用户名: 密码: 验证码:
基于微泡浮选的多流态强化油水分离研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油田采出水处理是矿场油田开发利用和环境保护面临的重要课题,是油田开采必不可少的生产环节。随着三次采油技术的广泛应用,油田采出污水产出量大,水质复杂且难处理问题突出,现有技术已经无法满足油田正常生产的要求。因此,迫切需要开发与三次采油技术配套的采出水处理技术,开发无药剂添加、不产生含聚油泥、操作简单、能耗低的物理除油工艺及设备。旋流–静态微泡浮选分离是将常规旋流器和常规泡沫柱分离结合起来,集旋流分离、气浮与聚结分离于一体的高效分离方法。旋流–静态微泡浮选柱在煤炭分选、有色金属选矿、铁矿提质降杂、油水分离等领域得到了广泛应用。本论文从基于微泡浮选的旋流分离强化除油、聚结分离强化除油等方面开展研究,对于油水分离用浮选柱的开发和工业应用提供理论指导。主要研究内容包括以下几个方面:
     研究了基于微泡浮选的旋流分离强化除油机理。分析了旋流器中油滴的受力情况,描述了浮选柱内置旋流器油水旋流分离过程。研究了起泡剂浓度,给料速度,循环压力,充气速率等操作参数对脱油率的影响规律。建立了旋流分离脱油率的数学模型。采用PIV粒子成像测速仪测试了浮选柱内置旋流器速度场分布。
     研究了基于微泡浮选多元聚结强化除油机理。深入分析基于浮选柱内旋流段、管流段和气浮段的流体行为和油滴聚结、破碎过程,提出了旋流–静态微泡浮选柱中旋流聚结(90o碰撞聚结)、管流聚结(0o碰撞聚结)、层流聚结(180o碰撞聚结)机制。考察了充气速率、温度、给料速度、循环压力以及粘度等操作条件对旋流聚结效果的影响规律,充气速率、温度、给料速度以及粘度等操作参数对层流聚结效果的影响规律,充气速率、循环压力、粘度、管段长度、管段直径以及含油浓度等操作参数对管流聚结效果的影响规律。建立了旋流聚结、层流聚结和管流聚结的数学模型。明确了旋流聚结、管流聚结与层流聚结过程能有效处理粒径范围。
     利用流体力学软件Fluent对浮选柱内的两相流场进行数值模拟,获得了浮选柱旋流段、管流段和气浮段三部分经过旋流聚结、管流聚结和层流聚结后油相的浓度场分布和油滴粒径分布云图。模拟结果和试验结果相吻合。
     研究了基于射流的气含率调控强化除油机理。分析了喷嘴口径、充气速率、起泡剂用量、循环压力四个参数对气含率的影响规律。确定了适合于油水分离的气含率不应低于10%最佳范围。建立了基于操作参数影响预测气含率的数学模型,以及基于BP神经网络和基于GRNN神经网络的气含率预测模型。
     通过静态实验,研究了吸附时间、投放煤种、煤粉颗粒粒径、含油污水pH值、含油浓度等因素对原油在煤粉颗粒表面的吸附规律。实验结果表明,随着吸附时间的延长,石油类物质在煤粉颗粒表面吸附量先增加而后趋于平衡;同一粒级下无烟煤对石油类物质的吸附量大于贫(瘦)煤及褐煤,同一煤种下细粒级吸附量大于粗粒级的吸附量;石油类物质在无烟煤表面吸附量随pH值增加缓慢减少,pH值对吸附量的影响不大。石油类物质在+0.046mm粒级煤粉表面吸附符合Freundlich等温吸附规律,在-0.046mm粒径煤粉表面吸附符合Langmuir吸附等温规律。吸附过程符合二级吸附动力学模型,吸附形式为物理吸附与化学吸附共存的吸附过程,物理吸附为主,化学吸附为辅。
     认识到聚合物驱采出水处理过程实质是两种生产(采油生产、采出水处理)、两种循环(水循环、聚合物循环)的采出水循环体系,应进行进行适度处理,既要使出水达到回注要求,同时使聚合物最大限度的保留。在此原则下,以旋流–静态微泡浮选柱为主要分离设备,利用煤的天然吸附性,以煤粉作为吸附剂,选择性吸附采油污水中原油,保留聚合物,开发了聚合物驱采油污水浮选柱选择性吸附气浮工艺。结合浮选柱多元聚结作用和充填材料聚结作用,开发浮选柱聚结气浮工艺,配套开发油煤基吸附料资源化回收利用技术。
     通过浮选柱聚结气浮–载体选择性吸附气浮工艺集成,在胜利油田孤六联建设了2000m3/d“浮选柱聚结气浮–选择性吸附气浮”工业系统。工业试验结果表明,该技术具有工艺独特、指标先进、无底泥产生等特点。针对含油浓度1000 mg/L~2000mg/L、悬浮物120mg/L左右的进水,处理后出水含油浓度为23.39 mg/L,总脱油率为97.70%。同时,每处理1m3水可减少污泥排放量1.87Kg,污泥量减少,既简化了整体处理工艺,又降低了处理成本。
     该论文有图143幅,表15个,参考文献139篇。
The treatment of oilfield produced water, which plays an essential role in the production process, is an important research project for the development and utilization of the oilfield and also for the environmental protection. Therefore, treatment technology of oilfield produced water assorting with the tertiary oil recovery technology, is in urgent need. Besides, physical separation processes and equipments with no added chemicals, no production of poly clay, a simple operation and low energy consumption are also in great demand. The Cyclone-static micro-bubble flotation separation, which combines the conventional Hydrocyclone with conventional flotation column, is a high efficient separation equipment, integrating cyclone separation, flotation and coalescing separation. In this dissertation, researches are carried out in the areas of cyclonic separation and coalescing separation by flotation column to enhance oil removing, which provide theoretical guidance to the development and industrial application of flotation column in oilywater separation. The major research includes the following aspects:
     Study concerning the mechanism of cyclonic separation strengthening oil removing by flotation column is conducted. The forces of the droplets in the cyclone are analyzed and the oilywater separation process in the flotation column built-in cyclone is depicted. The operating parameters, such as frother concentration, feed capacity, circulating pressure and inflation rate influencing the oil removal rate are studied. Mathematical model of cyclonic oil removal rate is established. The velocity field of the flotation column built-in cyclone is tested by particle image velocimetry (PIV).
     Study on the mechanism of multiple coalescence enhancing oil removing by flotation column is conducted. Based on the deep analysis of the inner cyclonic section and pipe flow section, the behavior of the air flotation fluid and the process of oil coalescence and comminuting, the mechanisms of swirl coalescence (collision coalescence of 90o), pipe flow coalescence (collision coalescence of 0o) and laminar coalescence(collision coalescence of 180o) in the cyclone-static microbubble flotation column are proposed. Several operating conditions are taken into consideration, such as the effect of inflation rate, temperature, feed capacity, circulating pressure and viscosity on the swirl coalescence, the effect of inflation rate, temperature, feed capacity and viscosity on the laminar flow coalescence and the effect of inflation rate, circulating pressure, viscosity, pipe length, pipe diameter and oil concentration on the pipe flow coalescence. Mathematical models of swirl, laminar flow and pipe flow coalescence are established. Particle size range, which can be effectively dealt with during the process of swirl, laminar flow and pipe flow coalescence, is clarified.
     Oil concentration distributions and droplet size distribution nephograms of the swirl, pipe flow and air flotation sections, being processed by swirl, pipe flow and laminar flow coalescence, is obtained, after the numerical simulation of two-phase field in the flotation column using the fluid dynamics software (Fluent). Simulation results and experimental results match well.
     Study on the mechanism of jet-based gas holdup control enhancing de-oiling is conducted. The law that the four parameters, namely, nozzle diameter, aeration rate, frother dosage affecting the gas holdup is analyzed. The optimal gas holdup for oil-water separation, no less than 10%, is decided. Two models are established, that is, the mathematical model for predicting the gas holdup which is based on the influence of operating parameters and the gas holdup model based on the BP neural network and GRNN neural network.
     The law of different factors, such as adsorption time, coal rank, coal particle size, pH value and concentration of oily wastewater, affecting the oil substances adsorbing in the surface of coal particles, is researched through the static experiment. The law of oil substances in the surface of +0.046mm anthracite and -0.046mm anthracite can be fitted by Freundlich adsorption isotherm and Langmuir adsorption isotherm respectively. Pseudo-second-order kinetic model fits the process of adsorption, the form of which is the coexistence of the physical and chemical adsorption, the former being the major and the latter being a supplement.
     Oil recovery wastewater from polymer flooding, essentially being a produced water circulation system which includes two kinds of productions (oil production and produced water processing) and two kinds of circulations (water and polymer circulations), needs appropriate treatment, the purpose of which is to make the effluent meet the requirement of reinjection and to retain the maximum polymer at the same time. The flotation column selective adsorption flotation process of polymer flooding produced water is developed, with the cyclone-static micro-bubble flotation column as the main separation equipment, and by means of natural adsorption of coal, with coal fine being the adsorbent, crude oil being selectively adsorbed and polymer retained. Considering the effect of multiple coalescence and stuffing coalescence, coalescence floatation process of flotation column is developed, and the recycling technology of coal-oil-based adsorption material resource is developed as well.
     After the integration of the coalescence flotation and the carrier selective adsorption process, a 2000m3/d industrial system named coalescence flotation-selective adsorption process is constructed in Shengli oilfield Gudao No.6 joint station. The industrial test shows that this technology is featured by unique process, advanced equipment, excellent indexes and sediment-free production, for the inefluent of oil and suspended matter concentration being 1000mg/L~2000mg/L and 120mg/L respectively, a effluent of oil concentration of 23.39 mg/L and the total oil removal ratio of 97.70% were obtained. Meanwhile, every 1m3 water treatment can reduce 1.87Kg sludge emission.
引文
[1]刘德绪.油田污水处理工程[M].石油工业出版社,2001.
    [2]沈琛.污水处理工艺技术新进展[M].中国石化出版社,2008.
    [3]庄建远,王国丽,翁维珑.国外油气田地面工艺技术发展动向[J].石油规划计,2003,14 (1):45-53.
    [4]张春霖,张旭军.新型油水分离器在油田污水处理中的应用试验[J].石油化工环境保护,2003,26(1):30-33.
    [5]国家环境保护总局. GB8978–1996污水综合排放标准[S].北京:中国标准出版社,1996.
    [6]袁惠民.含油废水处理方法[J].化工环保,1998,(18):146-149.
    [7]冯永训.油田采出水处理设计手册[M].北京:中国石化出版社,2005.
    [8]邓秀英.油田采出水处理技术综述[J].工业用水与废水,1999,30(2):7-9.
    [9]邹启贤,陆正禹.油田废水处理综述[J].工业水处理,2001,21(8):1-3.
    [10]隋智慧,秦煜民.油水分离技术的研究进展[J].油气田地面工程,2002,21(6):115-116.
    [11]侯士兵,玄雪梅.含油废水处理技术的研究和应用现状[J].上海化工,2003,(9):11-14.
    [12]张翼,于婷.含油废水处理方法研究进展[J].化工进展,2008,27(8):1155-1161.
    [13]燕虎善,王辉,彭盼旺等.孤岛油田含聚污水处理技术进展[J].油气田地面工程, 2006, 25(3):23-24.
    [14] J. Rubio, M.L.Souza, R.W. Smith. Overview of flotation as a wastewater treatment technique[J]. Minerals Engineering,2002,15:139-155.
    [15] Mohammad.M.Emamjomeh,Muttucumaru.Sivakumar.Review of pollutants removed by electro- coagulation and electrocoagulation/flotation processes[J].Journal of Environmental Management, 2009,90(5):1663-1679.
    [16] Li Xiao-bing, Liu Jiong-tian, Wang Yong-tian, et al. Separation of Oil from Wastewater by Column Flotation[J]. J. China Univ. of Mining & Tech.,2007,17(4): 546-551,577.
    [17] B. Ramaswamy, D.D. Kar, S. De. A study on recovery of oil from sludge containing oil using froth flotation[J].Journal of Environmental Management, 2007,85(1):150-154.
    [18] F. Capponi, M. Sartori, M.L. Souza, et al. Modified column flotation of adsorbing iron hydroxide colloidal precipitates International[J].Journal of Mineral Processing, 2006,79(3):167-173.
    [19] Sunisa Watcharasing, Panita Angkathunyakul, Sumaeth Chavadej. Diesel oil removal from water by froth flotation under low interfacial tension and colloidal gas aphron conditions[J].Separation and Purification Technology,2008,62(1):118-127.
    [20]陈雷,祁佩时,王鹤立.聚结除油性能及机理的探讨[J].中国环境科学, 2002,22(1):16-19.
    [21] A.Hong, A.G.Fane, R.Burford. Factors affecting membrane coalescence of stable oil-in-water emulsions[J]. Journal of Membrane Science, 222 (2003):19-39.
    [22] Fei Ji, Chaolin Li, Xiaoqing Dong, et al. Separation of oil from oily wastewater by sorption andcoalescence technique using ethanol grafted polyacrylonitrile[J]. Journal of Hazardous Materials, 164 (2009) :1346-1351.
    [23]刘炯天.旋流-静态微泡浮选柱及洁净煤制备研究[D].北京:中国矿业大学(北京),1998.
    [24] J.T.Liu, M.Zhang, A.F.Zhai, et al. Dynamic Analysis and Optimization of Flotation-Column Packed Separation Zone[C].24th International Mineral Processing Congress September24-28, 2008, Beijing.
    [25]汤鸿霄,钱易,文湘华等.水体颗粒物和难降解有机物的特性与控制技术原理[M].北京:中国环境科学出版社,2000.
    [26]刘天奇.石油化工环境保护手册[M].化学工业出版社,1990.
    [27]方娅.国外油气田采出水处理新进展[J].油气田环境保护,1995,5:55-58.
    [28]魏平方,邓皓,邹斌.含油废水处理技术与发展趋势[J].油气田环境保护,2000,10(1):34-35.
    [29]俞建峰,袁惠新.含油废水处理[J].过滤与分离,1999,9(4):20~23.
    [30]徐根良,曾静.含油废水处理技术综述[J].水处理技术,1991,17(1):1-12.
    [31]邹存苓.吸附法处理含油废水试验研究[J].轻金属,1999 ,(12):52-53.
    [32]于洸,徐文国,周贵忠等.新型高分子絮凝剂处理含油废水的研究[J].北京理工大学学报,2003, 23(2):260-264.
    [33]刘俊强,包木太,王海峰.高温烃降解菌在含油污水生化处理中的应用[J].西南石油大学学报,2007,29(4):110-114.
    [34]刘妮妮,郭兴要,胡玉洁等.快速降解高含油废水菌种的性能研究[J].中国油脂,2003,28(11):71-74.
    [35]李伟光,李欣,朱文芳.固定化生物活性炭处理含油废水的实验研究[J].哈尔滨商业大学学报(自然科学版),2004,20(2):187-190.
    [36]卢寿慈.矿物浮选原理[M].北京:冶金工业出版社,1988.
    [37]张继武,张强.浮选技术净化含油污水的现状及展望[J].过滤与分离,2002,12(2):8-11.
    [38]杜新勇,王飞,熊元俊.溶气浮选技术处理含油污水实验与应用[J].钻采工艺,2006,29(5):131-133.
    [39]高广才,文联奎,郑远扬.喷射诱导气浮处理含油污水性能研究[J].石油学报,2001,22(4):108-112.
    [40]李小兵,郭杰,周晓华等.浮选气泡制造技术进展[J].选煤技术,2003, 30(6):60-62.
    [41]陈翼孙,胡斌.气浮净水技术的研究与应用[M].上海:上海环境科学技术出版社,1985.
    [42]大矢晴彦.分离的科学与技术[M].北京:中国轻工业出版社,1999.
    [43] Zheng Yuanyang. A Study of Kinetics on Induced-Air Flotation for Oil-Water Separation[C]. Proceeding the Internation Conference on Petroleum and Petrochemical Proceeding, 1991.
    [44]彭忠勋.浮选机在油田含油污水处理中的应用[J].石油规划设计,1994,5(3):49-50.
    [45]王同生.浅论油田水处理设备韵现状与展望[J].石油机械,1999,27(7):l-4.
    [46]郑远扬.吸入式浮选净化机的数学模型与工艺设计[J].石油大学学报,1990,14(2):68-73.
    [47] Bennett G F. The removal of oil from wastewater by air flotation: a review[J]. CRC Critical Reviews in Environmental Contro1,1988,18(3):189.
    [48]高光才.一种新型含油污水处理设备-喷射浮选装置[J].中国海上油气工程,2000,(3):57-59.
    [49]杜以兵.喷射浮选装置的研制[J].油气田地面工程,1999,18(4):32-35.
    [50] Feris, L.A., Rubio, J., Schneider, I.H.. Remocao decorantes emefluentes dotingimento deagatas porflotac taode partculas adsorventes[C].The Proceeding of 19th Congresso Brasileiro de Engenharia Sanit aria e Ambiental, Rio de Janeiro, 1999.
    [51] Feris, L.A., Gallina, C.W., Rodrigues, R.T., et al.Optimizing dissolved air flotation design and saturation[J]. WaterScience and Technology, 2001,8: 145-152.
    [52]皇甫京华.双射流浮选柱结构设计及其流场数值模拟的研究[D].北京:中国矿业大学(北京校区), 1998.
    [53] Y. Ye, S.Gopalakreshnan, E.Pacquet, et al. Development of air-sparged hydrocyclone-A swirl-flow flotation column[C].Column flotaion’88:Society of mining engineers, INC, litlleton, Colorado, 1988.
    [54]支同祥.浮选柱研究现状与应用前景[J].中国煤炭, 1999, 25(6):56-61.
    [55]李玉胜,王立军,崔忠福.FXP150喷射式自控密闭浮选机的研制与应用[J].石油机械,2005,33(10): 43-45.
    [56]严峻,丁士兵.JHX新型浮选机在处理含油污水中的应用[J].石油化工环境保护,2002,25(1):16-19.
    [57]刘炯天.静态微泡浮选柱强化分选方法及装置.中国, ZL 97 1 07091.1[P].2002.
    [58] Rochford David B. Enhencing Produced Water Quality in Kuwait Oil Company[J].Society of Petroleum Engineers,1997, 12(3):153-158.
    [59] Bate J B.Clarification of ProducedWaterinthe Oil and Gas Industry[P].US 5543043,1996.
    [60]冯鹏邦,吴芳云,王嘉麟等.浮选柱用于油田回注水处理的研究[J].油气田环境保护,1994,4(1):1-7.
    [61] Xuqing Gu ,Shiao-Hung Chiang. A novel flotation column for oily water cleanup[J]. Separation Purification Technology, 1999,(16):193-203.
    [62]朱友益.新结构LHJ浮选柱的分选机理及数学模型研究[D].北京:北京科技大学,1997.
    [63] Colic M., Morse D.E., Morse W.O., et al. From air-sparged hydrocyclone to bubble accelerated flotation: mineral industry technology sets stage for development of new wastewater treatment flotation[C].The Proceedings of the Froth Flotation/Dissolved Air Flotation: Bridging The Gap, UEF Conference,Tahoe City, 2001.
    [64]肖坤林,徐世民,李鑫钢等.气浮塔处理含油废水的研究[J].工业水处理,2002,22(1): 37-39.
    [65] Bretney E. Cyclone.US,453105[P].1891.
    [66] A.B.Sinker, M.T.Thew. Effect of generic demulsifiers on removing water droplets hydrocyclonesΦ96[C].Cambridge,1996.London, MEP:289-301.
    [67] Martin Thew. Hydrocyclone redesign for liguid-liguid separation[J]. The Chemical Engineer,1986, (7-8): 17-23.
    [68]褚良银,陈文梅.旋转流分离理论[M].北京:冶金工业出版社,2002.
    [69]刘磊,李会耀.水力旋流污水除油技术[J].石油矿场机械,1995,24(3):33-38.
    [70] Meldrum N.Hydrocyclones:a solution to produced-water treatment[J]. SPE Production Engineering, 1988,11:669-676.
    [71] Schubert M F, Skilbeck F, Walker H J. Liquid hydrocyclone separation systems[C]. The Proceedings of the 4th Int. Conf. on Hydrocyclone, Southampton, UK, 1992:275-293.
    [72] Young G A, Wakley W D, Taggart D L,et al. Oil-water Separation using hydrocyclones: an experimental search for optimum dimensions[J].Journal of Petroleum Science and Engineering, 1994, (11):37-50.
    [73] Miller J.D.,Kinneberg D.J.,Van Camp M.C. Principles of swirl f1otation in a centrfuga1 fie1d with an air sparged hydrocyclone [C].SME-AIME Annual Meeting,Feb.,1982.
    [74]褚良银.离心浮选及其研究进展[J].过滤与分离,1994,(4):3-6.
    [75] Gay J C,Triponey G, Bezard C, et al. Rotary cyclones will improve oily water treatment and reduce reguirement/weight on offshore platform[J]. SPE Society of Petroleum Engineers,1987,16:571.
    [76]龚宁.新一代含油污水处理设备–动态水力旋流器[J].国外油田工程,1994,(4):49-50.
    [77] Wang Zunce, Zhao Lixin, Li Feng, et al. Characteristics study of hydrocyclond used for separating polymer-flood produced water[J]. ISOPE, 1999:226-230.
    [78] Dyakowski T, Williams R A. Prediction of high solids concentration regions within a hydrocyclone[J]. Power Technology, 1996,(87):43-47.
    [79]王尊策.复合式水力旋流器的结构及特性研究[D].哈尔滨:哈尔滨工程大学博士学位论文,2003.
    [80] Jingquan Li, Yongan Gu. Coalescence of oil-in-water emulsions in fibrous and granular beds[J]. Separation and Purification Technology, 2005, 42(3):1-13.
    [81] Radmila M. ?e?erov Sokolovi?, Tatjana J. Vuli?, Slobodan M. Sokolovi?. Effect of bed length on steady-state coalescence of oil-in-water emulsion[J]. Separation and Purification Technology, 2007, 56 (1):79-84.
    [82] Antonio E. Bresciani, Candido F.X. Mendon?a, Rita M.B. Alves, et al. Modeling the kinetics of the coalescence of water droplets in crude oil emulsions subject to an electric field, with the cellular automata technique[J]. Computers and Chemical Engineering, 2010, 34(12): 1962-1968.
    [83] C.-M. Lee, G. W. Sams, J. P. Wagner. Power consumption measurements for ac and pulsed dc for electrostatic coalescence of water-in-oil emulsions[J]. Journal of Electrostatics, 2001, 53(1): 1-24.
    [84] Steffen Schütz, Gabriele Gorbach, Manfred Piesche. Modeling fluid behavior and droplet interactions during liquid–liquid separation in hydrocyclones[J].Chemical Engineering Science, 2009, 64(18): 3935-3952.
    [85] Gautam D. Pangu, Donald L. Feke. Droplet transport and coalescence kinetics in emulsions subjected to acoustic fields[J].Ultrasonics, 2007,46(4):289-302.
    [86] G.D. Pangu, D.L. Feke. Kinetics of ultrasonically induced coalescence within oil/water emulsions: Modeling and experimental studies[J]. Chemical Engineering Science, 2009, 64(7):1445-1454.
    [87] Junji Fukushima, Haruki Tatsuta, Naruya Ishii, et al. Possibility of coalescence of water droplets in W/O emulsions by means of surface processes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 333(1-3):53-58.
    [88] K.Scott, R.J. Jachuch, D.Hall. Cross flow microfiltration of water-in-oil emulsion using corrugated membranes[J]. Sep. Purif. Technol.,2001,11(22) :431-441.
    [89]吴新国,王新强,明云峰等.陕北低渗透油田采油污水处理与综合利用[J].工业水处理,2007,27(7):74.
    [90] T.K. Boyson, R.M. Pashley. A study of oil droplet coalescence[J]. Journal of Colloid and Interface Science,2007,316(1): 59-65.
    [91] J.F. Mitre, R.S.M. Takahashi, C.P. Ribeiro Jr., et al. Analysis of breakage and coalescence models for bubble columns [J]. Chemical Engineering Science,2010,65(23): 6089-6100.
    [92]A.Hong, A.G.Fane, R.Burford. Factors affecting membrane coalescence of stable oil-in-water emulsions[J]. Journal of Membrane Science, 2003,222 (1-2):19-39.
    [93] Fei Ji, Chaolin Li, Xiaoqing Dong, et al. Separation of oil from oily wastewater by sorption and coalescence technique using ethanol grafted polyacrylonitrile[J]. Journal of Hazardous Materials, 2009,164 (2-3) :1346-1351.
    [94]袁惠新,张新周.旋流场中聚结过程研究[J].化学工程, 2005, 33(5):30-33,38.
    [95] A.Yeung, K.Moran, J. Masliyah, et al. Shear-induced coalescence of emulsified oil drops [J]. Journal of Colloid and Interface Science, 2003, 265(2): 439-443.
    [96] Eveline Fredrick, Pieter Walstra, Koen Dewettinck. Factors governing partial coalescence in oil-in-water emulsions[J]. Advances in Colloid and Interface Science, 2010,153(1-2):30-42.
    [97] German Urbina-Villalba, Máximo García-Sucre. Influence of surfactant distribution on the stability of oil/water emulsions towards flocculation and coalescence[J]. Colloids and Surfaces A: Physico- chemical and Engineering Aspects, 2001,190(1-2): 111-116.
    [98] S. Ata, R.J. Pugh, G.J. Jameson. The influence of interfacial ageing and temperature on the coalescence of oil droplets in water [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2011, 374(1-3):96-101.
    [99] D. Stefan Martula, Roger T. Bonnecaze, Douglas R. Lloyd. The effects of viscosity on coalescence- induced coalescence [J]. International Journal of Multiphase Flow, 2003, 29(8):1265-1282.
    [100]张敏,袁惠新.聚结分离过程的机理、方法及应用[J].过滤与分离,2003,13(1):44-46.
    [101] Wilkinson D, Waldie B. CFD and experimental studies of fluid and particle flow in horizontal primary separation[J]. TransⅠChem E,1994,72(part A):189-196.
    [102]曲险峰,倪玲英,刘晓成等.影响聚结效率因素试验研究[J].过滤与分离,2009,19(3):14-16.
    [103]郑陵.波纹板聚结法油水分离技术[J].油气田地面工程,1994,13(2):1-3.
    [104] Thomas Merlin Maddock Alum K Lewis. Corrugated plate separator with non uniform plate. GB, 2354461A[P].2001.
    [105] John W. Ferris, Elmore City, Okla. Oil, water and gas mixture sepatator field of the invention. US, 5132011[P].1992.
    [106] Alan Virrill. Oil-water separator. GB, 2116060A[P].1983.
    [107]张黎明,何利民,王涛等.含聚结构件油水分离器性能研究[J].高校化学工程学报,2009,23(2): 345-350.
    [108]倪玲英,何利民.含聚结填料分离器的分离特性试验研究[J].石油矿场机械,2007,36(10):61-64.
    [109]金向红,金有海,王建军等.气液旋流器的分离性能[J].中国石油大学学报(自然科学版), 2009,33(5):124-129.
    [110]褚良银,罗茜,余仁焕.充气水力旋流器内颗粒的受力与运动[J].化工装备与技术,1995,16 (5): 5-7,4.
    [111]林云万.陶瓷工业机械设备[M].上海:上海交通大学出版社,1987.
    [112]李剑君.新型亲和层析技术的应用基础研究[D].西安:西安交通大学, 2003.
    [113] Wieneke B, Pfeiffer K. Adaptive PIV with variable interrogation window size and shape[C].15th International Symptomatic Laser Appliance Fl. Mech., Lisbon, Portugal, 7, 2010.
    [114] Theunissen R, Scarano F and Riethmuller ML, An adaptive sampling and windowing interrogation method in PIV[J]. Meas.Sc.Techn.,2007,(18):275-287.
    [115] Theunissen R, Scarano F and Riethmuller ML, On improvement of PIV interrogation near stationary interfaces[J]. Exp.Fluids,2008,45:557-572.
    [116]宋云霞,齐正义,赵龙.应用PIV技术对重介质旋流器流场的试验研究[J].选煤技术,2010.(2): 36-30.
    [117]刘爱华,侯勤福,王焕洋等. PIV测试技术在漩流中间包流场研究中的应用[J].材料与冶金学报, 2006,(1):26-29.
    [118]孙鹤泉,沈永明,王永学等. PIV技术的几种实现方法[J].水科学进展,2004,(1):105-108.
    [119]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社, 2004.
    [120]赵兴艳,苏莫明,张楚华等.CFD方法在流体机械设计中的应用[J].流体机械,2000,28(3):22-25.
    [121]张远君.两相流体动力学[M].北京:北京航空学院出版社,1987.
    [122]岳湘安.液-固两相流基础[M].北京:石油工业出版社,1996.
    [123]钱忠东,胡晓清,槐文信等.基于欧拉模型的淹没射流冲刷数值模拟[J].中国科学,2011,41(4): 419-425.
    [124]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.
    [125]韩占忠,王敬,兰小平等. Fluent流体工程仿真计算实例与应用[M].北京:北京理工大学出版社, 2004.
    [126]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,1999.
    [127]韩力群.人工神经网络理论,设计及应用[M].北京:化学工业出版社,2002.
    [128] Satish Kumar.神经网络[M].北京:清华大学出版社,2006.
    [129]邓建国,罗隆福.基于BP神经网络的大型水轮发电机定子铁心的温度预测[J].湖南大学学报, 2002(1):72-75.
    [130]闻新,周露,李翔等. MATLAB神经网络仿真与应用[M].北京:科学出版社,2003.
    [131]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000.
    [132]史忠植.知识发现[M].北京:清华大学出版社,2002.
    [133] Kong J, Li K.Oil removal from oil-in-water emulsions using PVDF membranes[J]. Separation and Purification Technology, 1999, 16(1): 83-93.
    [134]严峻,丁士兵.JHX新型浮选机在处理含油污水中的应用[J].石油化工环境保护,2002,25(1): 16-19.
    [135] Auflem I H, Kallevik H, Westivik A, et al. Influence of pressure and solvency on the separation of water-in-crude-oil emulsions from the North Sea[J]. Journal of Petroleum Science and Engineering, 2001, 31(1): 1-12.
    [136] Chen G H, He G H. Separation of water and oil from water-in-oil emulsion by freeze / thaw method[J]. Separation and Purification Technology, 2003, 31(1): 83-89.
    [137]阎来洪,赵东风.粉煤灰吸附处理炼油污水中石油类物质的应用研究[J].干旱环境监测,1998, 12(3):139-144.
    [138]郝志涛,吴静,陆正禹.粉煤灰对采油废水中污染物质的吸附研究[J].化工环保,2004,24(增刊): 341-344.
    [139]张双全.煤化学[M].徐州:中国矿业大学出版社, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700