 2006, 25(2): 8-12.
    [93]李继洲,胡磊.污染水体的原位生物修复研究初探[J].四川环境, 2005, 24(1): 1-3,26.
    [94]唐玉斌,郝永胜,陆柱,等.景观水体的生物激活剂修复[J].城市环境与城市生态, 2003, 16(4): 37-39.
    [95]黎明,刘德启,沈颂东.国内富营养化湖泊生态修复技术研究进展[ J] .水土保持研究, 2007, 14( 5) : 350~ 355.
    [96]刘建康.湖泊与水库富营养化防治的理论与实践[M],北京:科学出版社, 2003.
    [97]杨婷婷,操家顺,周勇,等.原位围隔耐寒高羊茅浮床对苏州重污染河道水体的净化[J].湖泊科学, 2007, 19( 5): 618-621.
    [98] Xu F L, Jorgensen S E, Tao S, Li B G. Modeling the effects of ecological engineering on ecosystem health of a shallow eutrophic Chinese lake (Lake Chao) [J]. Ecological modelling, 1999, 117 (2): 239-260.
    [99] Qiu D, Wu Z, Liu B, et al. The restoration of aquatic c macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China [J]. Ecological Engineering, 2001, 18 (2): 147-156.
    [100] Asaeda T, Trung V K, Manatunge J. Modeling the effects of macrophyte growth and decomposition on the nutrient budget in shallow lakes [J]. Aquatic Botany, 2000, 68 (3): 217-237.
    [101]黄建军.城市河道底泥营养盐释放及化学修复研究[D].天津;天津大学, 2010.
    [102]王盛勇.贫营养条件下微生物代谢产物和生物多样性的研究[D].天津:天津大学, 2009.
    [103]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:北京农业出版社, 1986: 92-109.
    [104]史文霞.污染底泥对水体自净的影响及强化自净模式[D].天津;天津大学, 2010.
    [105]王小雨,胡明忠.湖泊富营养化治理的底泥疏浚工程[J].环境保护, 2003, 2: 22-23.
    [106] Li T, Liu J, Bai R, et al. Biodegradation of organonitriles by adapted activated sludge consortium with acetonitrile-degrading microorganisms[J]. Water Research, 2007, 41(15): 3465-3473.
    [107] Brady D, Duncan J. Bioaccumulation of metal cations by Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 1994, 41 (1): 149-154.
    [108] Brinkman N, Haugland R, Wymer L, et al. Evaluation of a rapid, quantitative real-time PCR method for enumeration of pathogenic Candida cells in water[J]. Applied and Environmental Microbiology, 2003, 69 (3): 1775.
    [109] Hagler A, Hagler L. The yeasts of fresh water and sewage[J]. Anais de microbiologia, 1978, 23: 79-103.
    [110] Spencer J, Spencer D, Roberts I. Yeasts in natural and artificial habitats[M]. Berlin: Springer Verlag, 1997.
    [111]李天光.?修复外环河水质的复合菌剂研究[D].?天津:?天津大学,?2007.
    [112]李盈利.?天津市外环河投菌法的模拟研究[D].?天津:?天津大学,?2007.
    [113] Chang S Y, Sun J M, Cao J S, et al. Reuse of brewery wastewater on culturing the yeast cells for rivers remediation [J]. Environmental Technology. 2011. (in process)
    [114] Chang S Y, Sun J M, Huang J J, et al. Cultivation of high cell density toimprove degradation efficiency of river-water[C]// IEEE international conference on computer Society. Beijing, China, 2009: 1-4.
    [115] Miyahara M, Kim S W, Fushinobu S, et al. Aerobic denitrification by Pseudomonas stutzeri TR2 has the potential to reduce nitrous oxide emission from wastewater treatment plants [J]. Applied and Environmental Microbiology, 2010, ( in Process)
    [116] Miyahara M, Kim S W, Fushinobu S, et al. Potential of aerobic denitrification by pseudomonas stutzeri TR2 to reduce nitrous oxide emissions from wastewater treatment plants[J]. Applied and Environmental Microbiology, 2010, 76(14): 4619.
    [117] Yang X P, Wang S M, Zhang D W, et al. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Bacillus subtilis A1[J]. Bioresource technology, 2011, 102 (2): 854-862
    [118] Robertson L A, Niel E W, Torremans R A, et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha[J]. Applied and Environmental Microbiology, 1988, 54(11): 2812.
    [119] Kuroda K, Shibasaki S, Ueda M, et al. Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions[J]. Applied Microbiology and Biotechnology, 2001, 57(5): 697-701.
    [120] Ksheminska H, Jaglarz A, Fedorovych D, et al. Bioremediation of chromium by the yeast Pichia guilliermondii: toxicity and accumulation of Cr (III) and Cr (VI) and the influence of riboflavin on Cr tolerance [J]. Microbiological Research, 2003, 158(1): 59-67.
    [121] Ellis D, Lutz E, Odom J, et al. Bioaugmentation for accelerated in situ anaerobic bioremediation [J]. Environmental Science Technology, 2000, 34(11): 2254-2260.
    [122] Malik A. Metal bioremediation through growing cells [J]. Environmental International, 2004, 30(2): 261-278.
    [123] Guo L, Ji M, Dong H, Wei Y, et al. Screening and degradation performances of dominant strains in high-salinity landfill leachate [J]. Applied microbiology and biotechnology, 2009, 84(2): 357-364.
    [124] Li W Y, Xu P M, Xu Y, et al. Study on kinetic model of immobilized dominant bacteria for treatment of COD in coke plant wastewater[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2009, 31(18): 1654-1659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700