用户名: 密码: 验证码:
苔藓在大气重金属污染生物监测中的应用及对铜胁迫的反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苔藓植物分布广泛,种类繁多,能够从干湿沉降中积累大量的重金属,被广泛用于大气重金属污染的生物监测。国内利用苔藓植物监测大气重金属污染已有研究,但多在小范围内采样、分析苔藓重金属含量,而对不同地区的苔藓重金属含量缺乏比较研究。此外,综观国内外现有文献,与苔藓植物的生物监测相比,关于苔藓植物对重金属胁迫下的一系列生理生化反应、形态变化的研究较少,其中有关苔藓植物中重金属诱导的氧化胁迫和抗氧化机理更是不清楚。本文通过对不同地区、不同苔藓植物的重金属含量进行比较,探索适合我国东南地区大气重金属污染生物监测的苔藓种类,并利用苔藓移植法对南京市区的空气重金属污染生物监测作一初步探索。同时,利用室内培养方法,研究了苔藓植物对重金属铜胁迫的一系列生理生化反应和形态变化,探讨苔藓植物对Cu胁迫的适应和解毒机理,尤其是铜诱导的过氧化氢积累途径和细胞抗氧化机理,以期为苔藓植物的监测工作提供更完整详实的理论基础。
     比较了我国6个地区苔藓植物重金属含量。结果显示,苔藓植物的重金属含量不仅在污染区和非污染区之间的差异非常明显,而且不同地区之间的差异也非常明显。南京紫金山苔藓植物重金属Cu、Pb、Zn、Cd含量高于安徽黄山苔藓的重金属含量。而在同一地区,多形灰藓、斜枝青藓和细叶小羽藓等苔藓种类对重金属污染物的吸附能力都较强,而桧叶白发藓对重金属的反应不敏感。
     分析了南京市9个样点尖叶走灯藓体内重金属含量,聚类分析结果显示这9个样点可以分为三组:严重污染点、相对污染严重点和相对清洁点。分析结果还显示尖叶走灯藓受土壤基质影响较小。本文选择尖叶走灯藓和斜枝青藓2种苔藓植物为材料,利用苔藓移植法对南京市三个监测点进行了空气污染监测,结果表明苔藓植物体内重金属含量与人类活动关系密切。
     在室内培养实验中,以三种不同的苔藓植物尖叶走灯藓(P. cuspidatum)、斜枝青藓(B. campylothallum)和多形灰藓(H. plumaeforme)为材料,研究了苔藓植物对铜的积累和分布。多形灰藓比尖叶走灯藓积累更多的铜,且大部分铜积累在细胞外和细胞壁上。两种生长环境中的多形灰藓在相同溶液处理下积累有相同含量的铜,但铜矿区比非铜矿区多形灰藓在细胞外积累较高的铜。
     此外,我们还研究了不同浓度Cu处理下苔藓植物一些生理生化反应及细胞形态变化。实验结果显示:’随着’Cu-处理浓度的增加,苔藓植物叶绿素a和叶绿素总含量下降,而叶绿素b含量没有显著变化;细胞膜受到明显伤害,表现为MDA含量和膜透性增加,脯氨酸含量也显著增加。过量铜引起苔藓植物细胞形态的变化,轻度伤害时细胞褐化,部分叶绿体降解;随着铜伤害程度的加深,细胞壁开始变厚,叶绿体变成多边形,且分布不均;严重伤害时大部分细胞受伤害,细胞壁严重增厚,叶绿体聚集成群块状,细胞质外泄:甚至细胞内出现部分空腔。重金属铜处理下苔藓植物的叶顶端和边缘细胞首先受到伤害,叶绿素降解失绿。
     50μM铜显著降低苔藓植物游离氨基酸含量。铜处理下,三种苔藓植物的GSSG和GSSG+GSH含量显著提高,但尖叶走灯藓和斜枝青藓的GSH下降而多形灰藓的GSH含量显著上升。铜处理对尖叶走灯藓和斜枝青藓的蛋白巯基、非蛋白巯基和总巯基含量都没有显著影响,但增加了多形灰藓的非蛋白巯基和总巯基含量。SephadexG-50层析结果显示,三种苔藓植物都出现两个紫外吸收峰,在第二个吸收峰才有铜的结合。结果表明,这三种陆生苔藓植物中可能没有PCs的合成,Cu胁迫下的适应机理与氨基酸没有直接关系,过量铜进入细胞后可能与巯基基团相结合形成Cu-SH复合物储存在液泡中。不同种类的苔藓植物对铜的适应机理存在明显差异,GSH可能在多形灰藓对铜的解毒和适应机制中起着重要作用。
     以尖叶走灯藓为实验材料,研究了Cu处理诱导的尖叶走灯藓氧化胁迫的时问效应。实验结果显示:50μM CuCl2溶液处理4h尖叶走灯藓H2O2含量显著升高,但MDA含量和细胞死亡率没有显著上升,细胞形态没有发生变化。铜处理下抗氧化酶CAT、SOD和POD的活性在4-8 h显著上升;由于APX和POD活性的升高,清除了部分H2O2,导致尖叶走灯藓H2O2含量在12h时显著下降。随着铜处理时间的延长,尖叶走灯藓细胞质膜完整性降低,MDA以及H2O2含量也逐渐升高,苔藓植物的细胞受到伤害,形态发生变化,细胞死亡增加。
     利用组织化学和细胞化学的方法研究了铜胁迫下尖叶走灯藓叶片中H2O2积累的部位及可能的来源。过量铜引起尖叶走灯藓体中MDA和H2O2含量的显著升高,使SOD和POD的活性也显著上升。SOD同工酶实验表明尖叶走灯藓植物体中存在三种SOD酶(Mn-SOD, Fe-SOD和CuZn-SOD),而SOD酶活性的增加主要是CuZn-SOD酶活性的增加。用细胞化学方法证明尖叶走灯藓叶细胞中H2O2积累主要发生在细胞质膜和细胞壁上,而O2·-的积累则主要发生在叶绿体及其周围的细胞质中。抑制剂DDC(CuZn-SOD抑制剂)、咪唑(NADPH氧化酶抑制剂)、NaN3(过氧化物酶抑制剂)和Tiron(O2·-清除剂)处理发现细胞壁上H2O2可能部分来自于NADPH氧化酶,NADPH氧化酶利用细胞质中的NADPH产生O2·-,随后O2·-很快的被SOD歧化为H2O2,后释放到质外体。
Mosses can accumulate large quantities of heavy metals from dry and wet deposition. This has popularized their use in the biomonitoring of heavy metals. Human economic activities result in a progressive build-up of Cu in the environment. Cu is a ubiquitous metal present in the environment and is the most common contaminant of industrial effluents such as those produced by mining and metal processing. Mosses can be used as a model for physiological responses of plants to elevated concentrations of heavy metals. In this study, we choose appropriate moss species to biomonitor the atmospheric trace metal deposition in Nanjing on the base of the investigation six sites of China. Furthermore, copper accumulation and distribution, copper toxicity to moss species were also studied using solution treatments in the laboratory.
     At first, we investigated the atmospheric trace metal deposition of six sites of China using several mosses species. The results showed that the concentration of heavy metal in the bryophytes had obviously difference among different sites and species. The copper concentration was much higher in Tongling (reached 100.5 mg kg-1) than that of Huangshan (12.24 mg kg-1). The adsorption abilities to heavy metal of H. microphyllum, B. campylothallum and H. plumaeforme were much higher than that of L.juniperoideum. In addition, the relationship of different mosses at same site reached above 0.73 except L.juniperoideum. The atmospheric trace metal deposition was much higher as compared to European countries.
     On the base of the research mentioned above, the atmospheric trace metal deposition in Nanjing was been indicated using the mosses P. cuspidatum and B. campylothallum. The concentrations of Cu, Cd, Pb and Zn in the mosses collected in Mt. Zijin were much higher than that in the Mt. Huangshan. L.juniperoideum was not suitable to monitor the atmospheric trace metal deposition. We measured the Cu, Pb, Cd and Zn contents in P. cuspidatum and corresponding soils at monitoring sites of Nanjing City, and analyzed the relationships between plant heavy metals contents and environment. The results indicated that these 9 monitoring sites could be divided into three groups of different degree Heavy metals pollution, i. e., seriously polluted, polluted and basically unpolluted. The heavy metals contents in P. cuspidatum plants had some correlations with corresponding soils, and there were some other factors besides soil affecting the heavy metals contents in P. cuspidatum. It was suggested that bryophytes as biological indicators could be used to indicate the heavy metals pollution in Nanjing City.
     Moreover, copper accumulation and distribution in different moss species were studied at copper solutions supply. As the copper concentrations increasing, the content of Cu in different moss species increased significantly, and most of Cu was accumulated in the cell walls. The concentration of Cu in H. plumaeforme was significantly higher than that of P. cuspidatum. H. plumaeforme collected from different sites contained the same concentration of Cu, but H. plumaeforme collected from copper mine could accumulation more extracellular Cu to reduce the damage to the plants.
     Responses of three terrestrial moss species, P. cuspidatum、B. campylothallum and H. plumaeforme, were studied in order to characterize the physiological background of the metal response. In addition, copper adaption and detoxicity mechanisms of three terrestrial moss species were investigated under solution supplied with different concentrations (0,5, 10,50μM) of Cu for 4 d. It was found that 50μM Cu supply for 4 d significantly decreased the chlorophyll a content, but had no significant effect on chlorophyll b content. Cu-treated moss material showed pronounced toxic symptoms at concentrations and time extension, the apex, the leaf blade cells accumulated more Cu ions than the middle cells and the adjacent cells, which result to more serous damages than the middle cells. The leaf cells of bryophytes were damaged, such as chloroplasts browned and forming polygon, contracted or breached, cell wall thickened and darkened, and somewhat chloroplasts congealed to massive groups, protoplasts of cell disintegrated, and total loss of green color in cells, as shown by analytical electron microscopy. Moreover, Cu at 50μM significantly decreased the free amino acid contents of mosses. The contents of GSSG and GSSG+GSH were significantly increased in all three moss species. In addition, the concentrations of reduced glutathione (GSH) in P. cuspidatum and B. campylothallum were significantly increased but that of H. plumaeforme were decreased.50μM Cu increased the non-protein thiols (NPT) and total thiols contents of H. plumaeforme. Two UV-absorbing peaks could be eluted out through gel filtration chromatography on Sephadex G-50. A large amount of Cu was detected in the UV-absorbing peaks in 95-125 ml elution fractions of the moss plant extract. The results suggested that the adaptive Cu detoxification mechanism in three moss species might not involve in the free amino acid, the non-protein thiols (NPT) might have part role with no evidence for the participation of phytochelatins. These results also indicate that GSH may play an essential role in heavy metal detoxification of H. plumaeforme but not P. cuspidatum and B. campylothallum.
     Time-course of Cu-induced oxidative stress in P. cuspidatum was studied in this paper. The accumulation of H2O2 in leaves of P. cuspidatum was observed with Cu treatment time extension. Our results showed that Cu induced production of H2O2 at 4 h did not cause membrane damage and cell death, because the increased APX and POD activity could be attributed to remove a part of H2O2. As time extension, Cu toxicity resulted in more H2O2 which in turn caused membrane damage and cell death.
     Using both histochemical and cytochemical methods, we investigated the effects of excess copper (Cu) on the production of hydrogen peroxide (H2O2) and superoxide anion (O2·-) in the leaves of the moss P. cuspidatum. Excess Cu significantly increased the contents of total thiobarbituric acid-reactive substances (TB ARS) and H2O2, as well as the activity of guaiacol peroxidase (GPOD) and superoxide dismutase (SOD). Native PAGE detected all three forms of SOD (Mn-SOD, Fe-SOD and CuZn-SOD) in P. cuspidatum, and the increase in the total SOD activity appeared to be mainly caused by an increase in CuZn-SOD activity. According to cytochemical results, H2O2-dependent CeCl3 precipitates were primarily localized in the plasma membranes and cell walls, and O2·- was chiefly localized on the inner side of the plasma membrane and in the cytoplasm surrounding the chloroplasts. Experiments using imidazole as an inhibitor of NADPH oxidase, N-N-diethyldithiocarbamate as an inhibitor of CuZn-SOD, and 1,2-dihydroxybenzene-3,5-disulphonic acid as an O2·- scavenger indicated that a partial source of H2O2 in the cell walls may be NADPH oxidase. NADPH oxidase can use cytosolic NADPH to produce O2·-, which quickly dismutates to H2O2 via SOD. These results also demonstrated that peroxidase (POD) is involved in the detoxification of H2O2. Increased POD activity induced by Cu may remove excess H2O2 caused by Cu and may thus serve a detoxifying role.
引文
1. 安丽,曹同,俞鹰浩.上海市小羽藓属植物的重金属含量及其与环境的关系[J].应用生态学报,2006a,17(8):1490-1494
    2. 安丽,曹同,俞鹰浩.苔藓植物与环境重金属污染监测.生态学杂志,2006b,25(2):201-206
    3. 曹同,陆勇,吴玉环,谢维.苔藓植物对鞍山市环境污染生物指示的研究.应用生态学报,1998,9(6):635-639
    4. 陈洋尔,王丽,翁周. ICP-AES和AAS法在苔藓植物重金属含量测定中的应用.四川大学学报,2007,44(1):195-198
    5. 崔明昆.附生苔藓植物对城市大气环境的生态监测[J].云南师范大学学报,2001,21(3):54-57
    6. 杜庆民,郑学海,蔡海洋,等.用苔袋监测大气污染颗粒及其它污染物的方法研究[J].生态学杂志,1989,8(1):56-60
    7. 方炎明,魏勇,张晓平,等.2000.苔藓生物监测大气重金属污染研究进展[J].南京林业大学学报,24(5):64-68.
    8. 高谦,曹同.苔藓植物对西南部分地区大气污染(包括酸雨)的指示意义的初步研究.应用生态学报,1992,3(1):81-90
    9. 郭水良,黄朝表,边媛,林国平.金华市郊杂草对土壤重金属元素的吸收与富集作用(Ⅰ)-6种重金属元素在杂草和土壤中的含量分析.上海交通大学学报(农业科学版),2002,20(1):22-29
    10.何锦林,谭红,赵亚民,等.贵州梵净山自然保护区大气汞的沉降[J].环境科学学报,1999,19(2):164-169
    11.黄朝表,郭水良,李海斌.浙江金华市郊苔藓植物体内重金属离子含量测定与分析[J].上海交通大学学报(农业科学版),2004,22(3):231-236
    12.黄士良,王晓蕊,赵建成,等.苔藓植物对石家庄市区大气污染的指示作用研究.河北师范大学学报,2004,28(6):615-620
    13.黄玉山,邱国华.紫羊茅根中铜结合肽的分离和纯化.应用与环境生物学报,1998,4(4):335-339
    14.金岚.环境生态学[M].北京:高等教育出版社,1992,1-264
    15.李登科,高彩华.上海地区苔藓植物区系的初步研究[J].考察与研究,1981,1:135-148
    16.李合生.植物生理生化实验原理合技术[A].北京:高等教育出版社,2000,192-194
    17.李坤,李琳,侯和胜.Cu2+、Cd2+、Zn2+对两种单胞藻的毒害作用.应用与环境生物学,2002,8(4):395-398
    18.李小梅,赵俊琳,孙立广.南极地区苔藓植物的地球化学元素营养富集特征[J].应用生态学报,2001,12(4):514-516
    19.李振国.植物细胞质膜透性的测定[A].见:中国科学院上海植物生理研究所,上海植物生理学会编,现代植物生理学实验指南[C].北京:科学出版社,1999,302-303
    20.刘家尧,孙淑斌,衣艳君.苔藓植物对大气污染的指示监测作用[J].曲阜师范大学学报,1997,23(1):92-96
    21.刘艳,曹同,王剑.杭州市苔藓植物区系初报.上海师范大学学报,2007,36(2):82-89
    22.马成仓,洪法水.汞对小麦种子萌发和幼苗生长作用机制初探.植物生态学报,1998,22(4):373-378
    23.梅娟,张银龙,方炎明.苔袋法监测大气重金属和S02污染[J].苏州科技学院学报,2003,2:137-140
    24.闵运江.六安市区常见树附生苔藓植物及其对大气污染的指示作用研究[J].城市环境与城市生态,1997,10(4):31-33
    25.邵晶,张朝晖,柴之芳等.苔藓对大气沉降重金属元素富集作用的研究[J].核化学与放射化学,2002,24(1):6-10
    26.沈显生,孙立广,尹雪斌,张莉.南极乔治王岛六种苔藓植物的X荧光分析.极地研究,2001,13(1):50-56
    27.史瑞和,鲍士旦.土壤农化分析.北京:农业环境出版社,1980
    28.汪庆,贺善安,吴鹏程.苔藓植物的多样性研究.生物多样性,1999,7(4):332-337
    29.王敏,曹同,俞鹰浩,陈越.苔藓与种子植物对不同化学元素富集能力的比较.上海师范大学学报,2007,36(5):67-73
    30.王忠.植物生理学.第一版.北京:中国农业出版社,2000
    31.魏海英,方炎明.苔藓植物与环境重金属污染监测研究进展.南京林业大学学报(自然科学版),2004,28(5):77-81
    32.魏海英,方炎明,尹增芳,2003. Pb、Cd单一及复合污染对弯叶灰藓某些生理特性的影响[J].广西植物,23(1):69-72.
    33.吴虹玥,包维楷,王安,等.微波消解、ICP-AES法测定苔藓植物中化学元素[J].中国环境科学,2004,24(5):565-567
    34.吴虹玥,包维楷,王安.苔藓植物的化学元素含量及其特点[J].生态学杂志,2005,24(1):58-64
    35.吴鹏程,罗健馨.苔藓植物,大气污染的指示计.植物杂志,1981,4:27.
    36.吴鹏程,罗健馨.苔藓植物与大气污染[J].环境科学,1979,3:68-72
    37.吴鹏程.苔藓植物生物学[M].北京:科学出版社,1998:1-327
    38.吴玉环,程国栋,高谦.苔藓植物的生态功能及在植被恢复与重建中的作用[J].中国沙漠,2003,23(3):215-220
    39.吴玉环,高谦,程国栋,等.苔藓植物对全球变化的响应及其生物指示意义[J].应用生态学报,2002,13(7):895-900
    40.吴玉环,黄国宏,高谦,等.苔藓植物对环境变化的响应及适应性研究进展[J].应用生态学报,2001,12(6):943-945
    41.谢维,曹同,韩桂春,等.苔藓植物对抚顺地区大气污染的指示作用研究[J].生态学杂志,1999,18(3):1-5
    42.张朝晖,Stan O.利用国产TM-陶瓷纤维马弗炉进行样品预处理附生苔藓对大气中重金属元素的生物富集中子活化法研究[J].现代科学仪器,2000,2:58-59
    43.张朝晖,邵晶,柴之芳,等.利用苔藓和地衣作为生物监测器对大气降尘中重金属污染物质的研究[J].核技术,2001,24(9):776-778.
    44.张金屯.数量生态学.北京:科学出版社,2004:1-242
    45.张宪政主编.作物生理研究法[M].北京:农业出版社,1990
    46.郑喜坤,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84
    47.周长芳,吴国荣,施国新,等.水花生抗氧化系统在抵御Cu2+胁迫中的作用[J].植物学报,2002,43(4):389-394
    48.朱瑞良,王幼芳,熊李虎.苔藓植物研究进展Ⅰ.我国苔藓植物研究现状与展望.西北植物学报,2002,22(2):444-451
    49.祝栋林,李时银,孙成.污染指示生物苔藓和蚂蚁中的重金属污染比较分析[J].农业环境科学学报,2003,22(2):154-158
    50. Aceto M., Abollino O., Cvonca R., et al.,2003. The use of mosses as environmental metal pollution indicators. Chemosphere,50:333-352
    51. Adalsteinsson S.,1994. Compensatory root growth in winter wheat:effects of copper exposure on root geometry and nutrient distribution [J]. J. Plant Nutr.,17 (9):1501-1512
    52. Adamo P., Crisafulli P., Giordano S., et al.,2007. Lichen and moss bags as monitoring devices in urban areas. Part Ⅱ:Trace element content in living and dead biomonitors and comparison with synthetic materials. Environ. Pollut.,146:392-399
    53. Adamo P., Giordano S., Vingiani S.,et al.,2003. Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy). Environ. Pollut.,122 (1):91-103
    54. Aebi H.,1984. Catalase in vitro. Method Enzymol,105:121-126
    55. Aksu Z., Donmez G.,2000. Combined effects of sucrose and copper (Ⅱ) ions on the growth and copper (Ⅱ) bioaccumulation properties of Candida sp. J. Chem. Technol. Biotechnol.,75:847-853
    56. Aktas H., Kami L., Chang D.C., et al.,2005. The suppression of salinity-associated oxygen radicals production, in pepper (Capsicum annuum) fruit, by manganese, zinc and calcium in relation to its sensitivity to blossom-end rot. Physiol Plant,123:67-74
    57. Allan A.C., Fluhr R.,1997. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell,9:1559-1572
    58. Alscher R.G.,Erturk N., Heath L.S.,2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plant. J. Exp Bot.,53:1331-1341
    59. Amblard-Gross G, Ferard J.F., Carrot F., et al.,2002. Biological fluxes conversion and SXRF experiment with a new active biomonitoring tool for atmosphere metals and trace element deposition. Environ. Pollut.,120:47-58
    60. Anand P., Isar J., Saran S., Saxena R.K.,2006. Bioaccumulation of copper by Trichoderma viride. Bioresource Technol.,97:1018-1025
    61. Anicic M., Tasic M., Frontasyeva M.V., Tomascvic M.V. M. et al.,2008. Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia. Environ Pollut. (In press)
    62. Arakawa N., Tsutsumi K., Sanceda N.G.,et al.,1981. A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-1,10-phenanthroline. Agric Biol Chem.,45(5): 1289-1290
    63. Asada K.,1999. The water-water cycle in chloroplasts:scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol.,50:601-639
    64. Barcelo J., Poschenrieder C.H.,1990. Plant water relationships as affected by heavy metals stress[J]. A review J. Plant Nutr.,13:1-371
    65. Bargagli R.,1995. The elemental composition of vegetation and the possible incidence of soil contamination of samples. Sci. Total Environ.,176:121-128
    66. Bargagli R., Monaci F., Borghini F., et al.,2002. Mosses and lichens as biomonitors of trace metals. A composition study on Hypnum cupressiforme and Parmelia caperata in a fomer mining district in Italy. Environ. Pollut.,116:279-287
    67. Basile A., Cogoni A.E., Bassi P., et al.,2001. Accumulation of Pb and Zn in Gametophytes and Sporophytes of the Moss Funaria hygrometrica (Funariales). Ann. Bot.,87:537-543
    68. Basile A., Sorbo S., Aprile G, et al.,2008. Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen. Environ. Pollut.,151:401-407
    69. Beauchamp C., Fridovich I.,1971. Superoxide dismutase:Improved assay applicable to acrylamide gels. Anal Biochem.,44:276-287
    70. Berg T., R(?)yset O, Steinnes E.,1995. Moss (Hylocomium splendens) used as biomonitor of atmospheric trace element deposition:estimation of uptake efficiencies. Atmos. Environ.,29: 353-360
    71. Berg T., Steinnes E.,1997. Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition:From relative to absolute deposition values. Environ. Pollut., 98:61-71
    72. Bestwick C.S., Brown I.R., Bennett M.H.R., Mansfield J.W.,1997. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. Plant Cell,9:209-221
    73. Bi X.Y., Feng X.B., Yang Y.G. et al.,2006. Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China. Environ. Int.,32:883-890
    74. Bleuel C., Wesenberg D., Sutter K., et al.,2005. The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals:3. Cd2+ accumulation capacities and biochemical stress response of two Fontinalis species. Sci. Total Environ.,345:13-21
    75. Bolwell G.P., Bindschedler L.V., Blee K.A., et al.,2002. The apoplastic oxidative burst in response to biotic stress in plants:a three-component system. J. Exp. Bot.,53:1367-1376
    76. Bolwell G.P., Blee K.A., Butt V.S., et al.,1999. Recent advances in understanding the origin of the apoplastic oxidative burst in plant cells. Free Radical Res.,31:137-145
    77. Borut Smodis, Andreas Bleise,2002. Internationally harmonized approach to biomonitoring trace element atmospheric deposition. Environ. Pollut,120 (1):3-10
    78. Bradford M.M.,1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem.72:248-254
    79. Brown D.H.,1984. Use of Mineral Elements and Their Use in Pollution Monitoring [A]. In:Dyer A.F., eds. The Experimental Biology of Bryophytes [C].London:Academic Press,229-248
    80. Brown D.H., Bates J.W.,1990. Bryophytes and nutrient cycling. Bot. J. Linn. Soc.,104:129-147
    81. Brown D.H., Buck G.W.,1979. Desiccation effects and cation distribution in bryophytes. New phytol.,82:115-125
    82. Bruns I., Sutter K., Menge S.,et al.,2001. Cadmium lets increase the glutathione pool in bryophytes. J. Plant Physiol.,158:79-89
    83. Buege J.A, Aust S.D,1978. Microsomal lipid peroxidation. Method Enzymol.,52:302-310
    84. Burton M.A.S., LeSueur P., et al.,1981. Copper, nickel, and thallium uptake by the lichen Cladina rangiferina. Can. J. Bot.,59:91-100
    85. Cakmak I. and Marschner H.,1988. Enhanced superoxide radical prodiction in roots of zinc deficient plants. J. Exp.Bot.,39:1449-1460
    86. Cameron A.J., Nickless G.,1997. Use of mosses as collectors of airborne heavy metals near a smelting complex [J]. Water Ai r Soil Pollut.,7:117-125
    87. Carballeira A., Fernandez J.A.,2002. Bioconcentration of metals in the moss Scleropodium purum in the area surrounding a power plant. A geotopographical predictive model for mercury. Chemosphere,47:1041-1048
    88. Carballeira C.B., Aboal J.R., Fernandez J.A., et al.,2008. Comparison of the accumulation of elements in two terrestrial moss species. Atmos. Environ.,42:4904-4917
    89. Ceburnis D., Steinnes E.,2000. Conifer needles as biomonitors of atmospheric heavy metal deposition:comparison with mosses and precipitation, role of the canopy. Atmos. Environ.,34: 4265-4271
    90. Ceburnis D., Valiulis D.,1999. Investigation of absolute metal uptake efficiency from precipitation in moss. Sci. Total Environ.,226:247-253
    91. Chongpraditnum P., Mori S., Chino M.,1992. Excess copper induces a cytosolic Cu, Zn superoxide dismutase in soybean root. Plant Cell Physiol.,33:239-244
    92. Choudhury S., Panda S.K.,2005. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Pollut.,167:73-90
    93. Cobbett C., Goldsbrough P.,2002. Phytochelatin and metallothioneins:Roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol.,53:159-182
    94. Cobbett C.S. and Goldsbrough P.B.,2000. Mechanism of metal resistence:phytochelatins and metallothionein.Phytoremediation of Toxic Metals:Using Plants to Clean Up the Environment., edited by Ilya Raskin and Burt D. Ensley. John Wiley&Sons,Inc.,247-269
    95. Cohu C.M., Pilon M.,2007. Regulation of superoxide dismutase expression by copper availability. Physiol Plant,129:747-755
    96. Couto J.A., Fernandez J.A., Aboal J.R., et al.,2003. Annual variability in heavy-metal bioconcentration in moss:Sampling protocol optimization [J]. Atmos. Environ.,37(25):3517-3528
    97. Crist, Ray H., et al.,1996. Uptake of metals on peat moss:An ion-exchange process. Environ. Sci. Tech.,30(8):24-56
    98. Cuebumis D., Steinnes E., Kvietkus K.,1999. Estimation of metal uptake efficiencies from precipitation in mosses in Lithuania. Chemosphere,38(2):445-455
    99. Culicov O.A., Frontasyeva M.V., Steinnes E., Okina O.S., Santa Z. and R. Todoran,2002. Atmospheric deposition of heavy metals around the lead and copper-zinc smelters in Baia Mare, Romania, studied by the moss biomonitoring technique, neutron activation analysis and flame atomic absorption spectrometry. J. Rad. Nucl. Chem.,254:109-115
    100. De Vos C. H. R., Vonk M.J., Vooijs R., et al.,1992. Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus[J]. Plant Physiol.,98:853-858
    101. De Vos C.H.R., Schat H., Vooijs R.,et al.,1989. Copper-induced damage to the permeability barrier in roots of Silene cucubalus. J. Plant Phydiol.,135:164-169
    102. Demidchik V, Sokolik A., Yurin V.,1997. The effect of Cu2+ on ion transport systems of the plant cell plasmolemma. Plant Physiol.,114:1313-1325
    103. Demirevska-Kepova K., Simova-Stoilova L., Stoyanova Z., et al.,2004. Biochemical changes in barley plants after excessive supply of copper and manganese. Environ. Exp. Bot.,52:253-266
    104. Drazkiewicz M., Skorzynska-Polit E., Krupa Z.,2004. Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana. Biometals,17:379-387
    105. Drazkiewicz M., Skorzynska-Polit E., Krupa Z.,2007. The redox state and activity of super oxide dismutase classes in Arabidopsis thaliana under cadmium or copper stress. Chemosphere,67: 188-193
    106. Eisses J.F., Kaplan J.H.,2005. The mechanism of copper uptake mediated by human CTR1, a mutational analysis. J. Biol. Chem.,280:37159-37168
    107. Ermakova E., Frontasyeva M.V, Pavlov S.S., Povtoreiko E.A., et al.,2004. Air pollution studies in Central Russis (Tver and Yaroslavl Regions) using the moss biomonitoring technique and Neutron activation analysis. J. Atmos. Chem.,49:549-561
    108. Fecht-Christoffers. M.M., Fiihrs H., Braun H.P.,et al.,2006. The role of H202-producing and H2O2-consuming peroxidases in the leaf apoplast of Vigna unguiculata L. in manganese tolerance. Plant Physiol.,140:1451-1463
    109. Fernandez J.A., Aboal J.R., Couto J.A., et al.,2004. Moss bioconcentration of trace elements around a Fe Si smelter:Modeling and cellular distribution [J]. Atmos. Environ.,38 (26): 4319-4330.
    110. Fernandez J.A., Carballeira A.,2002. Biomonitoring metal deposition in Galicia (NW Spain) with mosses:factors affecting bioconcentration. Chemosphere,46:535-542
    111. Fernandez J.A., Ederra A., Nuez E., et al.,2002. Biomonitoring of metal deposition in northern Spain by moss analysis [J]. Sci. Total Environ.,300 (1):115-128
    112. Fernandez J.A., Rey A., Carballeira A.,2000. An extended study of heavy metal deposition in Galicia (NW Spain) based on moss analysis. Sci. Total Environ.,254:31-44
    113. Figueira R., Ribeiro T.,2005. Transplants of aquatic mosses as biomonitors of metals released by a mine effluent. Environ. Pollut.,136:293-301
    114. Figueira R., Sergio C., Sousa A.J,2002. Distribution of trace metals in moss biomonitors and assessment of contamination sources in Portugal. Environ. Pollut.,118:153-163
    115. Folkeson L.,1979. Interspecies calibration of heavy metal concentrations in nine mosses and lichens:applicability to deposition measurement [J]. Water, Air, Soil Pollut.,11:253-260
    116. Gerdol R., Bragazza L., Marchesini R., et al.,2000. Monitoring of heavy metal deposition in Northern Italy by moss analysis [J]. Environ. Pollut.,108:201-208
    117. Giannopolitis C.N., Ries S.K.,1977. Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol.,59:309-314
    118. Giordano S., Adamo P., Sorbo S., Vingiani S.,2005. Atmospheric trace metal pollution in the Naples urban area based on results from moss and lichen bags. Environ. Pollut.,136:431-442
    119. Gonnelli C, Galardi F, Gabbrielli R.,2001. Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiol. Plant.,113:507-514
    120. Goodman G.T., Roberts T.M.,1971. Plants and soils as indicators of metal in the air [J]. Nature,231: 287-292
    121. Griffith O.W.,1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem.,106:207-212
    122. Grimm A., Zanzi R., Bjornbom E. et al.,2008. Comparison of different types of biomasses for copper biosorption. Biores. Tech.,99:2559-2565
    123. Grodzinska K., Szarek-fukaszewska G.,2001. Response of mosses to the heavy metal deposition in Poland-an overview. Environ. Pollut.,114:443-451
    124. Grodzinska K., Szarek-fukaszewska G., Godzik B.,1999. Survey of heavy metal deposition in Poland using mosses as indicators. Sci. Total Environ.,229:41-51
    125. Guimaraes-Soares L., Felicia H., Bebianno M.J.,et al.,2006. Metal-binding proteins and peptides in the aquatic fungi Fontanospora fusiramosa and Flagellospora curta exposed to severe metal stress. Sci. Total Environ.,372:148-156
    126. Gupta M., Cuypers A., Vangronsveld J., Clijsters H.,1999. Copper affects the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiol. Plant.,106:262-267
    127. Guschina I.A., Harwood J.L.,2002. Lipid metabolism in the moss Rhytidiadelphus squarrosus (Hedw.) Warnst. from lead-contaminated and non-contaminated populations. Journal,anunavut,Canada. Appl. Geochem.,16:245-270
    128. Guschina I.A., Harwood J.L., Smith M., Beckett R.P.,2002. Abscisic acid modifies the changes in lipids brought about by water stress in the moss Atrichum androgynum. New Phytol., 156:255-264
    129. Hall J.L.,2002. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot.,53: 1-11
    130. Halleraker J.H., Reimann C., P. de Carital, et al.,1998. Reliability of moss (Hyplocomium splendens and Pleurozium schreberi) as a bioindicator of atmospheric chemistry in the Barents region:Interspecies and field duplicate variability. Sci. Total Environ.,218:123-139
    131. Hart J.J., Di Tomaso J.M., Linscott D.L., et al.,1992. Characterization of the transport and cellular compartmentation of paraquat in roots of intact maize seedlings [J]. Pestic Biochem Physiol.,43: 212-222
    132. Hartley-Whitaker J., Ainsworth G, Meharg A.A.,2001. Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ.,24:713-722
    133. Hiraga S., Sasaki K., Ito H., et al.,2001. A large family of class III plant peroxidases. Plant Cell Physiol.,42:462-468
    134. Howe G.A., Schilmiller A.L.,2002. Oxylipin metabolism in response to stress. Curr. Opin. Plant Biol.,5:230-236
    135. Hynninen V.,1986. Monitoring or airborne metal pollution with bags near an industrial source at Harjavalta, Southwest Finland [J]. Ann. Bot. Fennici.,23:83-90
    136. Imperato M., Adamo P., Naimo D., et al.,2003. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ. Pollut.,124 (2):247-256
    137. Jiang M., Zhang J.,2001. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol.,42:1265-1273
    138. Jonak C., Nakagami H., Hirt H.,2004. Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol.,136:3276-3283
    139. Jouili H., Ferjani E.E.,2003. Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess. C. R. Biol.,326:639-644
    140. Kapur A., Chopra R.N.,1989. Effects of some metal ions on proto mental growth and bud formation in the moss Timmiella anomala grown in aseptic cultures [J]. J. Hattori Bot. Lab.,66: 283-298
    141. Ke W.S., Xiong Z.T., Xie M.J., et al.,2007. Accumulation, subcellular localization and ecophysiological responses to copper stress in two Daucus carota L. populations. Plant Soil,292: 291-304
    142. Koch M. and Rotard W.,2001. On the contribution of background sources to heavy metal content of municipal sewage sludge, Water Sci. Technol.,43:67-74
    143. Kopittke P.M. and Menzies N.W.,2006. Effect of Cu toxicity on growth of cowpea (Vigna unguiculata). Plant Soil,279:287-296
    144. Kosiora G., Samecka-Cymermana A., Chmielewskib A., et al.,2008. Native and transplanted Pleurozium schreberi (Brid.)Mitt. as a bioindicator of N deposition in a heavily industrialized area of Upper Silesia (S Poland). Atmos. Environ.,42:1310-1318
    145. KrzesLowska M., Wozny A.,2000. Wall thickenings-moss protonema apical cell reaction to lead. Biol. Plant.,43(1):93-98
    146. Kubin E., Lippo H.,1996. Atmospheric heavy metal deposition in Finland from 1985-1990. Appl. Geochem.,11:155-161
    147. Kuik P., Wolterbeek H.Th.,1995. Factor analysis of atmospheric trace element deposition data in the Netherlands obtained by moss monitoring. Water Air Soil Pollut.,84:323-346
    148. Landberg L., Greger M.,2002. Differences in oxidative stress in heavy metal resistant and sensitive clones of Salix viminalis. J. Plant Physiol.,159:69-75
    149. LeBlanc F., DeShoover J.,1970. Relation between industrializational the distribution and growth of epiphytic lichens and mosses in Montreal [J]. Can. J. Bot.,48:1485-1496
    150. LeBlanc F., Robitaille G., Rao D.N.,1974. Biological response of lichens and bryophytes to environmental pollution in the Murdochville copper mine area [J]. J. Hattori Bot. Lab.,30:405-433
    151. Lee C.S.L., Li X.D., Zhang G., et al.,2005. Biomonitoring of trace metals in the atmosphere using moss(Hypnum plamaeforme) in the Nanling Mountains and the Pearl River Delta, Southern China. Atmos. Environ.,39:397-407
    152. Lidon F.C. and Henriques F.S.,1998. Role of rice shoot vacuoles in copper toxicity regulation. Environ. Exp. Bot.,39:197-202
    153. Lidon F.C., Henriques F.S.,1992. Copper toxicity in rice:diagnostic criteria and effect on tissue Mn and Fe. Soil Sci.,154:130-135
    154. Lin T., He X.W., Yang L., et al.,2005. Identification and characterization of a novel water-deficit-suppressed gene OsARD encoding an aci-reductone-dioxygenase-like protein in rice. Gene,360:27-34
    155. Little P., Martin H.,1974. Biological monitoring of heavy metal pollution [J]. Environ. Pollut.,6: 1-19
    156. Llorens N., Arola L., Blade C. et al.,2000. Effects of copper exposure upon nitrogen metabolism in tissue cultured Vitis vinifera. Plant Sci.,160:159-163
    157. Lombardi L., Sebastiani L.,2005. Copper toxicity in Prunus cerasifera:growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci.,168:797-802
    158. Loppi S., Bonini I.,2000. Lichens and mosses as biomonitors of trace elements in areas with thermal springs and fumarole activity (Mt. Amiata, central Italy). Chemosphere,41:1333-1336
    159. Lou L.Q., Shen Z.G., Li X.D.,2004. The copper tolerance mechanism of Elsholtzia haichowensis, a plant from copper-enriched soils. Environ. Exp. Bot.,51(4):111-120
    160. Lucaciu A., Timofte L.O., Culicov O., et al.,2004. Atmospheric deposition of trace elements in Romania studied by the moss biomonitoring technique. J. Atmos. Chem.,49:533-548
    161. Luna C.M., Gonzalez C.A., Trippi V.S.,1994. Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol.,35:11-15
    162. Maevskaya S.M., Kardash A.R. and Demkiv O.T.,2001. Absorption of Cdmium and Lead ions by gametophute of the moss Plagiomnium undulatum. Russian J. Plant Physiol.,48:820-824
    163. Makinen A.,1994. Biomonitoring of Atmospheric Heavy Metal Deposition in Estonia [M]. Ministry of Environment, Yliopistopaino, Helsinki, Finland,1-56
    164. Mallick, N.,2004. Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris:response of the antioxidant system. J. Plant Physiol.,161:591-597
    165. Markert B., Weckert V.,1989. Fluctuations of element concentrations during the growing season of Polytrichum formosum (Hedw) [J]. Water Air Soil Pollut.,43:177-189
    166. Market B., Herpin U., Siewers U., et al.,1996. The German heavy metal survey by means of mosses. Sci.Total Environ.,182:159-168
    167. Marschner H.,1995. Mineral Nutrition of Higher Plants. Academic Press, London UK.
    168. Martins R.J.E. and Boaventura R.A.R.,2002. Uptake and release of zinc by aquatic bryophytes (Fontinalis antipyretica L. ex. Hedw.). Water Res.,36(20):5005-5012
    169. Meenks J.L.D., Tuba Z., Csintalan Z.,1991. Eco-physiological responses of Tortula ruralis upon transplantation around a power plant in west Hungary [J]. J. Hattori Bot. Lab.,69:21-35
    170. Mehta S.K., Guar J.P.,1999. Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol.,143:253-259
    171. Mittler R.,2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci.,7:405-410
    172.Monni S., Salemaa M., White C., et al.,2000. Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter, in Southwest Finland. Environ. Pollut.,109: 211-219
    173. Morelli E., Scarano G.,2004. Copper-induced changes of non-protein thiols and antioxidant enzymes in the marine microalga Phaeodactylum tricornutum. Plant Sci.,167:289-296
    174. Nakano Y., Asada K.,1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol.,22:867-880
    175. Navari-Izzo F., Quartacci M.F., Pinzino C., et al.,1998. Thylakoid-bound and stromal antioxidative enzymes in wheat treated with excess copper. Physiol. Plant.,104:630-638
    176. Neill S., Desikan R., Hancock J.,2002. Hydrogen peroxide signaling. Curr. Opin. Plant Biol.,5: 388-395
    177. Nielsen H.D., Brownlee C., Coelho S.M. and Brown M.,2003. Inter-population differences in inherited copper tolerance involve photosynthetic adaptation and exclusion mechanisms in Fucus serratus. New Phytol.,160:157-165
    178. Nielsen H.D., Brownlee C., Coelho S.M., et al.,2003. Inter-population differences in inherited copper tolerance involve phytosynthetic adaptation and exclusion mechanisms in Fucus serratas. New Phytol.,160:157-165
    179. Nriagu J.O., Pacyna J.M.,1988. Quantitative assessment of world-wide contamination of air, water and soils by trace metals [J]. Nature,333:134-139
    180. Olajire A.A.,1998. A survey of heavy metal deposition in Nigeria using the moss monitoring method. Environ. Int.,8:951-958
    181. Onianawa P.C.,2006. Monitoring atmospheric metal pollution:a review of the use of mosses as indicators. Environ. Monit. Assess.,71:13-50
    182. Orozco-Cardenas M.L., Ryan C,1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. USA,96: 6553-6557
    183. Otvos E., Pazmandi T., Tuba Z.,2003. First national survey of atmospheric heavy metal deposition in Hungary by the analysis of moss. Sci. Total Environ.,309:151-160
    184. Pacyna J.M., Pacyna E.G.,2001. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev.,9:269-298
    185. Panda S.K.,2003. Heavy-metal phytotoxicity induces oxidative stress in a moss, Taxithellium sp.. Curr. Sci. India,84:631-633
    186. Parida A.K., Das A.B., Mohanty P.,2004. Defense potentials to NaCl in a mangrove, Bruguiera parviflora:Differential changes of isoforms of some antioxidative enzymes. J. Plant Physiol.,161: 531-542
    187. Passardi F., Penel C., Dunand C.,2004. Performing the paradoxical:how plant peroxidases modify the cell wall. Trends Plant Sci.,9:534-540
    188. Patsikka E., Kairavuo M.,2002. Excess copper predisposes photosystem Ⅱ to photoinhibition in Vivo by out competing iron and causing decrease in leaf chlorophyll [J]. Plant Physiol.,129: 1359-1367
    189. Pellinen R., Palva T., Kangasjarvi J.,1999. Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells. Plant J.,20:349-356
    190. Perales-Vela H.V., Pena-Castro J.M. and Canizares-Villanueva R.O.,2006. Heavy metal detoxification in eukaryotic microalgae. Chemosphere,64:1-10
    191. Pilon M., Abdel-Ghany S.E., Cohu C.M.,2006. Copper cofactor delivery in plant cells. Curr. Opin. Plant Biol.,9:256-263
    192. Poikolainen J., Kubin E., Piispaner J., et al.,2004. Atmospheric heavy metal deposition in Finland during 1985-2000 using mosses as bioindicators. Sci. Total Environ.,318:171-185
    193. Polle A., Schuzendiibel A.,2003. Heavy metal signalling in plants:linking cellular and organismic responses. Tropics in Current Genetics. In:Hirt H, Shinozaki K eds. Plant Responses to Abiotic Stress. Springer-Verlag Berlin Heidelberg, New York, pp.187-215
    194. Pott U., Turpin D. H.,1996. Changes in atmospheric trace element deposition in the Fraser
    195. Proctor M.C.F,1981. Physiological ecology of bryophytes. In:Schultze-Motel, W. (ed.) Advanced in Bryophyte. Vol.1 Gantner Verlag, K. G, Vaduz,79-166.
    196. Qian M., Li X.D., Shen Z.G.,2005. Adaptive copper tolerance in Elsholtzia haichowensis involves production of Cu-induced thiol peptides. Plant Growth Regul.,47:65-73
    197. Quartacci M.F., Cosi E., Navari-Izzo F.,2001. Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J. Exp. Bot.,52:77-84
    198. Reeves R.D., Baker A.J.M., Brooks R.R.,1995. Abnormal accumulation of trace metals by plants. Mining Environ. Manage,9:4-8
    199. Richardson D.H.S.,1981. The Biology of Mosses [M]. Oxford:Blackwell Scientific Pulications. 1-220
    200. Rieley J.O., Richards P.W., Bebbington A.D.L.,1979. The ecological role of bryophytes in a north Wales woodland[J]. J. Ecol.,67:497-527
    201. Riget F., Asmund G, Aastrup P,2000. The use of lichen (Cetraria nivalis) and moss (Rhacomitrium lanuginosum) as monitors for atmospheric deposition in Greenland. Sci. Total Environ.,245: 137-148
    202. Romero-Puertas M.C., Rodriguez-Serrano M., Corpas F.J., et al.,2004. Cadmium-induced subcellular accumulation of O2·- and H2O2 in pea leaves. Plant Cell Environ.,27:1122-1134
    203. Ross H. B.,1990. On the use of mosses(Hylocomium splendens and Pleurozium schreberi) for estimating atmospheric trace metal. Water, Air, Soil Pollut.,50:63-76
    204. Ruhling A, Tyuler G.,1968. An ecological approach to lead the problem [J]. Boran. Not.,121: 321-342
    205. Ruhling A.,1994. Atmospheric heavy metal deposition in Europe-estimation based on moss analysis. Nordic Council of Ministers, Copenhagen, Nord,9:1-53
    206. Ruhling A.,2000. A European survey of atmospheric heavy metal deposition in 2000-2001 [J]. Environ. Pollut.,120:23-25
    207. RUhling A., Steinnes E., Berg T.,1996. Atmospheric heavy metal deposition in northern Europe 1995. NORD,37:1-36
    208. Ruhling A., Tyler G.,2004. Changes in the atmospheric deposition of minor and rare elements between 1975 and 2000 in south Sweden, as measured by moss analysis. Environ. Pollut.,131: 417-423
    209. Ruhling A., Tyler G.,1971. Regional differences in the deposition of heavy metal over Scandinavia. J.Appl.Ecol.,18:497-507
    210. Salemaa M., Derome J., Helmisaari H., et al.,2004. Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulfur deposition in Finland [J]. Sci. Total Environ.,324 (1):141-161
    211.Sancenon V., Puig S., Mira H., et al.,2003. Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol. Biol.,51:577-587
    212. Sandalio L.M., Dalurzo H.C., Gomez M., et al.,2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot.,52:2115-2126
    213. Sanna huttunen,2003. Reproduction of the mosses Pleurozium schreberi and Pohlia nutans in the surroundings of copper smelters at Harjavalta, S.W. Finland. J. Bryol.,25:41-47
    214. Sawaidis I., Hughes M.N., Poole R.K.,2003. Copper biosorption by Pseudomonas cepacia and other strains. World J. Microbiol. Biotechnol.,19:117-121
    215. Saxena A., Saxena D.K., Srivastava H.S.,2003. The influence of glutathione on physiological effects of lead and its accumulation in moss Sphagnum squarrosum. Water Air Soil Pollut.,143: 351-361
    216. Schilling J.S., Lebman M.E.,2002. Bioindication of atmospheric heavy metal deposition in the Southern-eastern US using the moss Thuidium delicatulum. Atmos. Environ.,36:1611-1618
    217. Schilling J.S., Lehman M.E.,2002. Bioindication of atmospheric heavy metal deposition in the Southeastern US using the moss Thuidium delicatulum. Atmos. Environ.,36:1611-1618
    218. Schintu M., Cogoni A., Durante L., et al.,2005. Moss(Bryum radiculosum) as a bioindicator of trace metal deposition around an industrialized area in Sardinia (Italy). Chemosphere,60:610-618
    219. Schiitzendiibel A., Polle A.,2002. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot.,53:1351-1365
    220. Schutzendubel A., Schwanz P., Teichmann T., et al.,2001. Cadmium-induced changes in anti-oxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol.,127 (3):887-898
    221.Sedlak J., Lindsay R.H.,1968. Estimation of total, protein-bound, and non-protein sulfhydryl groups in tissue by Ellman's reagent. Anal. Biochem.,25:192-208
    222. Sgherri C., Quartacci M.F., Navari-Izzo F.,2007. Early production of activated oxygen species in root apoplast of wheat following copper excess. J. Plant Physiol.,164:1152-1160
    223. Shaw A.J.,1990. Metal tolerances and cotolerances in the moss Funaria hygrometrica Hedw. Can. J.Bot.,68(11):2275-2282
    224. Shaw J.E., Jules S., Beer S.C.,1991. Effects of metals on growth morphology and reproduction of Cetatodon purpureus [J]. Bryologist,94 (3):270-279
    225. Shen Z.G., Zhang F.Q., Zhang F.S.1998. Toxicity of copper and zinc in seedlings of Mung bean and inducing accumulation of polyamine. J. Plant Nutr.,21(6):1153-1162
    226. Shotblt L., Biiker P., Ashmore M.R.,2007. Reconstructing temporal trends in heavy metal deposition:Assessing the value of herbarium moss samples. Environ. Pollut.,147:120-130
    227. Spearing A M.1972. Cation exchange capacity and galacturonic acid content of several species of in Sand Ridge bog, central New York State. Bryologist,75:154-158
    228. Steinbeck M.J., Khan A.U., Appel W.H., et al.,1993. The DAB-Mn++ cytochemical method revisited:Validation of specificity for superoxide. J. Histochem. Cytochem.,41:1659-1667
    229. Steinnes E.,1995. A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals [J]. Sci. Total Environ.,160:243-249
    230. Steinnes E., Aberg G., Hjelmseth H.,2005. Atmospheric deposition of lead in Norway:spatial and temporal variation in isotopic composition. Sci. Total Environ.,336,105-117
    231. Steinnes E., Hanssen J. E., Rambaek J.P.,et al.,1994. Atmospheric deposition of trace element of Norway:temporal and spatial trends studied by moss analysis. Water, Air and Soil Pollut.,74: 121-140
    232. Steinnes E., Rambaek J.P., Hanssen J.E.,1992. Large scale multi-element survey of atmospheric deposition using naturally growing moss as biomonitor. Chemosphere,25:735-752
    233. Stobart A.K., Grifiths W.T., Ameerr B.I., et al.,1985. The effect of Cd on the biosynthesis of chlorophyll in leaves of barley [J]. Plant Physiol.,63:293-298
    234. Sucharova J., Suchara I.,1998. Atmospheric deposition levels of chosen elements in the Czech Republic determined in the framework of the International Bryomonitoring Program,1995. Sci. Total Environ.,223:37-52
    235. Szczepaniak K., Biziuk M.,2003. Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution [J]. Environ. Res.,93 (3):221-230
    236. Tewari R.K., Kumar P., Sharma P.N.,2006. Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta,223: 1145-1153
    237. Theresa Faus-Kessler, Claudia Dietl, Johannes Tritschler, Ludwig Peichl,1999. Temporal and spatial trends of metal contents of Bavarian mosses Hypnum cupressiforme. Sci. Total Environ., 232:13-25
    238. Thomas J.C., Malick F.K., Endreszl C., Davies E.C. and Murray K.S.,1998. Distinct response to copper stress in halophyte Mesembryanthemum crystallinum. Physiol. Plant.,102:360-368
    239. Toda H.,1972. Mapping of atmospheric pollution in Tokyo based upon epiphytic bryophytes [J]. Jap.J.Ecol.,22 (3):125-133
    240. Tong Cao, Li An, Min Wang et al.,2008. Spatial and temporal changes of heavy metal concentrations in mosses and its indication to the environments in the past 40 years in the city of Shanghai, China. Atmos. Environ.,42:5390-5402
    241. Tyler G.,1990. Bryophytes and heavy metals:a literature review. Bot. Journ. Linnean. Soc.,104: 231-253.
    242. Van Assche F., Clijsters H.,1990. Effect of metals on enzyme activity in plants. Plant Cell Physiol., 13:195-206
    243. Vazquez M.D., L6pez J., Carballeira A.,1999. Modification of the sequential elution technique for the extraction of heavy metals from bryophytes. Sci. Total Environ.,241:53-62
    244. Wappelhorst O., Kiihn I., Oehlmann J., Marlert B.,2000. Deposition and disease:a moss monitoring project as an approach to ascertaining potential connections. Sci. Total Environ.,249: 243-256
    245. Weckx J.E.J., Clijsters H.M.M.,1996. Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiol. Plant.,96:506-512
    246. Wolterbeek Bert,2002. Biomonitoring of trace element air pollution:principles, possibilities and perspectives. Atmos. Environ.,120:11-21
    247. Wolterbeek H., Kuik P., Verburg T.G., et al.,1995. Moss interspecies comparison in trace element concentrations. Environ. Monit. Assess.,35:265-286
    248. Wolterbeek H.T. and Verburg T.G.,2004. Atmospheric metal deposition in a moss data correlation study with mortality and disease in the Netherlands. Sci. Tot. Environ.,319:53-64
    249. Yang H., Wong J.W.C., Yang Z.M., et al.,2001. Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids. J. Environ. Sci.,13:368-375
    250. Zechmeister H.1995. Correlation between altitude and heavy metal deposition in the Alps [J]. Environ. Pollut.,89:73-80
    251. Zechmeister H., Riss A., Hanus-illnar A.,2004. Biomonitoring of atmospheric heavy metal deposition by mosses in the vicinity of industrial sites. J. Atmos. Chem.,49:461-477
    252. Zechmeister H.G., Hohen W.D., Riss A., et al.,2003. Variations in heavy metal concentrations in the moss species Abieti nella abietina (Hedw.) Fleisch, according to sampling time, within site variability and increase in biomass [J]. Sci. Total Environ.,301(1):55-66
    253. Zechmeister H.G., Hohenwallner D., Hanus-Illnar A. et al.,2008. Temporal patterns of metal deposition at various scales in Austria during the last two decades. Atmos. Environ.,42:1301-1309
    254. Zechmeister H.G., Hohenwallner D., Riss A., Hanus-Illnar A.,2005. Estimation of element deposition derived from road traffic sources by using mosses. Environ. Pollut.,138:238-249
    255. Zhang H.X., Xia Y., Wang G.P., et al.,2008. Excess copper induces accumulation of hydrogen peroxide and increases lipid peroxidation and total activity of copper-zinc superoxide dismutase in roots of Elsholtzia haichowensis. Planta,227:465-475
    256. Zhang H.Y, Xu W.Z., Guo J.B., He Z.Y., Ma M.,2005. Coordinated responses of phytochelatins and metallothioneins to heavy metals in garlic seedlings. Plant Sci.,169:1059-1065
    257. Zhao F.J., McGrath S.P. and Crosland A.R.,1994. Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectrometry (ICP-AES). Commun. Soil Sci. Plant Analy.,25:407-418
    258. Zheng X., Van Huystee R.B.,1992. Peroxidase-regulated elongation of segments from peanuts hypocotyls. Plant Sci.,81:47-56
    259.(?)kland T.(?)., kland R.H., Steinnes E.,1999. Element concentrations in the boreal forest moss Hylocomium splendens variation related to gradients in vegetation and local environmental factors [J]. Plant Soil,209:71-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700