用户名: 密码: 验证码:
沥青混凝土路面粘弹性损伤演化与防裂控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,全国高速公路通车总里程5万公里,位居世界第二,沥青混凝土路面占高等级公路里程的75%。但是路面裂缝一直是困扰公路建设和养护的主要问题,因此,研究沥青混凝土路面的损伤演化成为交通领域和力学领域的热点问题。沥青混凝土路面结构的损伤演化是伴随路面开裂过程发生的,沥青混凝土为粘弹性体,研究沥青混凝土路面的损伤演化必须考虑沥青混凝土的粘弹性行为。本文研究沥青混凝土路面的粘弹性损伤演化过程和发生机理,通过添加土工合成材料加铺层和采取纤维增强等措施达到沥青混凝土路面防裂控制的目的。本文研究的主要内容有以下几方面:
     1、沥青混凝土的粘弹性损伤模型的创建。根据粘弹性模型理论和时温等效原理,建立由6个Maxwell模型并联的广义Maxwell模型模拟沥青混凝土的粘弹性行为。应用Sidoroff损伤模型和断裂力学耦合分析方法,经理论推导得到单向拉伸的斜裂纹损伤区与断裂区的边界方程,进而确定了斜裂纹初始损伤区和断裂区的径向尺寸。提出裂尖断裂区内径向应变能的概念,基于此概念建立了裂尖断裂区内最小径向应变能判据(CMRSE),由CMRSE确定斜裂纹在断裂区边界上的开裂角和不同裂纹倾角起裂点的坐标。起裂点坐标的确定,为后面数值模拟裂缝扩展过程的有限元网格局部加密提供理论支持。在上述分析的基础上,提出沥青混凝土粘弹性损伤分析方法。
     2、含裂缝沥青混凝土路面力学模型的建立。建立沥青混凝土路面的表面裂缝模型和反射裂缝模型;在分析的基础上确定模型尺寸和有限单元类型。根据已经确定的起裂点坐标进行单元的局部加密。将有限单元网格划分为三种疏密不同的区域来模拟初始损伤区和断裂区。最密区模拟裂缝区域,次密区模拟损伤区,稀疏区模拟粘弹性区域。沥青混凝土路面的损伤断裂演化通过损伤区和断裂区的变化来模拟。
     3、含裂缝沥青混凝土路面粘弹性损伤演化数值模拟。对温度作用下含表面裂缝沥青混凝土路面的松弛特性和行车载荷作用下含反射裂缝沥青混凝土路面松弛特性进行了数值模拟;对含裂缝沥青混凝土路面进行了粘弹性损伤演化分析,其中包含初始裂缝深度、温度和时间对应力、平均损伤因子、损伤区半径、断裂区半径的影响。研究表明,应力松弛和损伤耦合的结果是损伤演化仍然发生,即含裂缝沥青混凝土路面继续劣化,并且温度越低,劣化越严重;随时间的延长,由于应力松弛的作用,损伤演化趋于稳定。
     4、土工合成材料加铺层的抗裂性能研究。应用数值计算和试验的方法研究在行车载荷作用下土工合成材料加铺层对含反射裂缝沥青混凝土路面的抗裂效果。分析了温度、时间和加铺层弹性模量对面层层底拉应力和裂缝延长线上各点正应力的影响。对土工合成材料加铺层的弹性模量进行了优化设计。
     5、纤维增强沥青混凝土路面粘弹性损伤分析。通过复合材料力学分析和实验研究,提出纤维的合理掺量为质量含量0.2%,有限元分析表明,纤维增强沥青混凝土路面的抗损伤疲劳寿命提高了34.13%;对含裂缝纤维增强沥青混凝土路面进行了松弛与损伤的耦合分析。分析了纤维含量对平均损伤因子、损伤区半径、断裂区半径的影响,对纤维增强沥青混凝土路面的抗裂性能的粘弹性损伤分析结果表明,纤维增强沥青混凝土路面的松弛损伤因子比无纤维减少了8.38%,纤维增强沥青混凝土路面的损伤区半径和断裂区半径分别减小了66.34%和64.16%。
     通过上述研究,论文成果渴望在理论研究、实践过程中为工程应用带来较好的经济效益、社会效益,为北方高等级公路路面设计和维修提供有效的参考指导。
Currently, the length of the national superhighway is totally 50,000 kilometers, resides the second in the world. The bituminous concrete road has 75% of the highway. But the pavement cracks have been key problem that perplexed the construction and protect of highway. Therefore, the damage evolution of asphalt congcrete (AC) pavement becomes a hot problem in the fields of communication and mechanics. The damage evolution of AC pavement keeps company with propagation of the cracks in the pavement. And AC is viscoelastic. Thus, it is necessary to consider the viscoelastic behavior of the AC in the research on the AC pavement. In this paper, the process and mechanism of the damage and evolution of the AC pavement are researched. Through adding the geosynthetics overlay and applying the fiber-reinforced measures to arrive the aim of retarding the development of cracks in the pavement. The main contents researched in the paper are shown as following.
     1. Establishment of viscoelastic and damage model of AC. From viscoelasticity theory and time-temperature equivalent principle, the generalized Maxwell model is established by paralleling 6 Maxwell model to simulating the viscoelastic damage behavior. Applying the coupling analysis of Sidoroff's damage model and fracture mechanics, the boundary equations of damage and fracture zones obtain was obtained for one inclined crack under axial tension and the radial sizes of the initial damage and fracture zones for the inclined crack are determined. The concept of the radius strain energy within crack-tip fracture zone was put forward. On the base of this concept, the Criterion of Minimum Radial Strain Energy (CMRSE) within crack-tip fracture zone was proposed. The cracking angle in the crack-tip fracture zone and the coordinates of cracking points were determined, which will theoretically provide the support for refinement of finite elements in the vicinity of crack-tip to simulate the crack propagation.
     2. Establishment of mechanical model of AC pavement with cracks. The models of surface-crack and reflective-crack in the AC pavement were set up. The elements are locally refined according to the coordinates of cracking points determined. The size of the models and element category used in finite element analysis were determined. The meshes were divided into three different zones to simulate the initial damage zone and fracture zone. The refinest, refiner and sparse zones are corresponding to crack-tip, damage and viscoelastic zones, respectively.
     3. Numerical simulation of AC pavement with cracks based on viscoelastic damage evolution. Relax properties for AC with surface cracks under temperature load and with reflective-cracks under vehicle load are simulated, respectively. Analysis of damage and evolution of AC pavement with cracks is conducted such as the effects of initial crack length, temperature and time to stress level and average damage factor and the radius of damage zone and the radius of fracture zone。The results of the couple analysis of stress relax and damage show that damage evolution takes place continuously. This means that the AC pavement degraded constantly, and the lower the temperature, the seiouser the degradation. The damage evolution is trend to stable with increasing of relax time.
     4. Research on properties of geosynthetics overlay retarding the propagation of crack. The effectiveness of the geosynthetics overlay retarding the propagation of reflective cracks in AC is studied numerically under vehicle load. The effects of temperature, time and elastic modulus of the geosynthetics overlay to tensile stress at the bottom layer and normal stresses on the line of extensional crack-tip is analyzed. The results show that the elastic modulus of the optimum geosynthetics overlay is 1000MPa.
     5. Viscoelastic damage analysis of fiber-reinforced AC pavement. On the basis of composite theory and experimental researching, it was found that the optimum content of the fiber is 0.2% by mass. From finite element analysis, it was shown that the fatigue life of the fiber-reinforced pavement increases by 34.13%.
     The coupling analysis of relaxation-damage of fiber-reinforced AC pavement is performed, and the effects of fiber content is analyzed to average damage factor, the radius of damage zone and fracture zone. The results obtained from the coupling analysis show that the relaxation factor of fiber-reinforced AC pavement is reduced by 8.38% in comparison with the AC pavement, and the radius of damage zone for fiber-reinforced AC pavement are reduced by 66.34% and 64.16%, respectively.
引文
1.余寿文.断裂损伤与细观力学[J],力学与实践,1988,10(6):12-18.
    2.余寿文,冯西桥.损伤力学[M],北京:清华大学出版社,1997.
    3.余天庆,田济成.损伤理论及其应用[M],北京:国防工业出版社,1991,14-16.
    4.杨挺青.材料与结构蠕变研究近况[J],力学进展,2000,3:476-478.
    5. Yu S W and Feng X Q. Several problems of damage and fracture mechanics [J], Acta Mech, Solida Sinica,1995,8:270-276.
    6.郭少华.混凝土破坏理论研究进展[J],力学进展,1993,23(4):520-529.
    7.叶志明.混凝土材料裂纹尖端尺寸特性[J],应用数学与力学,1998,1:35-41.
    8.李庆斌,王光纶,张楚汉,张伟.混凝土Ⅲ型裂纹动静力损伤断裂分析[J],工程力学,1995,12(3):1-6.
    9.吕培印,李庆斌,张立翔.混凝土拉-压疲劳损伤模型及其验证[J],工程力学,2004,21(3):59-63.
    10.邓宗才,聂雪强,郑俊杰.混凝土裂纹在拉应变下的损伤与断裂分析[J],华中理工大学学报,1999,27(2):49-51.
    11.刘宁,姚学锋,陈俊达,林碧森,金观昌.编织复合材料的冲击损伤与断裂行为研究[J],实验力学,2002,17(2):38-52.
    12.陈重喜,汪树玉,杨廷毅.混凝土的断裂损伤模型[J],水利学报,1996,9:2-78.
    13.赵吉坤,吴吴,姚朋士.混凝土单轴荷载下细观损伤破坏的数值模拟张子明[J],河海大学学报(自然科学版),2005,33(4):25-29.
    14. Si, Zhi ming, Little, K.N. lytton, R.L..Characterization of micro damage and healing of AC mixtures [J], Journal of Materials in Civil Engineering,2007,14(6):461-470.
    15. Chehab, Ghassan R., Kim, Y. Richard. Time-temperature superposition principle for AC with growing damage in tension state, Asphalt Paving Technology[C], Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions,2007, v71:559-593.
    16. Daniel,Jo Sias, Bisirri, Willian, Kim, Y. Richard. Fatigue evaluation of asphalt mixtures using dissipated energy and viscoelastic continuum damage approaches[C], Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions,2004,v73:557-583.
    17. Lundstrom, Robert, Isacaaon, Ulf, Characteization of AC Deterioration Using Monotonic and Cyclic Tests [J], International Uournal of Pavement Engineering,2003,4(3):142-153.
    18.郑健龙,应荣华,张起森.沥青混合料热粘弹性断裂参数研究[J],中国公路学报,1996,3:20-24.
    19. H.-H.Dai and G.Wu. On Thermal Stress in Bituminous Pavement [J], Analytic Solution and Application, Journal of applied mechanics,1999, (66):714-719.
    20.关宏信.沥青混合料粘弹性疲劳损伤模型研究[D],中南大学,2005.
    21.邵腊庚,周晓青,李宇峙,应荣华.基于直接拉伸试验的沥青混合料粘弹性损伤持性研究[J],土木工程学报,2005,38(4):125-128.
    22. Thomlinson, J. Temperature Variations and Consequent Stresses Produced by Daily and Seasonal Temperature Cycles in Concrete Slabs[J], Concrete and Constructional Engineering,1940,3(7):95-99.
    23. Rigo JM. reflective cracking in pavementsand future prospects [C], in:RILEM. Proceedings of the second International EILEM Conference. Liege:RiLEM,1993:268-311.
    24. Hong Guodong, Zhu Zhaohong. Reliability analysis of China's highway concrete pavement design procedure[C], Proceedings,4th international conference on Concrete Pavement Design and Rehavitation, 1989.
    25. K. Majdzadeh, D.v. Ramsamooj. Reflection. Cracking [J], Analysis, Laboratory Studies and Design Considerations,1980,49:286-313.
    26. B Birgisson, B Sangpetngam, R Roque. Prediction of the Viscoelastic Response and Crack Growth in Asphalt Mixtures using the Boundary Element Method [C], In 81st Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C.,2002.
    27. Myers L A, R Roque, B Birgisson. Propagation Mechanisms for Surface Initiated Longitudinal Wheel Path Cracks [C]. In 80th Annual Meeting (CD-ROM), TRB, National Research Council, Washington, D.C., 2001, Paper No.01-0433.
    28. M A Castell, A R Ingraffea, L H Irwin. Fatigue Crack Growth in Pavements [J], Journal of Transportation Engineering, ASCE,2000,126(4):283-290.
    29.吴赣昌,凌天清.半刚性基层温缩裂缝的扩展机理分析[J],中国公路学报,1998,11(1):21-28.
    30.吴赣昌.层状路面结构温度应力分析[J],中国公路学报,1993,6(4):1-8.
    31.吴赣昌,张淦生.沥青路面温缩裂缝的应力强度分析[J],中国公路学报,1996,9(1):37-44.
    32.罗辉.沥青路面粘弹性响应分析及裂纹扩展研究[D],华中科技大学,2007.
    33.张肖宁,王哲人,王端宜.计算沥青路面低温缩裂的能量判据及应用[J],中国公路学报,1990,3(3):11-17.
    34.张肖宁,韩传岱,朱希岭.沥青混合料低温抗裂性能评价方法的研究[J],中国公路学报,1993,6(1):3-9.
    35.刘益河,张起森,李志勇.沥青路面温度应力的光弹性研究[J],中国公路学报,1991,1294(4):20-28.
    36.张起森,郑键龙,刘益河.半刚性基层沥青路面的开裂机理[J],土木工程学报,1992,25(2):13-21.
    37.周志刚,李宇峙.气温和交通荷载对低温缩裂的影响[J],长沙交通学院学报,1996,12(1):34-39.
    38.周志刚,张起森.结构层组合对路面裂缝扩展的影响[J],中国公路学报,1997,10(2):5-10.
    39.罗睿,黄晓明,陆原,张望.基层对层间连续路面应力强度因子影响的研究[J],东南大学学报,2001,31(3):61-64.
    40.罗睿,黄晓明.沥青路面表面裂缝应力强度因子计算方法研究[J],公路交通科技,2002,19(1):12-15.
    41.李艳春,蒋志仁.弹簧单元模型用于分析土工格栅受力特性[J],中国公路学报,1996,4.
    42. Austin R A, Gilchrist A J T. Enhanced. Performance of asphalt pavements using composite [J], Geotextiles and Geomembranes,1996,14, (March/April).
    43. Vanelstraete A FranckenL. Prevention of Reflective Cracking in Pavements [C], RILEM Report 18, 1997.
    44.周志刚,张起森,郑健龙.加筋材料阻止沥青路面反射裂缝的侨联增韧的有限元分析[J],土木工科学报,2002,2.
    45.韩冰.土工格栅在公路路面改建工程中的应用研究[D].长安大学硕士学位论文,2005.
    46.孔令云,周进川,李红岩.铺设土工合成材料的沥青混合料力学特性评价[J],石油沥青,2004,6.
    47. Thomas C Kinney, Danielle Kleinhans Stone, John Schuler. Using Geogrids for Base Reinforcement as Measured by Falling Weight Deflectmeter in Full-Scale Laboratory Study TRR,1998(1611):70-77.
    48. Halim AOAE, Razaqpur A. Minimiaztion of reflection cracking through the use of geogrid and better compaction. [C], Proceeding of 2nd International RILEM Conference on Reflection Cracking in pavements, 1993,299-306.
    49.汪建峰,于钊.土工格栅加筋对沥青路面影响的数值分析[J],建筑技术开发,2005,8.
    50. Jeng Y S, Liu P. Performance Evaluation of Fiber Reinforced AC [C], Sponsor:Federal Highway Administration, Columbus, OH. Ohio Div. Ohio Dept. of Transportation, Columbus. Mar,1994.
    51. Shiou-San Kuo, Jamshid M. Armaghani, Dave Scherling. Accelerated Pavement Performance Testing of Ultra-Thin Fiber Reinforced Concrete Overlay [J], Recycled Concrete Aggregate, and Patching Materials.2002,1.
    52. Toner C A. Fiber Reinforced AC Pavements [C], City of Tacoma Sponsor:Federal Highway Administration, Olympia, WA. Washington Div. Washington State Dept of Transportation, Olympia Oct, 1987,28.
    53.李炜光,张争奇,登良等.纤维加强沥青路面的研究[J],西安公路交通大学学报,1998,18(3B):235-238.
    54.张争奇,胡长顺.纤维加强沥青混凝土几个问题的研究和探讨[J],西安公路交通大学学报,2001,21(1):29-32.
    55.赵海滨,杨军.聚丙烯改善沥青混合料性能的研究[J],山西建筑,2004,30(21):102-102.
    56.陈华鑫,张争奇,胡长顺.纤维沥青混合料的低温抗裂性能[J],华南理工大学学报(自然科学版),2004,32(4):82-86.
    57.杨挺青等.粘弹性理论与应用[M],北京:科学出版社,2004,35-46.
    58. Jie Li. Viscoelasticity and Viscoplasticity of a Class of Composite Materials [D], dissertation for the degree of Doctor of Philosophy,1995.
    59. Lemaitre J. Engng Fracture Mech.,1989,25,5/6:227-236.
    60. Hillerborg A, Modeer M, Petersson P E. Cement and Concrete Res,1976,6:772-782.
    61.周志刚.交通载荷作用下沥青类路面的疲劳开裂[D],中南大学,2003.
    62.钱国平,郭忠印,郑健龙等.环境条件下沥青路面热粘弹性温度应力计算[J],同济大学学报(自然科学版),2003,3](2):150-155.
    63. Narayanaswamy, O. S. A Model of Structural Relaxation in Glass [J], Journal of the American Ceramic Society,1971,54(10):491-498.
    64. B. R. K. BLACKMAN, H. HADAVINIA, A.J. KINLOCH and J.G. WILLIAMS. The use of a cohesive zone model to study the fracture of fiber composites and adhesively-bonded joints [J], International Journal of Fracture,2003,119(4):25-46.
    65. Kong X M, Schluter N and Dahl W. Effect of triaxial stress on mixed mode fracture [J], Engineering Fracture Mechanics.1995,52(2):379-388.
    66. Chang S H, Lee C I, Seokwon Jeon. Measurement of rock fracture toughness under Model Ⅰ and Ⅱ and mixed-mode conditions by using disc-type specimens [J], Engineering Geology,2002,66(2):79-97.
    67. Carmeliet, H. Hens. "Probabilistic nonlocal damage model for continua with random field properties", Journaal of Engineering Mechanics,1994,120(10).
    68.王金昌.半刚性基层沥青路面损伤分析[D],沈阳建筑工程学院,2000.
    69. Sidoroff F.D. Description of anisotropic damage application to elasticity [C]. Proceeding of IUTAM Colloquium on Physical Nonlinearities in Structure Analysis, Berlin:Springer-Verlag,1981:237-244.
    70.尹双增.断裂·损伤理论及应用[M],北京:清华大学出版社,1992.
    71.徐世娘,赵国藩.混凝土结构裂缝扩展的双k准则[J],土木工程学报,1992,25(2):21-28.
    72. Horri H, Nemat N S. Brittle failure in splitting[J], faulting and brittle-ductile transition, Phil. Trans. R. Soc. Lon,1986, A319:337-374.
    73. Nemat N S, Horri H. Compression induced nonplanar crack extention with application to splitting, explotion and rock burst [J], J.Geophys. Res.,1982, B87:6805-6821.
    74. Bobet A, Einstein H H. Fracture coalescence in rock type materials under uniaxial and biaxial compression [J], Int J Rock Mech Min Sci and Geomech Abstract,1998,35(7):862-889.
    75.公路沥青路面设计规范[M],北京:人民交通出版社,2006.
    76.黄仰贤著,余定选,齐诚译.路面分析与设计[M],北京:人民交通出版社,1994.
    77.吴赣昌,半刚性路面的温度应力分析[M],北京:科学出版社,1995
    78.沙庆林.高等级公路半刚性基层沥青路面[M],北京:人民交通出版社,1998.
    79.公路沥青路面设计规范,中华人民共和国行业标准,1997.
    80.郑健龙,张起森.半刚性基层沥青路面表面裂缝的热效应分析[J],长沙交通学院学报,1992,8(2):1-11.
    81.周志刚.平面界面裂纹尖端场的奇异性[J],长沙交通学院学报,1993,9(3):67-75.
    82.吴赣昌.层状路面结构温度应力分析[J],中国公路学报,1993,6(4):1-8.
    83.杨庆生、杨卫,断裂过程的有限元模拟[J],计算力学学报,1997,14(4):407-412
    84.吴赣昌,张淦生.沥青路面温缩的应力强度分析[J],中国公路学报,1996,1(3):37-44.
    85.吴赣昌,凌天清.半刚性基层温缩裂缝的扩展机理分析[J],中国公路学报,1998,11(1).
    86.彭妙娟,张登良,夏永旭.半刚性基层沥青路面的断裂力学计算方法及其应用[J],中国公路学报,1998,11(2):30-38.
    87.周志刚,李宇峙.气温和交通荷载对低温缩裂的影响[J],长沙交通学院,1996,12(1):34-40.
    88.张晓冰.玻璃纤维格栅在沥青罩面中的应用,国外公路,1997,(2):46-49.
    89. Murakami S,Kawai M and Rong H.Finite element analysis of creep crack growth by a local approach[J], Int. J. Mech. Sci,1988,30:491-502.
    90.郑健龙,应荣华,张起森.沥青混合料热粘弹性断裂参数研究[J],中国公路学报,1996,3,20-28.
    91.凌天青,王十杰,许志鸿.考虑材料非线性性能的沥青路面位移与应力分析[J],中国公路学报,1999,1:1-6.
    92.费月英.土工合成材料在公路工程中的应用研究[D],兰州交通大学硕十学位论文,2007.
    93.张肖宁,邹桂莲,贺志勇.沥青混合料抵抗反射裂缝能力的评价方法研究[J],华南理工大学学报自然科学版,2001,29(7):88-91.
    94.邹棒莲,张肖宁,王绍怀.应用冲击韧性评价沥青混合料抵抗反射裂缝能力的研究公路[J],2004,10:119-122.
    95.张肖宁,邹桂莲,王绍怀.旧混凝土路面上沥青加铺层的抗反射裂缝能力[J],华南理工大学学报自然科学版2001,29(8):82-85.
    96. G.P.Tandon and G.J.Weng. Average stress in the matrix and effective moduli of randomly oriented composites [J], Composite Sci.Tech.27,111-132,1986.
    97. Y.H.Zhao, G.P.Tandon and G.J.Weng. Elastic moduli for a class of porous materials [J], Acta Mechanica 1989,76:105-130.
    98.林绣贤.路面材料劈裂模量简化公式的建议[J],东北公路,1991,6:34-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700