用户名: 密码: 验证码:
耐辐射异常球菌转录调节蛋白IrrE增强大肠杆菌盐胁迫抗性的全局调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐辐射异常球菌(Deinococcus radiodurans)具有极强氧化胁迫抗性和电离辐射抗性。该菌中发现的IrrE是异常球菌属特异的全局调控因子,在DNA损伤修复、胁迫应答以及保护途径起到一个中心调控作用,并能显著增强模式生物大肠杆菌和烟草的耐盐能力。然而,IrrE在异源生物中的作用机制尚不清楚。本论文将IrrE导入大肠杆菌中,研究其对受体细胞氧化、高温和盐胁迫抗性的影响,并进行了蛋白质组和转录组分析。取得主要研究成果如下:
     1.在正常生长条件下,IrrE蛋白能够延长大肠杆菌生长对数期,提高细胞生物量,表明IrrE能增强大肠杆菌一般胁迫抗性。BioLog 95底物利用分析表明,与对照菌株相比,重组菌株对22种碳源的利用能力显著降低,相反对山梨醇的利用能力显著提高。蛋白质组和转录组分析结果显示,IrrE重组大肠杆菌中参与海藻糖的合成、核苷酸合成、碳源利用、氨基酸利用、酸抗性等途径的基因表达差异显著。一系列具有调节功能的基因表达差异显著,其中evgA、appY、gadE、gadW、gadX、yhiF和asnC上调,purR、betI、cynR、mhpR、prpR、tdcA和kdgR下调。表明异源表达的IrrE可能通过转录级联放大反应在宿主细胞中发挥全局调控的作用。
     2.不同盐浓度冲击1 h后,IrrE能够提高大肠杆菌的存活能力;在1.0 M盐浓度下培养24 h,IrrE能提高大肠杆菌的生长能力;在高温和过氧化氢处理条件下,IrrE能提高大肠杆菌的存活能力。上述结果表明,IrrE在大肠杆菌中异源表达增强其胁迫抗性。为了研究IrrE提高大肠杆菌耐盐抗性的全局调控机制,本论文分析了1.0 M盐冲击下重组大肠杆菌与对照菌的蛋白图谱。结果表明,高浓度盐冲击下,重组菌株中126个蛋白表达显著上调,110个蛋白表达显著下调。其中包括一系列环境胁迫诱导蛋白,如胁迫反应转录因子RpoS、胁迫反应调控蛋白Dps、分子伴侣DnaK、热激蛋白HslU、渗透胁迫诱导蛋白OsmY、噬菌体诱导蛋白PspA、过氧化氢酶KatE、一般胁迫反应蛋白YhbO、分子伴侣Tig和胁迫条件诱导蛋白酶Lon等表达量显著提高。此外,盐冲击条件下细胞内甘油降解途径相关酶蛋白表达下调,同时甘油含量测定结果表明,重组菌株胞内甘油含量明显提高。表明IrrE引起胞内甘油积累,是重组大肠杆菌增强盐胁迫抗性的策略之一。
     3.迄今发现的4个IrrE均来自异常球菌属,其蛋白一级结构相对保守。N-端结构域的氨基酸序列有较大差异,但均含有一个锌依赖型多肽酶结构。为研究N-端结构域的生物学功能,对耐辐射异常球菌IrrE的N-端进行了截短分析,回补耐辐射异常球菌IrrE突变株发现,N-端的18、26、43个氨基酸残基缺失的IrrE突变体能恢复突变菌株的紫外和电离辐射抗性,但N-端的160个氨基酸残基缺失不能恢复其抗性。
     本研究将为揭示微生物的环境适应进化和盐胁迫抗性机制,并进一步开展IrrE基因改良植物与微生物性状等研究奠定工作基础。
Deinococcus radiodurans is unparalleled among all life in its capacity to survive oxidative stresses, and ionizing and ultraviolet (UV) radiations. IrrE is a global regulator, without ortholog in other genera, that greatly enhances the DNA repair capability and the radiation resistance of D. radiodurans. Our study demonstrated that heterologous expression of IrrE confers significantly enhanced salt tolerance in both E. coli and tobacco. However, the mechanisms and regulation of the enhanced stress resistance of IrrE-expressing cell is not fully understood. Furthermore, the heterologous expression of irrE increased tolerance to oxidative stress, heat shock and other stresses in E. coli. To better understand the global regulatory effects of IrrE we carried out a combined transcriptome and proteome analysis comparing of E. coli expressing irrE under normal and salt (NaCl) stress conditions.
     The main results obtained are as follows:
     1. In this work, we investigate that the IrrE-expressing strain was displayed better growth than the control strain with higher maximal cell density in LB medium. The carbon source utilization profile of E. coli expressing IrrE was determined using Biolog. IrrE greatly affected the types of substrates that were used and the efficiency with they were used. To better understand the global effects of IrrE on the regulatory networks, we carried out combined transcriptome and proteome analysis of E. coli expressing the IrrE protein. Our analysis showed that a large number of host genes with a significant change in expression, including those for trehalose biosynthesis, nucleotides biosynthesis, carbon source utilization, amino acid utilization, acid resistance, a hydrogenase and an oxidase. Also regulated were the EvgSA two-component system, the GadE, GadX and PurR master regulators, and 10 transcription factors (AppY, GadW, YhiF, AsnC, BetI, CynR, MhpR, PrpR, TdcA and KdgR). These results demonstrated that IrrE acts as global regulator and consequently improves abiotic stress tolerances in the heterologous host E. coli.
     2. We investigate that IrrE can be utilized to improve tolerance to various abiotic stresses. The results demonstrated that the heterologous expression of IrrE in E. coli increased tolerance to transient and continuous salt stress and heat shock, in addition to oxidative stress resistance. To investigate the regulatory mechanism of IrrE in response to salt stress, we performed comparative proteomics analyses on the IrrE-expressing strain and the control strain under salt stress condition. We detected significant changes for 124 proteins, with 66 proteins being upregulated in the IrrE-expressing strain. These up- or downregulated proteins can be grouped into 13 classes based on their common functional characteristics. Among them, a set of stress responsive proteins were upregulated by IrrE, including the molecular chaperone DnaK, the heat shock protein HslU, the osmotically inducible protein OsmY, catalase HPII KatE, general stress protein YhbO, the trigger factor Tig, the stress-inducible ATP-dependent protease Lon and stress response protein Dps. We found significant induction of general stress regulator RpoS, which exhibits a 3-fold-higher expression in the IrrE-expressing strain. After NaCl shock, the glycerol-degrading enzymes were down-regulated. The glycerol level in IrrE-expressing cells reached 37 nmol/mg dry weight and was approximately 2-fold higher than that in control cells.
     3. IrrE homologs from different Deinococcus species showed considerable N-terminal variation. Guided by the sequence alignments, four irrE deletions which removed 18, 26, 43 and 160 aa from the N-terminus of the 328 aa protein. Only the removal of 160 aa affected the UV and ionizing radiation resistance, abolishing it completely.
引文
1. Abdallah, J., Kern, R., Malki, A., Eckey, V. & Richarme, G. (2006). Cloning, expression, and purification of the general stress protein YhbO from Escherichia coli. Protein Expr Purif 47, 455-460.
    2. Abdallah, J., Caldas, T., Kthiri, F., Kern, R. & Richarme, G. (2007). YhbO protects cells against multiple stresses. J Bacteriol 189, 9140-9144.
    3. Ades, S. E., Grigorova, I. L. & Gross, C. A. (2003). Regulation of the alternative sigma factor sigma(E) during initiation, adaptation, and shutoff of the extracytoplasmic heat shock response in Escherichia coli. J Bacteriol 185, 2512-2519.
    4. Ali Azam, T., Iwata, A., Nishimura, A., Ueda, S. & Ishihama, A. (1999). Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181, 6361-6370.
    5. Almiron, M., Link, A. J., Furlong, D. & Kolter, R. (1992). A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6, 2646-2654.
    6. Anderson, A. W., Nordan, H. C., Cain, R. F., Parrish, G. & Duggan, D. (1956). Studies on a radio-resistant micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technol 10, 575–578.
    7. Antrobus, R. & Borner, G. H. (2011). Improved elution conditions for native co-immunoprecipitation. PLoS One 6, e18218.
    8. Asada, S., Takano, M. & Shibasaki, I. (1979). Deoxyribonucleic acid strand breaks during drying of Escherichia coli on a hydorohobic filter membrane. Appl Environ Microbiol 37, 266-273.
    9. Azam, T. A. & Ishihama, A. (1999). Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J Biol Chem 274, 33105-33113.
    10. Azam, T. A., Hiraga, S. & Ishihama, A. (2000). Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid. Genes Cells 5, 613-626.
    11. Battista, J. R., Earl, A. M. & Park, M. J. (1999). Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends in microbiology 7, 362-365.
    12. Bauche, C. & Laval, J. (1999). Repair of oxidized bases in the extremely radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol 181, 262-269.
    13. Bauermeister, A., Bentchikou, E., Moeller, R. & Rettberg, P. (2009). Roles of PprA, IrrE, and RecA in the resistance of Deinococcus radiodurans to germicidal and environmentally relevant UV radiation. Arch Microbiol 191, 913-918.
    14. Becker, G., Klauck, E. & Hengge-Aronis, R. (1999). Regulation of RpoS proteolysis in Escherichia coli: the response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. Proc Natl Acad Sci U S A 96, 6439-6444.
    15. Beijer, L., Nilsson, R. P., Holmberg, C. & Rutberg, L. (1993). The glpP and glpF genes of the glycerol regulon in Bacillus subtilis. J Gen Microbiol 139, 349-359.
    16. Bekker, M., de Vries, S., Ter Beek, A., Hellingwerf, K. J. & de Mattos, M. J. (2009). Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase. J Bacteriol 191, 5510-5517.
    17. Bjellqvist, B., Ek, K., Giorgio Righetti, P., Gianazza, E., Gorg, A., Westermeier, R. & Postel, W.(1982a). Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. Journal of Biochemical and Biophysical Methods 6, 317-339.
    18. Bjellqvist, B., Ek, K., Righetti, P. G., Gianazza, E., Gorg, A., Westermeier, R. & Postel, W. (1982b). Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods 6, 317-339.
    19. Boling, M. E. & Setlow, J. K. (1966). The resistance of Micrococcus radiodurans to ultraviolet radiation. 3. A repair mechanism. Biochim Biophys Acta 123, 26-33.
    20. Bonacossa de Almeida, C., Coste, G., Sommer, S. & Bailone, A. (2002). Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation. Mol Genet Genomics 268, 28-41.
    21. Bonnefoy, E., Almeida, A. & Rouviere-Yaniv, J. (1989). Lon-dependent regulation of the DNA binding protein HU in Escherichia coli. Proc Natl Acad Sci U S A 86, 7691-7695.
    22. Bore, E., Langsrud, S., Langsrud, O., Rode, T. M. & Holck, A. (2007). Acid-shock responses in Staphylococcus aureus investigated by global gene expression analysis. Microbiology 153, 2289-2303.
    23. Bossemeyer, D., Borchard, A., Dosch, D. C., Helmer, G. C., Epstein, W., Booth, I. R. & Bakker, E. P. (1989). K+-transport protein TrkA of Escherichia coli is a peripheral membrane protein that requires other trk gene products for attachment to the cytoplasmic membrane. J Biol Chem 264, 16403-16410.
    24. Bougdour, A., Wickner, S. & Gottesman, S. (2006). Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli. Genes Dev 20, 884-897.
    25. Bougdour, A., Cunning, C., Baptiste, P. J., Elliott, T. & Gottesman, S. (2008). Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol Microbiol 68, 298-313.
    26. Brill, J. A., Quinlan-Walshe, C. & Gottesman, S. (1988). Fine-structure mapping and identification of two regulators of capsule synthesis in Escherichia coli K-12. J Bacteriol 170, 2599-2611.
    27. Brown, A. D. (1976). Microbial water stress. Bacteriol Rev 40, 803-846.
    28. Bukau, B. & Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell 92, 351-366.
    29. Buurman, E. T., Kim, K. T. & Epstein, W. (1995). Genetic evidence for two sequentially occupied K+ binding sites in the Kdp transport ATPase. J Biol Chem 270, 6678-6685.
    30. Calhoun, L. N. & Kwon, Y. M. (2010). Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: a review. J Appl Microbiol 110, 375-386.
    31. Calmann, M. A. & Marinus, M. G. (2003). Regulated expression of the Escherichia coli dam gene. J Bacteriol 185, 5012-5014.
    32. Cases, I., de Lorenzo, V. & Ouzounis, C. A. (2003). Transcription regulation and environmental adaptation in bacteria. Trends in microbiology 11, 248-253.
    33. Cayley, S., Lewis, B. A., Guttman, H. J. & Record, M. T. (1991). Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity* 1:: Implications for protein-DNA interactions in vivo. Journal of molecular biology 222, 281-300.
    34. Chayot, R., Montagne, B., Mazel, D. & Ricchetti, M. (2010). An end-joining repair mechanism in Escherichia coli. Proc Natl Acad Sci U S A 107, 2141-2146.
    35. Chiancone, E. & Ceci, P. (2010). The multifaceted capacity of Dps proteins to combat bacterial stressconditions: Detoxification of iron and hydrogen peroxide and DNA binding. Biochim Biophys Acta 1800, 798-805.
    36. Chinnusamy, V., Jagendorf, A. & Zhu, J. K. (2005). Understanding and improving salt tolerance in plants. Crop Sci 45, 437-448.
    37. Chuang, S. E., Burland, V., Plunkett, G., 3rd, Daniels, D. L. & Blattner, F. R. (1993). Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene 134, 1-6.
    38. Chung, C. H. & Goldberg, A. L. (1981). The product of the lon (capR) gene in Escherichia coli is the ATP-dependent protease, protease La. Proc Natl Acad Sci U S A 78, 4931-4935.
    39. Clarke, D. J. (2010). The Rcs phosphorelay: more than just a two-component pathway. Future Microbiol 5, 1173-1184.
    40. Cole, S. T., Eiglmeier, K., Ahmed, S., Honore, N., Elmes, L., Anderson, W. F. & Weiner, J. H. (1988). Nucleotide sequence and gene-polypeptide relationships of the glpABC operon encoding the anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli K-12. J Bacteriol 170, 2448-2456.
    41. Comellas-Bigler, M., Lang, R., Bode, W. & Maskos, K. (2005). Crystal structure of the E. coli dipeptidyl carboxypeptidase Dcp: further indication of a ligand-dependent hinge movement mechanism. J Mol Biol 349, 99-112.
    42. Connelly, J. C., Kirkham, L. A. & Leach, D. R. (1998). The SbcCD nuclease of Escherichia coli is a structural maintenance of chromosomes (SMC) family protein that cleaves hairpin DNA. Proc Natl Acad Sci U S A 95, 7969-7974.
    43. Courcelle, J., Carswell-Crumpton, C. & Hanawalt, P. C. (1997). recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. Proc Natl Acad Sci U S A 94, 3714-3719.
    44. Crooke, E., Guthrie, B., Lecker, S., Lill, R. & Wickner, W. (1988). ProOmpA is stabilized for membrane translocation by either purified E. coli trigger factor or canine signal recognition particle. Cell 54, 1003-1011.
    45. Darwin, A. J. (2005). The phage-shock-protein response. Mol Microbiol 57, 621-628.
    46. Dean, C. J., Little, J. G. & Serianni, R. W. (1970). The control of post irradiation DNA breakdown in Micrococcus radiodurans. Biochem Biophys Res Commun 39, 126-134.
    47. Deuerling, E., Schulze-Specking, A., Tomoyasu, T., Mogk, A. & Bukau, B. (1999). Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400, 693-696.
    48. Ding, Q., Kusano, S., Villarejo, M. & Ishihama, A. (1995). Promoter selectivity control of Escherichia coli RNA polymerase by ionic strength: differential recognition of osmoregulated promoters by E sigma D and E sigma S holoenzymes. Mol Microbiol 16, 649-656.
    49. Dinnbier, U., Limpinsel, E., Schmid, R. & Bakker, E. P. (1988). Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150, 348-357.
    50. Dopazo, A., Tormo, A., Aldea, M. & Vicente, M. (1987). Structural inhibition and reactivation of Escherichia coli septation by elements of the SOS and TER pathways. J Bacteriol 169, 1772-1776.
    51. Dosch, D. C., Helmer, G. L., Sutton, S. H., Salvacion, F. F. & Epstein, W. (1991). Genetic analysis of potassium transport loci in Escherichia coli: evidence for three constitutive systems mediating uptake potassium. J Bacteriol 173, 687-696.
    52. Dose, K., Bieger-Dose, A., Kerz, O. & Gill, M. (1991). DNA-strand breaks limit survival in extreme dryness. Orig Life Evol Biosph 21, 177-187.
    53. Dose, K., Bieger-Dose, A., Labusch, M. & Gill, M. (1992). Survival in extreme dryness and DNA-single-strand breaks. Adv Space Res 12, 221-229.
    54. Driedger, A. A., James, A. P. & Grayston, M. J. (1970). Cell survival and X-ray-induced DNA degradation in Micrococcus radiodurans. Radiat Res 44, 835-845.
    55. Dukan, S. & Touati, D. (1996). Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J Bacteriol 178, 6145-6150.
    56. Earl, A. M., Mohundro, M. M., Mian, I. S. & Battista, J. R. (2002a). The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J Bacteriol 184, 6216-6224.
    57. Earl, A. M., Rankin, S. K., Kim, K. P., Lamendola, O. N. & Battista, J. R. (2002b). Genetic evidence that the uvsE gene product of Deinococcus radiodurans R1 is a UV damage endonuclease. J Bacteriol 184, 1003-1009.
    58. Eisen, J. A. & Hanawalt, P. C. (1999). A phylogenomic study of DNA repair genes, proteins, and processes. Mutat Res 435, 171-213.
    59. Epstein, W. (1986). Osmoregulation by potassium transport in Escherichia coli. FEMS Microbiology Letters 39, 73-78.
    60. Feng de, Q., Yang, L. F., Lu, W. D. & Yang, S. S. (2007). Analysis of protein expression profiles of Halobacillus dabanensis D-8T under optimal and high salinity conditions. Curr Microbiol 54, 20-26.
    61. Ferguson, G. P., Creighton, R. I., Nikolaev, Y. & Booth, I. R. (1998). Importance of RpoS and Dps in survival of exposure of both exponential- and stationary-phase Escherichia coli cells to the electrophile N-ethylmaleimide. J Bacteriol 180, 1030-1036.
    62. Forst, S., Delgado, J. & Inouye, M. (1989). Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. Proc Natl Acad Sci U S A 86, 6052-6056.
    63. Foster, J. W. (2004). Escherichia coli acid resistance: tales of an amateur acidophile. Nature reviews 2, 898-907.
    64. Fredriksson, A., Ballesteros, M., Dukan, S. & Nystrom, T. (2005). Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon. J Bacteriol 187, 4207-4213.
    65. Frenkiel-Krispin, D., Ben-Avraham, I., Englander, J., Shimoni, E., Wolf, S. G. & Minsky, A. (2004). Nucleoid restructuring in stationary-state bacteria. Mol Microbiol 51, 395-405.
    66. Fu, G. K., Smith, M. J. & Markovitz, D. M. (1997). Bacterial protease Lon is a site-specific DNA-binding protein. Journal of Biological Chemistry 272, 534.
    67. Funayama, T., Narumi, I., Kikuchi, M., Kitayama, S., Watanabe, H. & Yamamoto, K. (1999). Identification and disruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans. Mutat Res 435, 151-161.
    68. Galinski, E. A. & Truper, H. G. (1994). Microbial behaviour in salt-stressed ecosystems. FEMS microbiology reviews 15, 95-108.
    69. Gallegos, M. T., Schleif, R., Bairoch, A., Hofmann, K. & Ramos, J. L. (1997). Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 61, 393-410.
    70. Gao, G., Tian, B., Liu, L., Sheng, D., Shen, B. & Hua, Y. (2003). Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli. DNA Repair (Amst) 2, 1419-1427.
    71. Gao, G., Lu, H., Huang, L. & Hua, Y. (2005). Construction of DNA damage response gene pprI function-deficient and function-complementary mutants in Deinococcus radiodurans. Chinese Science Bulletin 50, 311-316.
    72. Gao, G., Le, D., Huang, L., Lu, H., Narumi, I. & Hua, Y. (2006). Internal promoter characterization and expression of the Deinococcus radiodurans pprI-folP gene cluster. FEMS Microbiol Lett 257, 195-201.
    73. Gelfand, M. S. (2006). Evolution of transcriptional regulatory networks in microbial genomes. Current opinion in structural biology 16, 420-429.
    74. Godovac‐Zimmermann, J. & Brown, L. R. (2001). Perspectives for mass spectrometry and functional proteomics. Mass Spectrometry Reviews 20, 1-57.
    75. Gong, L., Takayama, K. & Kjelleberg, S. (2002). Role of spoT-dependent ppGpp accumulation in the survival of light-exposed starved bacteria. Microbiology 148, 559-570.
    76. Gourmelon, M., Touati, D., Pommepuy, M. & Cormier, M. (1997). Survival of Escherichia coli exposed to visible light in seawater: analysis of rpoS-dependent effects. Can J Microbiol 43, 1036-1043.
    77. Gowrishankar, J. & Manna, D. (1996). How is osmotic regulation of transcription of the Escherichia coli proU operon achieved? A review and a model. Genetica 97, 363-378.
    78. Gragerov, A., Nudler, E., Komissarova, N., Gaitanaris, G. A., Gottesman, M. E. & Nikiforov, V. (1992). Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc Natl Acad Sci U S A 89, 10341-10344.
    79. Gutman, P. D., Fuchs, P., Ouyang, L. & Minton, K. W. (1993). Identification, sequencing, and targeted mutagenesis of a DNA polymerase gene required for the extreme radioresistance of Deinococcus radiodurans. J Bacteriol 175, 3581-3590.
    80. Gutman, P. D., Carroll, J. D., Masters, C. I. & Minton, K. W. (1994). Sequencing, targeted mutagenesis and expression of a recA gene required for the extreme radioresistance of Deinococcus radiodurans. Gene 141, 31-37.
    81. Ha, J. H. & McKay, D. B. (1995). Kinetics of nucleotide-induced changes in the tryptophan fluorescence of the molecular chaperone Hsc70 and its subfragments suggest the ATP-induced conformational change follows initial ATP binding. Biochemistry 34, 11635-11644.
    82. Hagiwara, D., Sugiura, M., Oshima, T., Mori, H., Aiba, H., Yamashino, T. & Mizuno, T. (2003). Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol 185, 5735-5746.
    83. Harsojo, Kitayama, S. & Matsuyama, A. (1981). Genome multiplicity and radiation resistance in Micrococcus radiodurans. J Biochem 90, 877-880.
    84. He, B., Shiau, A., Choi, K. Y., Zalkin, H. & Smith, J. M. (1990). Genes of the Escherichia coli pur regulon are negatively controlled by a repressor-operator interaction. J Bacteriol 172, 4555-4562.
    85. He, Y. (2009). High cell density production of Deinococcus radiodurans under optimized conditions. J Ind Microbiol Biotechnol 36, 539-546.
    86. Hengge, R. (2009). Proteolysis of sigmaS (RpoS) and the general stress response in Escherichia coli. Res Microbiol 160, 667-676.
    87. Hesterkamp, T., Hauser, S., Lutcke, H. & Bukau, B. (1996). Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chains. Proc Natl Acad Sci U S A 93, 4437-4441.
    88. Higashitani, A., Ishii, Y., Kato, Y. & Koriuchi, K. (1997). Functional dissection of a cell-division inhibitor, SulA, of Escherichia coli and its negative regulation by Lon. Mol Gen Genet 254, 351-357.
    89. Hoffmann, A., Bukau, B. & Kramer, G. (2010). Structure and function of the molecular chaperone Trigger Factor. Biochim Biophys Acta 1803, 650-661.
    90. Horlacher, R., Uhland, K., Klein, W., Ehrmann, M. & Boos, W. (1996). Characterization of a cytoplasmic trehalase of Escherichia coli. J Bacteriol 178, 6250-6257.
    91. Hoving, S., Voshol, H. & van Oostrum, J. (2000). Towards high performance two-dimensional gel electrophoresis using ultrazoom gels. Electrophoresis 21, 2617-2621.
    92. Hsu, R. J., Yang, H. J. & Tsai, H. J. (2009). Labeled microRNA pull-down assay system: an experimental approach for high-throughput identification of microRNA-target mRNAs. Nucleic acids research 37, e77.
    93. Hu, B. & Tomita, M. (2007). The Hsp70 chaperone system maintains high concentrations of active proteins and suppresses ATP consumption during heat shock. Syst Synth Biol 1, 47-58.
    94. Hua, Y., Narumi, I., Gao, G., Tian, B., Satoh, K., Kitayama, S. & Shen, B. (2003). PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem Biophys Res Commun 306, 354-360.
    95. Incharoensakdi, A., Matsuda, N., Hibino, T., Meng, Y. L., Ishikawa, H., Hara, A., Funaguma, T. & Takabe, T. (2000). Overproduction of spinach betaine aldehyde dehydrogenase in Escherichia coli. Structural and functional properties of wild-type, mutants and E. coli enzymes. Eur J Biochem 267, 7015-7023.
    96. Izawa, S., Sato, M., Yokoigawa, K. & Inoue, Y. (2004). Intracellular glycerol influences resistance to freeze stress in Saccharomyces cerevisiae: analysis of a quadruple mutant in glycerol dehydrogenase genes and glycerol-enriched cells. Appl Microbiol Biotechnol 66, 108-114.
    97. Joshi, B., Schmid, R., Altendorf, K. & Apte, S. K. (2004). Protein recycling is a major component of post-irradiation recovery in Deinococcus radiodurans strain R1. Biochemical and biophysical research communications 320, 1112-1117.
    98. Katayama, T., Kubota, T., Takata, M., Akimitsu, N. & Sekimizu, K. (1996). Disruption of the hslU gene, which encodes an ATPase subunit of the eukaryotic 26S proteasome homolog in Escherichia coli, suppresses the temperature-sensitive dnaA46 mutation. Biochem Biophys Res Commun 229, 219-224.
    99. Kempf, B. & Bremer, E. (1998). Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Archives of microbiology 170, 319-330.
    100. Kim, J., Yoshimura, S. H., Hizume, K., Ohniwa, R. L., Ishihama, A. & Takeyasu, K. (2004). Fundamental structural units of the Escherichia coli nucleoid revealed by atomic force microscopy. Nucleic acids research 32, 1982-1992.
    101. Kim, J. I., Sharma, A. K., Abbott, S. N. & other authors (2002). RecA Protein from the extremely radioresistant bacterium Deinococcus radiodurans: expression, purification, and characterization. J Bacteriol 184, 1649-1660.
    102. Kirkpatrick, C., Maurer, L. M., Oyelakin, N. E., Yoncheva, Y. N., Maurer, R. & Slonczewski, J. L. (2001). Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J Bacteriol 183, 6466-6477.
    103. Kitayama, S., Asaka, S. & Totsuka, K. (1983). DNA double-strand breakage and removal of cross-links in Deinococcus radiodurans. J Bacteriol 155, 1200-1207.
    104. Kitayama, S., Kohoroku, M., Takagi, A. & Itoh, H. (1997). Mutation of D. radiodurans in a gene homologous to ruvB of E. coli. Mutat Res 385, 151-157.
    105. Kleerebezem, M., Crielaard, W. & Tommassen, J. (1996). Involvement of stress protein PspA (phage shock protein A) of Escherichia coli in maintenance of the protonmotive force under stress conditions. EMBO J 15, 162-171.
    106. Kolter, R., Siegele, D. A. & Tormo, A. (1993). The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47, 855-874.
    107. Kowalczykowski, S. C. (2000). Initiation of genetic recombination and recombination-dependent replication. Trends Biochem Sci 25, 156-165.
    108. Kramer, G., Rauch, T., Rist, W., Vorderwulbecke, S., Patzelt, H., Schulze-Specking, A., Ban, N., Deuerling, E. & Bukau, B. (2002). L23 protein functions as a chaperone docking site on the ribosome. Nature 419, 171-174.
    109. Kuroda, A., Nomura, K., Ohtomo, R., Kato, J., Ikeda, T., Takiguchi, N., Ohtake, H. & Kornberg, A. (2001). Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science (New York, NY 293, 705-708.
    110. Kuzminov, A. (1999). Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63, 751-813, table of contents.
    111. Lacour, S. & Landini, P. (2004). SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences. J Bacteriol 186, 7186-7195.
    112. Lamark, T., Kaasen, I., Eshoo, M. W., Falkenberg, P., McDougall, J. & Strom, A. R. (1991). DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol Microbiol 5, 1049-1064.
    113. Lamark, T., Rokenes, T. P., McDougall, J. & Strom, A. R. (1996). The complex bet promoters of Escherichia coli: regulation by oxygen (ArcA), choline (BetI), and osmotic stress. J Bacteriol 178, 1655-1662.
    114. Lange, R., Barth, M. & Hengge-Aronis, R. (1993). Complex transcriptional control of the sigma s-dependent stationary-phase-induced and osmotically regulated osmY (csi-5) gene suggests novel roles for Lrp, cyclic AMP (cAMP) receptor protein-cAMP complex, and integration host factor in the stationary-phase response of Escherichia coli. J Bacteriol 175, 7910-7917.
    115. Laskowska, E., Kuczynska-Wisnik, D., Skorko-Glonek, J. & Taylor, A. (1996). Degradation by proteases Lon, Clp and HtrA, of Escherichia coli proteins aggregated in vivo by heat shock; HtrA protease action in vivo and in vitro. Mol Microbiol 22, 555-571.
    116. Laurinavichene, T. V. & Tsygankov, A. A. (2001). H2 consumption by Escherichia coli coupled via hydrogenase 1 or hydrogenase 2 to different terminal electron acceptors. FEMS Microbiol Lett 202, 121-124.
    117. Leffers, G. G., Jr. & Gottesman, S. (1998). Lambda Xis degradation in vivo by Lon and FtsH. J Bacteriol 180, 1573-1577.
    118. Lelong, C., Aguiluz, K., Luche, S., Kuhn, L., Garin, J., Rabilloud, T. & Geiselmann, J. (2007). The Crl-RpoS regulon of Escherichia coli. Mol Cell Proteomics 6, 648-659.
    119. Lett, J. T., Feldschreiber, P., Little, J. G., Steele, K. & Dean, C. J. (1967). The repair of x-raydamage to the deoxyribonucleic acid in Micrococcus radiodurans: a study of the excision process. Proc R Soc Lond B Biol Sci 167, 184-201.
    120. Lett, J. T., Caldwell, I. & Little, J. G. (1970). Repair of x-ray damage to the DNA in Micrococcus radiodurans: the effect of 5-bromodeoxyuridine. J Mol Biol 48, 395-408.
    121. Levin-Zaidman, S., Englander, J., Shimoni, E., Sharma, A. K., Minton, K. W. & Minsky, A. (2003). Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science (New York, NY 299, 254-256.
    122. Lien, H. Y., Yu, C. H., Liou, C. M. & Wu, W. F. (2009). Regulation of clpQY (hslVU) Gene Expression in Escherichia coli. Open Microbiol J 3, 29-39.
    123. Lilley, K. S. & Friedman, D. B. (2004). All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev Proteomics 1, 401-409.
    124. Liu, X. & De Wulf, P. (2004). Probing the ArcA-P modulon of Escherichia coli by whole genome transcriptional analysis and sequence recognition profiling. J Biol Chem 279, 12588-12597.
    125. Lo, T. C. & Sanwal, B. D. (1975). Membrane bound substrate recognition components of the dicarboxylate transport system in Escherichia coli. Biochem Biophys Res Commun 63, 278-285.
    126. Lomovskaya, O. L., Kidwell, J. P. & Matin, A. (1994). Characterization of the sigma 38-dependent expression of a core Escherichia coli starvation gene, pexB. J Bacteriol 176, 3928-3935.
    127. Lopez, J. L. (2007). Two-dimensional electrophoresis in proteome expression analysis. J Chromatogr B Analyt Technol Biomed Life Sci 849, 190-202.
    128. Lu, H., Gao, G., Xu, G., Fan, L., Yin, L., Shen, B. & Hua, Y. (2009). Deinococcus radiodurans PprI switches on DNA damage response and cellular survival networks after radiation damage. Mol Cell Proteomics 8, 481-494.
    129. Luttmann, D., Heermann, R., Zimmer, B., Hillmann, A., Rampp, I. S., Jung, K. & Gorke, B. (2009). Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA(Ntr) in Escherichia coli. Mol Microbiol 72, 978-994.
    130. Ma, R., Zhang, Y., Hong, H., Lu, W., Lin, M., Chen, M. & Zhang, W. (2010). Improved osmotic tolerance and ethanol production of ethanologenic Escherichia coli by IrrE, a global regulator of radiation-resistance of Deinococcus radiodurans. Curr Microbiol 62, 659-664.
    131. Makarova, K. S., Aravind, L., Wolf, Y. I., Tatusov, R. L., Minton, K. W., Koonin, E. V. & Daly, M. J. (2001). Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65, 44-79.
    132. Makinoshima, H., Aizawa, S., Hayashi, H., Miki, T., Nishimura, A. & Ishihama, A. (2003). Growth phase-coupled alterations in cell structure and function of Escherichia coli. J Bacteriol 185, 1338-1345.
    133. Mandrand-Berthelot, M. A., Ritzenthaler, P. & Mata-Gilsinger, M. (1984). Construction and expression of hybrid plasmids containing the structural gene of the Escherichia coli K-12 3-deoxy-2-oxo-D-gluconate transport system. J Bacteriol 160, 600-606.
    134. Mannazzu, I., Guerra, E., Ferretti, R., Pediconi, D. & Fatichenti, F. (2000). Vanadate and copper induce overlapping oxidative stress responses in the vanadate-tolerant yeast Hansenula polymorpha. Biochimica et Biophysica Acta (BBA)-General Subjects 1475, 151-156.
    135. Markillie, L. M., Varnum, S. M., Hradecky, P. & Wong, K. K. (1999). Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J Bacteriol 181, 666-669.
    136. Martinez-Hackert, E. & Hendrickson, W. A. (2009). Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell 138, 923-934.
    137. Martinez, A. & Kolter, R. (1997). Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol 179, 5188-5194.
    138. Masters, C. I., Smith, M. D., Gutman, P. D. & Minton, K. W. (1991). Heterozygosity and instability of amplified chromosomal insertions in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 173, 6110-6117.
    139. Matthews, B. W. (1988). Structural basis of the action of thermolysin and related zinc peptidases. Accounts of Chemical Research 21, 333-340.
    140. Mattimore, V., Udupa, K. S., Berne, G. A. & Battista, J. R. (1995). Genetic characterization of forty ionizing radiation-sensitive strains of Deinococcus radiodurans: linkage information from transformation. J Bacteriol 177, 5232-5237.
    141. Mattimore, V. & Battista, J. R. (1996). Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178, 633-637.
    142. McLaggan, D., Naprstek, J., Buurman, E. T. & Epstein, W. (1994). Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. J Biol Chem 269, 1911-1917.
    143. Minton, K. W. (1996). Repair of ionizing-radiation damage in the radiation resistant bacterium Deinococcus radiodurans. Mutat Res 363, 1-7.
    144. Mizuno, T. & Mizushima, S. (1990). Signal transduction and gene regulation through the phosphorylation of two regulatory components: the molecular basis for the osmotic regulation of the porin genes. Mol Microbiol 4, 1077-1082.
    145. Moseley, B. E. & Copland, H. J. (1976). The rate of recombination repair and its relationship to the radiation-induced delay in DNA synthesis in Micrococcus radiodurans. J Gen Microbiol 93, 251-258.
    146. Moseley, B. E. & Evans, D. M. (1983). Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine dimers from DNA: evidence for two excision pathways. J Gen Microbiol 129, 2437-2445.
    147. Mun, C., Del Rowe, J., Sandigursky, M., Minton, K. W. & Franklin, W. A. (1994). DNA deoxyribophosphodiesterase and an activity that cleaves DNA containing thymine glycol adducts in Deinococcus radiodurans. Radiat Res 138, 282-285.
    148. Nair, S. & Finkel, S. E. (2004). Dps protects cells against multiple stresses during stationary phase. J Bacteriol 186, 4192-4198.
    149. Narumi, I., Satoh, K., Kikuchi, M., Funayama, T., Yanagisawa, T., Kobayashi, Y., Watanabe, H. & Yamamoto, K. (2001). The LexA protein from Deinococcus radiodurans is not involved in RecA induction following gamma irradiation. J Bacteriol 183, 6951-6956.
    150. Narumi, I., Satoh, K., Cui, S., Funayama, T., Kitayama, S. & Watanabe, H. (2004). PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol 54, 278-285.
    151. Nishino, K. & Yamaguchi, A. (2002). EvgA of the two-component signal transduction system modulates production of the yhiUV multidrug transporter in Escherichia coli. J Bacteriol 184, 2319-2323.
    152. O'Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250, 4007-4021.
    153. Ohba, H., Satoh, K., Sghaier, H., Yanagisawa, T. & Narumi, I. (2009). Identification of PprM: a modulator of the PprI-dependent DNA damage response in Deinococcus radiodurans. Extremophiles 13, 471-479.
    154. Pan, J., Wang, J., Zhou, Z. & other authors (2009). IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus. PLoS One 4, e4422.
    155. Park, L. S. & Datta, P. (1979). Inhibition of Escherichia coli biodegradative threonine dehydratase by pyruvate. J Bacteriol 138, 1026-1028.
    156. Patridge, E. V. & Ferry, J. G. (2006). WrbA from Escherichia coli and Archaeoglobus fulgidus is an NAD(P)H:quinone oxidoreductase. J Bacteriol 188, 3498-3506.
    157. Perez-Victoria, I., Kemper, S., Patel, M. K., Edwards, J. M., Errey, J. C., Primavesi, L. F., Paul, M. J., Claridge, T. D. & Davis, B. G. (2009). Saturation transfer difference NMR reveals functionally essential kinetic differences for a sugar-binding repressor protein. Chem Commun (Camb), 5862-5864.
    158. Peruski, L. F., Jr. & Neidhardt, F. C. (1994). Identification of a conditionally essential heat shock protein in Escherichia coli. Biochim Biophys Acta 1207, 165-172.
    159. Phan-Thanh, L. & Gormon, T. (1997). Stress proteins in Listeria monocytogenes. Electrophoresis 18, 1464-1471.
    160. Picksley, S. M., Attfield, P. V. & Lloyd, R. G. (1984). Repair of DNA double-strand breaks in Escherichia coli K12 requires a functional recN product. Mol Gen Genet 195, 267-274.
    161. Postma, P. W., Lengeler, J. W. & Jacobson, G. R. (1993). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57, 543-594.
    162. Pratt, L. A., Hsing, W., Gibson, K. E. & Silhavy, T. J. (1996). From acids to osmZ: multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli. Mol Microbiol 20, 911-917.
    163. Price, M. N., Dehal, P. S. & Arkin, A. P. (2008). Horizontal gene transfer and the evolution of transcriptional regulation in Escherichia coli. Genome biology 9, R4.
    164. Rahman, M., Hasan, M. R., Oba, T. & Shimizu, K. (2006). Effect of rpoS gene knockout on the metabolism of Escherichia coli during exponential growth phase and early stationary phase based on gene expressions, enzyme activities and intracellular metabolite concentrations. Biotechnol Bioeng 94, 585-595.
    165. Rawlings, N. D., Morton, F. R., Kok, C. Y., Kong, J. & Barrett, A. J. (2008). MEROPS: the peptidase database. Nucleic acids research 36, D320-325.
    166. Rengpipat, S., Lowe, S. E. & Zeikus, J. G. (1988). Effect of extreme salt concentrations on the physiology and biochemistry of Halobacteroides acetoethylicus. J Bacteriol 170, 3065-3071.
    167. Rhodes, D. & Hanson, A. D. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Biology 44, 357-384.
    168. Righetti, P. G., Castagna, A., Antonucci, F., Piubelli, C., Cecconi, D., Campostrini, N., Antonioli, P., Astner, H. & Hamdan, M. (2004). Critical survey of quantitative proteomics in two-dimensional electrophoretic approaches. J Chromatogr A 1051, 3-17.
    169. Rimmele, M. & Boos, W. (1994). Trehalose-6-phosphate hydrolase of Escherichia coli. J Bacteriol 176, 5654-5664.
    170. Rohrwild, M., Coux, O., Huang, H. C., Moerschell, R. P., Yoo, S. J., Seol, J. H., Chung, C. H. & Goldberg, A. L. (1996). HslV-HslU: A novel ATP-dependent protease complex in Escherichia colirelated to the eukaryotic proteasome. Proc Natl Acad Sci U S A 93, 5808-5813.
    171. Rosen, R., Biran, D., Gur, E., Becher, D., Hecker, M. & Ron, E. Z. (2002). Protein aggregation in Escherichia coli: role of proteases. FEMS Microbiol Lett 207, 9-12.
    172. Rubin, P., Finkelstein, J. & Shapiro, D. (1992). Molecular biology mechanisms in the radiation induction of pulmonary injury syndromes: interrelationship between the alveolar macrophage and the septal fibroblast. Int J Radiat Oncol Biol Phys 24, 93-101.
    173. Ryzhavskaia, A. S., Kaidalova, N. V., Anukhin Iu, M., Kliachko, E. V. & Livshits, V. A. (1988). [Stability of normal, abnormal and recombinant proteins in Escherichia coli strains deficient for intracellular proteinase La--the product of the lon gene]. Mol Biol (Mosk) 22, 201-208.
    174. Sa-Correia, I. & Teixeira, M. C. (2010). 2D electrophoresis-based expression proteomics: a microbiologist's perspective. Expert Rev Proteomics 7, 943-953.
    175. Santos, J. M., Freire, P., Mesquita, F. S., Mika, F., Hengge, R. & Arraiano, C. M. (2006). Poly(A)-polymerase I links transcription with mRNA degradation via sigmaS proteolysis. Mol Microbiol 60, 177-188.
    176. Satoh, K., Ohba, H., Sghaier, H. & Narumi, I. (2006). Down-regulation of radioresistance by LexA2 in Deinococcus radiodurans. Microbiology 152, 3217-3226.
    177. Schlosser, A., Hamann, A., Bossemeyer, D., Schneider, E. & Bakker, E. P. (1993). NAD+ binding to the Escherichia coli K(+)-uptake protein TrkA and sequence similarity between TrkA and domains of a family of dehydrogenases suggest a role for NAD+ in bacterial transport. Mol Microbiol 9, 533-543.
    178. Schoemaker, J. M., Gayda, R. C. & Markovitz, A. (1984). Regulation of cell division in Escherichia coli: SOS induction and cellular location of the sulA protein, a key to lon-associated filamentation and death. J Bacteriol 158, 551-561.
    179. Scholz, C., Stoller, G., Zarnt, T., Fischer, G. & Schmid, F. X. (1997). Cooperation of enzymatic and chaperone functions of trigger factor in the catalysis of protein folding. EMBO J 16, 54-58.
    180. Schryvers, A., Lohmeier, E. & Weiner, J. H. (1978). Chemical and functional properties of the native and reconstituted forms of the membrane-bound, aerobic glycerol-3-phosphate dehydrogenase of Escherichia coli. J Biol Chem 253, 783-788.
    181. Schweder, T., Lee, K. H., Lomovskaya, O. & Matin, A. (1996). Regulation of Escherichia coli starvation sigma factor (sigma s) by ClpXP protease. J Bacteriol 178, 470-476.
    182. Semchyshyn, H. M. & Lushchak, V. I. (2004). [Oxidative stress and control of catalase activity in Escherichia coli]. Ukr Biokhim Zh 76, 31-42.
    183. Senturker, S., Bauche, C., Laval, J. & Dizdaroglu, M. (1999). Substrate specificity of Deinococcus radiodurans Fpg protein. Biochemistry 38, 9435-9439.
    184. Seong, I. S., Oh, J. Y., Lee, J. W., Tanaka, K. & Chung, C. H. (2000). The HslU ATPase acts as a molecular chaperone in prevention of aggregation of SulA, an inhibitor of cell division in Escherichia coli. FEBS Lett 477, 224-229.
    185. Sharma, S. K., De los Rios, P., Christen, P., Lustig, A. & Goloubinoff, P. (2010). The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nat Chem Biol 6, 914-920.
    186. Siebers, A. & Altendorf, K. (1988). The K+-translocating Kdp-ATPase from Escherichia coli. Purification, enzymatic properties and production of complex- and subunit-specific antisera. Eur J Biochem 178, 131-140.
    187. Slade, D. & Radman, M. (2011). Oxidative Stress Resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75, 133-191.
    188. Somero, G. N. (1986). Protons, osmolytes, and fitness of internal milieu for protein function. Am J Physiol 251, R197-213.
    189. Strom, A. R. & Kaasen, I. (1993). Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8, 205-210.
    190. Switala, J., O'Neil, J. O. & Loewen, P. C. (1999). Catalase HPII from Escherichia coli exhibits enhanced resistance to denaturation. Biochemistry 38, 3895-3901.
    191. Tang, W., Peng, X. & Newton, R. J. (2005). Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase. Plant Physiol Biochem 43, 139-146.
    192. Teter, S. A., Houry, W. A., Ang, D., Tradler, T., Rockabrand, D., Fischer, G., Blum, P., Georgopoulos, C. & Hartl, F. U. (1999). Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97, 755-765.
    193. Tirgari, S. & Moseley, B. E. B. (1980). Transformation in Micrococcus radiodurans: measurement of various parameters and evidence for multiple, independently segregating genomes per cell. Microbiology 119, 287.
    194. Tjaden, B., Goodwin, S. S., Opdyke, J. A., Guillier, M., Fu, D. X., Gottesman, S. & Storz, G. (2006). Target prediction for small, noncoding RNAs in bacteria. Nucleic acids research 34, 2791-2802.
    195. Tommassen, J., Eiglmeier, K., Cole, S. T., Overduin, P., Larson, T. J. & Boos, W. (1991). Characterization of two genes, glpQ and ugpQ, encoding glycerophosphoryl diester phosphodiesterases of Escherichia coli. Mol Gen Genet 226, 321-327.
    196. Torres-Cabassa, A. S. & Gottesman, S. (1987). Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis. J Bacteriol 169, 981-989.
    197. Torsvik, V., Ovreas, L. & Thingstad, T. F. (2002). Prokaryotic diversity--magnitude, dynamics, and controlling factors. Science (New York, NY 296, 1064-1066.
    198. Typas, A., Barembruch, C., Possling, A. & Hengge, R. (2007). Stationary phase reorganisation of the Escherichia coli transcription machinery by Crl protein, a fine-tuner of sigmas activity and levels. EMBO J 26, 1569-1578.
    199. Udupa, K. S., O'Cain, P. A., Mattimore, V. & Battista, J. R. (1994). Novel ionizing radiation-sensitive mutants of Deinococcus radiodurans. J Bacteriol 176, 7439-7446.
    200. Unlu, M., Morgan, M. E. & Minden, J. S. (1997). Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071-2077.
    201. Valent, Q. A., Kendall, D. A., High, S., Kusters, R., Oudega, B. & Luirink, J. (1995). Early events in preprotein recognition in E. coli: interaction of SRP and trigger factor with nascent polypeptides. EMBO J 14, 5494-5505.
    202. Varghese, A. J. & Day, R. S., 3rd (1970). Excision of cytosine-thymine adduct from the DNA of ultraviolet-irradiated Micrococcus radiodurans. Photochem Photobiol 11, 511-517.
    203. Verheul, A., Glaasker, E., Poolman, B. & Abee, T. (1997). Betaine and L-carnitine transport by Listeria monocytogenes Scott A in response to osmotic signals. J Bacteriol 179, 6979-6985.
    204. Vignais, P. M. & Colbeau, A. (2004). Molecular biology of microbial hydrogenases. Curr Issues Mol Biol 6, 159-188.
    205. Vujicic-Zagar, A., Dulermo, R., Le Gorrec, M., Vannier, F., Servant, P., Sommer, S., de Groot, A. & Serre, L. (2009). Crystal structure of the IrrE protein, a central regulator of DNA damage repair in deinococcaceae. J Mol Biol 386, 704-716.
    206. Vukovic-Nagy, B., Fox, B. W. & Fox, M. (1974). The release of a deoxyribonucleic acid fragment after x-irradiation of Micrococcus radiodurans. Int J Radiat Biol Relat Stud Phys Chem Med 25, 329-337.
    207. Wang, L., Elliott, M. & Elliott, T. (1999). Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. J Bacteriol 181, 1211-1219.
    208. Wang, P. & Schellhorn, H. E. (1995). Induction of resistance to hydrogen peroxide and radiation in Deinococcus radiodurans. Can J Microbiol 41, 170-176.
    209. Weber, A. & Jung, K. (2002). Profiling early osmostress-dependent gene expression in Escherichia coli using DNA macroarrays. J Bacteriol 184, 5502-5507.
    210. Weber, A., Kogl, S. A. & Jung, K. (2006). Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J Bacteriol 188, 7165-7175.
    211. Weber, H., Polen, T., Heuveling, J., Wendisch, V. F. & Hengge, R. (2005). Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187, 1591-1603.
    212. Wei, Y., Ringe, D., Wilson, M. A. & Ondrechen, M. J. (2007). Identification of functional subclasses in the DJ-1 superfamily proteins. PLoS Comput Biol 3, e10.
    213. Weichart, D., Lange, R., Henneberg, N. & Hengge-Aronis, R. (1993). Identification and characterization of stationary phase-inducible genes in Escherichia coli. Mol Microbiol 10, 407-420.
    214. White, O., Eisen, J. A., Heidelberg, J. F. & other authors (1999). Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science (New York, NY 286, 1571-1577.
    215. Wood, J. M. (1999). Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63, 230-262.
    216. Wood, J. M., Bremer, E., Csonka, L. N., Kraemer, R., Poolman, B., van der Heide, T. & Smith, L. T. (2001). Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A Mol Integr Physiol 130, 437-460.
    217. Wu, W. F., Zhou, Y. & Gottesman, S. (1999). Redundant in vivo proteolytic activities of Escherichia coli Lon and the ClpYQ (HslUV) protease. J Bacteriol 181, 3681-3687.
    218. Yamada, M. & Saier, M. H., Jr. (1987). Glucitol-specific enzymes of the phosphotransferase system in Escherichia coli. Nucleotide sequence of the gut operon. J Biol Chem 262, 5455-5463.
    219. Yamamoto, K., Hirao, K., Oshima, T., Aiba, H., Utsumi, R. & Ishihama, A. (2005). Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280, 1448-1456.
    220. Yancey, P. H. (2004). Compatible and counteracting solutes: protecting cells from the Dead Sea to the deep sea. Sci Prog 87, 1-24.
    221. Yim, H. H. & Villarejo, M. (1992). osmY, a new hyperosmotically inducible gene, encodes a periplasmic protein in Escherichia coli. J Bacteriol 174, 3637-3644.
    222. Yoo, S. J., Seol, J. H., Shin, D. H., Rohrwild, M., Kang, M. S., Tanaka, K., Goldberg, A. L. & Chung, C. H. (1996). Purification and characterization of the heat shock proteins HslV and HslU thatform a new ATP-dependent protease in Escherichia coli. J Biol Chem 271, 14035-14040.
    223. Zafar, M. N., Tasca, F., Gorton, L., Patridge, E. V., Ferry, J. G. & Noll, G. (2009). Tryptophan repressor-binding proteins from Escherichia coli and Archaeoglobus fulgidus as new catalysts for 1,4-dihydronicotinamide adenine dinucleotide-dependent amperometric biosensors and biofuel cells. Anal Chem 81, 4082-4088.
    224. Zhang, Y., Ma, R., Zhao, Z., Zhou, Z., Lu, W., Zhang, W. & Chen, M. (2010). irrE, an exogenous gene from Deinococcus radiodurans, improves the growth of and ethanol production by a Zymomonas mobilis strain under ethanol and acid stress. J Microbiol Biotechnol 20, 1156-1162.
    225. Zhao, G., Ceci, P., Ilari, A., Giangiacomo, L., Laue, T. M., Chiancone, E. & Chasteen, N. D. (2002). Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J Biol Chem 277, 27689-27696.
    226. Zheng, M., Wang, X., Templeton, L. J., Smulski, D. R., LaRossa, R. A. & Storz, G. (2001). DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183, 4562-4570.
    227. Zhou, Y. & Gottesman, S. (2006). Modes of regulation of RpoS by H-NS. J Bacteriol 188, 7022-7025.
    228. Zhou, Z., Zhang, W., Chen, M., Pan, J., Lu, W., Ping, S., Yan, Y., Hou, X., Yuan, M., Zhan, Y. & Lin M. (2011). Genome-wide transcriptome and proteome analysis of Escherichia coli expressing IrrE, a global regulator of Deinococcus radiodurans. Mol Biosyst 7, 1613-1620.
    229. Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E. & Hendrickson, W. A. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science (New York, NY 272, 1606-1614.
    230.陈婷婷,连利霞,牟英&杨占山(2010).抗辐射球菌pprI基因活体电转染救治小鼠γ射线损伤的实验研究.辐射研究与辐射工艺学报28, 166-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700