用户名: 密码: 验证码:
高陡岩质边坡微震监测与稳定性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩质边坡失稳破坏(滑坡)是三大自然灾害之一,严重危及着国家财产和人民生命安全,边坡失稳预测研究是一项世界性的难题,迄今为止,仍然没有形成一套系统、完善和成熟的理论方法体系。岩质边坡失稳监测及预测分析一直是边坡工程稳定性研究的重要课题之一,也是岩石力学与工程领域的热点和难点。近年来,随着我国社会经济的稳健发展和对可再生清洁能源的大力需求,西南地区水电资源开发呈现加速发展的趋势,一大批大型(巨型)水电工程开始进行前期筹建、勘察设计或已经开工建设,这些水电工程都不可避免地面临高陡岩质边坡的安全稳定性问题。岩质高边坡的稳定问题不仅涉及到工程自身的安全,也涉及整体环境的安全。西南地区水利水电工程高陡岩质边坡的稳定控制已成为水电工程建设成败的关键技术问题之一,影响和制约着水力资源开发和水电工程建设。
     研究表明,岩质边坡失稳与其内部微震活动有着必然联系,微震活动是岩质边坡发生失稳破坏的前兆,失稳边坡内部微破裂演化先于地表位移发生。本文基于此学术思想,引入地震学理论和地球物理学方法,突破传统岩质边坡地表位移监测模式,通过采用微震监测系统实时获取边坡失稳前岩体内部的微震活动信息,建立岩质边坡有限元数值模型,通过大规模科学计算,解读岩质边坡失稳的应力场、微破裂演化规律,研究岩质边坡渐进破裂内部微震活动规律及其失稳机理,分析岩质边坡微破裂演化过程与应力场之间的联系,探索岩质边坡微破裂演化、繁衍对其宏观结构破坏过程中微震活动性的影响,包括边坡岩体破裂过程中的声发射时空分布规律及其失稳的前兆模式,寻求岩质边坡微震活动性、背景应力场演化与施工活动之间的联系,建立以微震现场监测为主、以背景应力场分析为辅的岩质边坡失稳预测方法。研究结果不仅可以揭示岩质边坡失稳本质,还能认清岩质边坡失稳破坏形成和发生的条件,还可为复杂应力条件下岩质边坡动态稳定性研究及其失稳预测提供新的思路和方法,对于减轻或避免岩质边坡失稳灾害、保障水电高陡岩质边坡工程施工与营运安全,具有一定的指导作用和现实意义。完成了以下主要研究内容:
     (1)成功构建锦屏一级水电站左岸边坡微震监测系统,初步实现左岸边坡稳定性及潜在风险区域的实时监测和分析。通过对左岸边坡地质、物探和施工资料的深入分析和现场踏勘研究,结合微震事件震源定位精度、监测系统灵敏度要求、工程条件以及边坡监测目的,进行了微震传感器的选型以及监测系统站网的优化研究,得到了满足技术经济要求的监测系统方案。
     (2)通过对岩质边坡不同震动信号的分析研究,提出结合现场踏勘、施工工况信息,综合运用时-频分析技术研究各种震动波形幅频特征的方法,得到了高陡岩质边坡岩石微破裂波形特征。通过人工敲击试验验证了微震传感器的灵敏性和准确性,采用人工定点爆破试验方法确定了左岸边坡等效整体波速模型,测试结果表明锦屏一级水电站左岸边坡微震监测系统定位精度完全满足现场工程要求,并分析了影响震源定位误差的主要因素。
     (3)通过微震活动性时空分布规律,研究了左岸边坡潜在破坏机理及其特征、施工、灌浆等响应区域,识别和圈定了左岸边坡深部岩体由于施工、爆破开挖和固结灌浆等诱发的损伤区域(断层和活化断层),为后期边坡工程的开挖、加固处理和常规监测加密部位提供参考。
     (4)利用真实破坏过程分析软件RFPA,研究了二维、三维条件下岩质边坡破坏过程微破裂的萌生、发育、扩展、相互作用和贯通的机理,探索了岩质边坡渐进破坏过程中应力场和微震活动性空间演化基本规律,形成从细观损伤演化过程揭示宏观岩体结构破坏的研究方法,从应力场演化和微震时空分布的层面上研究岩质边坡失稳的孕育和发生过程,再现了岩质边坡失稳灾变孕育过程中的应力积累、应力阴影和应力迁移等丰富现象。另外,将数值模拟得到的岩质边坡渐进破坏过程应力场与微震监测得到的施工扰动、断层和裂隙带等地质构造异常活化信息进行耦合分析,揭示了岩质边坡人工扰动作用引起构造活化和灾变的机制。针对左岸边坡现场出现的实际问题,通过微震监测和数值模拟耦合分析,解释了坝顶平台裂缝形成机制和外观变形与微震活动性之间的关系。
     (5)将岩石微破裂事件与常规变形观测资料、地质资料、施工状态和数值模拟结果等相结合,建立了微震活动性与岩体松弛变形活动性之间的关系,探讨了岩体及其扰动条件下背景应力场积累、释放、转移的基本规律,建立了背景应力场演化与微震活动性的关系,为预测岩质边坡变形发展趋势提供了新的思路。
     (6)基于能量耗散原理,探索性地提出考虑微震损伤效应的岩体劣化准则,建立了边坡微震监测区域内三维有限元模型,结合微震监测得到的丰富震源信息,分析微震破坏损失能量与岩体力学参数之间的关系,通过提出的岩体劣化准则修正岩体力学参数,反演到三维有限元模型,进行大规模科学计算反馈研究,再现了考虑微震损伤效应的岩质边坡渐进破坏过程,并对边坡稳定性进行了评价分析。
Rock slope instability or landslide is one of the three natural disasters, and it endangers the safety of state property and people's lives seriously. To study prediction of slope instability is a worldwide challenge. So far, a systematic, refined and mature regime of theory and method has not come into existence. Monitoring and forecasting of rock slope instability are always one of the most significant research topics on rock slope engineering, and it also becomes one of the hottest and most difficult subjects in the field of rock mechanics and rock engineering. In recent years, as sustainable development of society and economy and strong demand of the renewable clean energy in China, the development of hydroelectric resources exploitation in Southwestern China renders an accelerating trend. A large number of large-scale hydroelectric projects begin to make prophase preparations, survey and design, or come into operation. Such hydroelectric projects will inevitably confront the stability problems of high steep rock slope. The stability issue of high rock slope has big impact on not only the projects themselves, but also the overall environmental security. Therefore, the stability and its control of high steep rock slopes in the southwest of China becomes one of the key technical problems, which affect and restrict the exploitation of hydroelectric resources and construction of hydroelectric engineering.
     There is an inevitable connection between rock slope instability and microseismi activity inside the rock slope. The microseismicity occurs as precursor for the instability failure of rock slopes, and the evolution of microcrackings inside the unstable slope is prior to the occurrence of slope surface deformation. On the basis of this academic thought, the seismological theory and geophysical approach are applied and microseismic monitoring system is used to capture abundant microseismic information inside rock mass before the macroscopic instability of rock slope. The method has broken through the mode of traditional surface deformation monitoring mode of rock slope. Then, numerical models of rock slope are set up using finite element method and the stress field and evolution pattern of microcrackings of rock slope instability have been interpreted through large-scale scientific computing. Moreover, the impact of microcrackings evolution, propagation inside rock mass on microseismicity during the failure processes of microstructures was also probed, including tempo-spatial distribution regularity of AE and its precursor mode of rock slope instability during rock mass failure processes. The relation among microseismicity, stress field evolution and construction activities of the rock slope is also discussed. Consequently, the predictive approach of rock slope instability has been established based on microseismic monitoring and numerical simulation. The research results can not only reveal the essence of rock slope instability, but also contribute to understand the formation of instability failure and its occurrence criterions of rock slope. They also provide new ideas and methods for investigating dynamic stability and forecasting instability of rock slopes under complex stress condition. This study possesses significance and provides a guidance role in alleviating or avoiding the instability disasters of rock slopes, and ensuring the safety of construction and operation of the hydroelectric high steep rock slopes. The six aspects of work done in this thesis are listed as follows:
     (1) The microseismic monitoring system in the left bank slope of Jinping first stage hydropower station is established successfully, and real-time monitoring and analysis of the left bank slope stability and its potential hazardous regions are realized. Through in-depth investigation with geological data, geophysical prospecting information, construction documents and on-site observation, the option of microseismic sensor and optimization design of monitoring system network have been performed according to the requirements of positioning accuracy of seismic source and monitoring sensitivity, engineering specifications and the aim of slope monitoring. The scheme of monitoring system can satisfy the requirements of technical economy.
     (2) After investigation with different vibration signals of the rock slope, a comprehensive method integrating on-site observation, construction activity information and time-frequency analysis technique has been put forward to study the amplitude-frequency of different vibration waveforms. The waveform characteristics of rock mass microcrackings are thus obtained. Additionally, manual tap tests are used to calibrate the sensitivity and veracity of microseismic sensors. The artificial fixed blasting tests are employed to determine the equivalent whole wave velocity model. The test results show that the positioning accuracy of microseismic monitoring system at the left bank slope of Jinping I hydropower station completely meet the engineering requirements. The main factors influencing seismic source location error are also discussed.
     (3) The potential failure mechanism and its characteristics, the response regions of construction and consolidation grouting of the left bank slope are investigated on the basis of tempo-spatial distribution regularity of microseismic activities. The damage zones in deep rock mass of the left bank slope induced by construction, excavation and consolidation grouting are identified and delineated. The results can provide some references for excavation, reinforcement measures and conventional monitoring of the rock slope later on.
     (4) The initiation, propagation, extension, interaction and run-through mechanisms of microcrackings during the progressive failure processes of rock slope are investigated during 2-D,3-D dimensional conditions using Realistic Failure Process Analysis code (RFPA). The spatial evolution regularity of stress field and microseismic activity of the rock slope during progressive failure processes is probed, and the research method using microscopic damage evolution processes revealing macroscopic rock mass structures failure is thus formed. The gestation and occurrence processes of rock slope instability are studied from stress field evolution and tempo-spatial distribution of microseismicity, and the abundant phenomena such as stress buildup, stress shadow and stress transference during the processes of instability catastrophe gestation of rock slope are replayed. Moreover, the stress field of the progressive failure processes of rock slope obtained by numerical modelling and unusual activated information induced by construction disturbance and geological structures such as faults and fissure zones obtained by microseismic monitoring are coupled for analysis. The results reveal the mechanism of tectonic activization and instability catastrophe of rock slope induced by artificial perturbance. Through the coupling analysis of microseismic monitoring and numerical simulation, the practical problems occurred at the left bank slope are dealt with. The formation mechanism of cracks on the platform of the dam and the correlation between surface deformation and microseismicity are interpretated.
     (5) On the basis of synthesizing microseismicity, traditional deformation observation data, geological information, construction activities and numerical modelling, the correlation between microseismicity and rock mass relaxation deformation activities is established. The basic regularity of accumulation, release and transference of background stress field under rock mass and its disturbance conditions is discussed. In addition, the relation between background stress field evolution and microseismic activity is also established. The comprehensive approach offers a novel idea for predicting the deformation growing trend of rock slope.
     (6) Rock mass degradation criterion after taking microseismic damage effect into account is put forward exploratively based on energy dissipation principle. The three dimensional FEM model in the region of microseismic monitoring is set up. The relation between dissipation energy of microseismic damage and mechanical parameters of rock mass is analyzed on the basis of abundant seismic source data attained by microseismic monitoring. Then, the suggested rock mass degradation criterion is used to revise the mechanical parameters of rock mass, and the updated data will be input into the 3D FEM model. Feedback analysis of large-scale scientific computing is thus performed. Finally, the progressive failure processes of rock slope considering microseismic damage effect are replayed and evaluation analysis of slope stability is carried out.
引文
[1]黄润秋.岩石高边坡发育的动力过程及其稳定性控制[J].岩石力学与工程学报,2008,27(8):1525-1544.
    [2]李天斌.滑坡实时跟踪预报概论[J],中国地质灾害与防治学报,2002,13(4):17-22.
    [3]宋胜武,冯学敏,向柏宇,等.西南水电高陡岩石边坡工程关键技术研究[J].岩石力学与工程学报,2011,30(1):1-22.
    [4]2011年中央一号文件[EB/OL]. (2011,01,30) [2011,10,15]. http://www.ce.cn/cysc/ztpd/2011/2011/
    [5]黄润秋.岩石高边坡的时效变形分析及其工程地质意义[J].工程地质学报,2000,8(2):148-153.
    [6]黄润秋,王十天,张倬元,等.中国西南地壳浅表层动力学过程与工程环境效应研究[M].成都:四川大学出版社,2002.
    [7]黄润秋.中国西南岩石高边坡的主要特征及其演化[J].地球科学进展,2005,20(3):292-297.
    [8]徐卫亚.边坡及滑坡环境岩石力学与工程研究[M].北京:中国环境科学出版社,2000.
    [9]李建林,王乐华,刘杰,等.岩石边坡工程[M].北京:中国水利水电出版社,2006.
    [10]黄润秋.论中国西南地区水电开发工程地质问题及其研究对策[J].地质灾害与环境保护,2002,13(1):1-5.
    [11]李天斌.岩质工程高边坡稳定性及其控制的系统研究[D].成都理工大学博士学位论文,2002.
    [12]中国水电顾问集团成都勘测设计研究院,大渡河大岗山水电站右岸边坡稳定性分析报告[R].成都:中国水电顾问集团成都勘测设计研究院,2009
    [13]夏其发,陆家佑.天生桥二级水电站工地滑坡成因分析[J].水十保持通报,1986.4:35-40.
    [14]孟晖,胡海涛.我国主要人类工程活动引起的滑坡、崩塌和泥石流灾害[J].工程地质学报,1996,4(4):69-74.
    [15]哈秋舲,胡维德.水库滑坡涌浪计算[J].人民长江,1980,2:30-36.
    [16]Christopher R.J. Kilburn, David N. Petley. Forecasting giant, catastrophic slope collapse:lessonsfrom Vajont, Northern Italy [J]. Geomorphology,2003,54:21-32.
    [17]孟永东.岩石边坡工程安全监测三维可视化分析理论、方法及应用[D].河海大学博十学位论文,2009
    [18]金海元.高边坡安全监测预警方法研究及应用——以锦屏一级水电站左岸边坡为例[D].河海大学博十学位论文,2009.
    [19]张有天.从岩石水力学观点看几个重大工程事故[J].水利学报,2003,5:1-10.
    [20]中国水电顾问集团成都勘测设计研究院.雅砻江锦一级水电站可行性研究报告(3):工程地质[R].成都:中国水电顾问集团成都勘测设计研究院,2004.
    [21]中国水电顾问集团成都勘测设计研究院.四川省雅砻江锦屏一级水电站大坝左岸边坡变形及稳定性分析专题报告[R].成都:中国水电顾问集团成都勘测设计研究院,2008.
    [22]徐奴文,唐春安,沙椿,等.锦屏一级水电站左岸边坡微震监测系统及其应用研究[J].岩石力学与工程学报,2010,29(5):915-925.
    [23]杨天鸿,张锋春,于庆磊.露天矿高陡边坡稳定性研究现状及发展趋势[J].岩土力学,2011,32(5):1437-1451.
    [24]姜彤.边坡在地震力作用下的加卸载响应规律与非线性稳定分析[D].中国地震局地质研究所博士学位论文,2004.
    [25]Brady H G, Brown E T. Rock mechanics [M].CISM Udine,1974.
    [26]谷德振.岩体工程地质力学基础[M].科学出版社,1979.
    [27]孙玉科,李建国.岩质边坡稳定性的工程地质研究[J].地质科学,1965,(4):330—352.
    [28]张倬元,王兰生,王十天.工程地质分析原理[M].地质出版社,1994.
    [29]姚环,郑振,沈骅.公路岩质边坡稳定性工程地质分析[J].公路交通科技,2005,22(6):55-59.
    [30]孙玉科,倪会宠,姚宝魁.边坡岩体稳定性分析[M].北京:科学出版社,1988.
    [31]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [32]孙玉科,姚宝魁.我国岩质边坡变形破坏的主要地质模式[J].岩石力学与工程学报,1983,2(1):67—76.
    [33]黄润秋.20世纪以来中国大型滑坡及发生机制[J].岩石力学与工程学报,2007,26(3):433—454.
    [34]宋胜武,向柏宇,杨静熙,等.锦屏一级水电站复杂地质条件下坝肩高陡边坡稳定性分析及其加固设计[J].岩石力学与工程学报,2010,29(3):442-458.
    [35]宋胜武,严明.一种基于稳定性评价的岩质边坡坡体结构分类方法[J].工程地质学报,2011,19(1):610.
    [36]周钟,巩满福,雷承第.锦屏一级水电站左坝肩边坡稳定性研究[J].岩石力学与工程学报,2006,25(11):2298-2304.
    [37]祁生文,伍法权,兰恒星.锦屏一级水电站普斯罗沟左岸深部裂缝成因的工程地质分析[J].岩土工程学报,2002,24(5):596-599.
    [38]祁生文,伍法权.锦屏一级水电站普斯罗沟左岸深部裂缝变形模式[J].岩十力学,2002,23(6):817-820.
    [39]祁生文,伍法权,丁振明,等.从工程地质类比的角度看锦屏一级水电站左岸深部裂缝的形成[J].岩石力学与工程学报,2004,23(8):1380-1384.
    [40]QI S W, WU F Q, YAN F Z, et al. Mechanism of deep cracks in the left bank slope of Jinping first stage hydropower station[J]. Engineering Geology,2004,73(1/2):129-144.
    [41]陈海军.高陡岩质斜坡深层变形的数值分析[D].南京水利科学研究院博十学位论文,2002.
    [42]林韵梅.试验岩石力学—模拟研究[M].北京:煤炭工业出版社,1983.
    [43]SOTO C A. A comparative study of slope modeling techniques for fractured ground [D]. Master of science thesis, department of mining and mineral technology, Royal school of mines, Imperial College of science and technology,London,1974.
    [44]BRAY J W, GOODMAN R E. The theory of base friction models [J]. International Journal of Rock Mechanics and Mining Science Abstract,1981,18(6):453-468.
    [45]舒继森,周吕寿.近水平岩层边坡破坏模式试验研究[J].化工矿山技术,1993,22(6):1-3.
    [46]聂德新,等.黄河李家峡水电站Ⅱ号滑坡稳定性研究报告[R],成都理工学院,1995.
    [47]金小萍.层状岩体高陡边坡底摩擦模拟实验研究[J].金属矿山,1998,3:7-9.
    [48]冯文凯,石豫川,柴贺军,等.缓倾角层状高边坡变形破坏机制物理模拟研究[J].中国公路学报,2004,17(2):32-36.
    [49]陈亚军,王家臣,常来山.节理岩体边坡渐进破坏的试验研究[J].金属矿山,2005,350(8):11-14.
    [50]蔡国军,黄润秋,严明,等.反倾向边坡开挖变形破裂响应的物理模拟研究¨].岩石力学与工程学报,2008,27(4):811-817.
    [51]许强,张登项,郑光.锦屏I级水电站左岸坝肩边坡施工期破坏模式及稳定性分析[J].岩石力学与工程学报,2009,28(6):1183-1192.
    [52]李天斌,姜云,尹金平,等,华鉴山山体裂缝及其研究和防治建议[C].见:自然边坡稳定性分析暨华鉴山边坡变形研讨会论文集,1993,57-63.北京:地震出版社.
    [53]张林,马衍泉,胡成秋.高边坡稳定地三维地质力学模型试验研究[J].水电站设计,1994,10(3):39-44.
    [54]高大水,郭春茂.地质力学试验在高边坡研究中的应用[J].长江科学院院报,1992,9(3):65-71
    [55]李桂荣,佘成学,陈胜宏.层状岩体边坡的弯曲变形破坏试验及有限元分析[J].岩石力学与工程学报,1997,15(4):305-311
    [56]孙书伟,朱本珍,马惠民.典型顺层高边坡工程病害的地质力学模型试验研究[J].岩土工程学报,2008,30(9):1349-1355.
    [57]周维垣,林鹏,杨强,等.锦屏高边坡稳定三维地质力学模型试验研究[J].岩石力学与工程学报,2008,27(5):893—901.
    [58]张林,费文平,李桂林,等.高拱坝坝肩坝基整体稳定地质力学模型试验研究[J].岩石力学与工程学报,2005,24(19):3465—3469.
    [59]刘立,陈睿,乔高乾.锦屏一级水电站左岸高边坡工程整体稳定性的模型试验研究[J].岩石力学与工程学报,2010,29(5):952—959.
    [60]ADHYKARY D P, DYSKIN A V, JEWELL R J, et al. A study of the mechanism of flexural toppling failure of rock slopes [J].Rock Mechancis and Rock Engineering,1997,30(2):75-93.
    [61]濮家骝.土工离心模型试验及其应用的发展趋势[J].岩十工程学报,1996,18(5):96—98.
    [62]汪小刚,张建红,赵毓芝,等.用离心模型研究岩石边坡的倾倒破坏[J].岩土工程学报,1996,18(5):14-21.
    [63]高长胜,徐光明,张凌.边坡变形破坏离心机模型试验研究[J].岩十工程学报,2005,27(4):478-451.
    [64]李明,张嘎,李焯芬,等.开挖对边坡变形影响的离心模型试验研究[J].岩土工程学报,2011,33(4):667-672.
    [65]姚裕春,姚令侃,袁碧玉.边坡开挖迁移式影响离心模型试验研究[J].岩土工程学报,2006,28(1):81—85.
    [66]王庚荪.边坡的渐进破坏及稳定性分析[J].岩石力学与工程学报,2000,19(1):29—33
    [67]赵杰.边坡稳定有限元分析方法中若干应用问题研究[D].大连理工大学博十学位论文,2006.
    [68]FELLENIUS W. Erdstatisch Berechnungen[M], Berlin W Ernst and Sohn revised edition,1939.
    [69]BISHOP A W. The use of the slip circle in the stability analysis of slopes [J].Geotechnique,1955,5(1):7-17.
    [70]MORGENSTER N R,PRICE V.The analysis of the stability of general slip surface[J]. Geotechnique,1965,15(1):79-93.
    [71]CHEN Z Y, MOGENSTERN N R. Extensions of the generalized method of slices of stability analysis[J]. Canadian Geotechnical Journal,1983,20(1):104-119.
    [72]JANBU N. Slope stability computations [J].Embankment Dam Engineering,1973,47-86.
    [73]FREDLUND D G, KRAHN J. Comparison of slope stability analysis methods of analysis [J]. Canadian Geotechnical Journal,1977,14:429-439.
    [74]SARMA S K. Stability analysis of embankments and slopes [J].Geotechnique,1973, 23(3):423-433.
    [75]SARMA S K. Stability analysis of embankments and slope [J]. Journal of Geotechnical Engineering,1979,105:1511-1524.
    [76]BAKER R, GARBER M. Variation of approach to slope stability [C]. Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering,1977, 2:9-12.
    [77]REVILLA J, Castillo E. The calculus of variations applied to stability of slopes [J]. Geotechnique,1977,27(1):1-11.
    [78]ARAI K, TAGYO K. Determination of noncircular slip surface giving the minimum factor of safety in slope stability analysis [J]. Soils and Foundations,1985,25(1):43-51.
    [79]NGUYEN V U. Determination of critical slope failure surface [J]. Journal of Geotechnical Engineering,1985,111 (2):238-250.
    [80]阎中华.均质土坝与非均质土坝稳定安全系数极值分布规律及电算程序简介[J].水利水电技术,1983,(7):1-6.
    [81]周文通.最优化方法在土坝稳定分析中的应用[J].土石坝工程,1984, (2):22-26.
    [82]孙君实.条分法的数值分析[J].岩土工程学报,1984,6(2):1-12.
    [83]YAMAGAMI T, UETA Y. Search for Critical Slip Surfaces by the Morgenster-Price Method [J]. Proceedings of the 6th International Conference on Numerical Methods in Georaechanics[C]. Innsbruck, Australia,1988,1335-1339.
    [84]BAKER R. Determination of the Critical Slip Surface in Slope Stability Computations [J]. Int. J. Nuraer & Analy. Meth. Geomech,1980,4:333-359.
    [85]曹文贵,颜荣贵.边坡非圆临界滑动面确定之动态规划法研究[J].岩石力学与工程学报,1995,4:320-328.
    [86]YAMAGAMI T, JIANG J C. Search for the Critical Slip Surface in Three Dimensional Slopes Stability Analysis [J]. Soils and Foundations,1997,37(3):1-16.
    [87]CHEN Z. Random trials used in determining global minimum factor of safety of slopes [J]. Canadian Geotech.J,1992,29(2):225-233.
    [88]邹广电,陈永平.滑坡和边坡稳定性分析的模拟退火-随机搜索耦合算法[J].岩石力学与工程学报,2004,23(12):2032-2037.
    [89]肖专文,张志奇,梁力,等.遗传进化算法在边坡稳定性分析中的应用[J].岩土工程学报,1998,20(1):44—46.
    [90]GOH A T C. Genetic algorithm search for critical slip surface in multi-wedge stability analysis [J]. Canadian Geotechnical Journal,1999,36(2):383-391.
    [91]包太,刘宝琛.遗传算法在边坡稳定系数计算中的应用[J].重庆建筑大学学报,2007,29(1):49—51.
    [92]陈吕富,龚晓南,王贻荪.自适应蚁群算法及其在边坡工程中应用[J].浙江大学学报(工学版),2003,37(5):566—569.
    [93]陈吕富,龚晓南.混沌扰动启发式蚁群算法及其在边坡非圆弧临界滑动面搜索中的应用[J].岩石力学与工程学报,2004,23(20):3450—3453.
    [94]李亮,迟世春,林皋.基于蚁群算法复合形法及其在边坡稳定性分析中应用[J].岩土工程学报,2004,26(5):691—696.
    [95]石露,李小春,任伟,等.蚁群算法与遗传算法融合及其在边坡临界滑动面搜索中的应用[J].岩十力学,2009,30(11):3486-3492.
    [96]毛谦,陈胜宏,彭成佳.三维的边坡最不利滑裂面的遗传算法搜索[J].岩土力学,2008,29(5):1345-1350.
    [97]弥宏亮,陈祖煜.遗传算法在确定边坡稳定最小安全系数中应用[J].岩土工程学报,2003,25(6):671-675.
    [98]HOVLAND H J. Three Dimensional Slope Stability Analysis Method [J].J. Geotech. Engng, 1977,103(9):971-986.
    [99]HUNGR 0, SALGADO F M, Byrne P M. Evaluation of A Three Dimensional Method of Slope Stability Analysis [J].Canadian Geotech J,1989,26 (4):679-686.
    [100]HUNGR 0. An Extension of Bishop's Simplified Method of Slope Stability Analysis to Three Dimensions [J].Geotech,1987,37 (1):1132117.
    [101]ZHANG X.Three Dimensional Stability Analysis of Concave Slopes in Plan View [J]. J.Geotech. Engng,1988,114 (6):658-671.
    [102]陈祖煜.边坡稳定性三维分析极限平衡方法[J].岩土工:程学报,2001,23(5):525-529.
    [103]李同录.一种改进三维边坡稳定分析方法[J].岩土工程学报,2003,25(5):611-614.
    [104]朱大勇,钱七虎.三维边坡严格与准严格极限平衡解答及工程应用[J].岩石力学与工程学报,2007,26(8):1513-1528.
    [105]郑宏.严格三维极限平衡法[J].岩石力学与工程学报,2007,26(8):1530-1537.
    [106]张常亮,李同录,李萍等.边坡三维极限平衡法的通用形式[J].工程地质学报,2008,16(1):70-75.
    [107]张常亮,李同录,李萍.三维极限平衡法通用形式的建立及应用[J].地球科学与环境学报,2010,32(1):98-105.
    [108]张常亮.边坡稳定性三维极限平衡法研究[D].长安大学博士学位论文,2008.
    [109]姜清辉,王笑海,丰定祥,等.三维边坡稳定性极限平衡分析系统软件SLOPE3D的设计及应用[J].岩石力学与工程学报,2003,22(7),1121-1125.
    [110]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利电力出版社,1996
    [111]沈良峰,廖继原,张月龙.边坡稳定性分析评价方法综述[J].矿业研究与开发,2005,25(1):24-27.
    [112]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980.
    [113]潘家铮.关于重力坝的深层抗滑稳定问题[J].四川水力发电,1983,(1):6—18.
    [114]Donald L,Chen Z Y. Slope stability analysis by the upper bound approach:Fundamental and methods [J]. Canadian Geotechnical Journal,1997,34(6):853-862.
    [115]陈祖煜.土力学经典问题的极限分析上、下限解[J].岩土工程学报,2002,24(1):1-11.
    [116]CHEN W F.Limit analysis and soil plasticity [M].Elsevier scientific publishing company,1975.
    [117]SLOAN S W. Lower bound limit analysis using finite element and linear programming [J]. Int J Analytical Methods in Geomechanics,1988,12:61-77.
    [118]SLOAN S W. Upper bound limit analysis using finite element and linear programming [J]. Int J Analytical Methods in Geomechanics,1989,13:263-282.
    [119]CHEN J, YIN J H. Rigid finite element method for upper bound limit analysis of soil slopes subjected to pore water pressure [J]. Journal of Engineering Mechanics,2004,130(8): 886-893.
    [120]CHFN Z Y. A three-dimensional slope stability analysis method using the upper bound theorem, Part I:theory and Method [J]. International Journal of Rock Mechanics and Mining Sciences,2001,38:369-378.
    [121]CHEN Z Y. A three-dimensional slope stability analysis method using the upper bound theorem, Part Ⅱ:theory and Methods [J]. International Journal of Rock Mechanics and Mining Sciences,2001,38:379-397.
    [122]SUTCLIFFE D J, YU H S, SLOAN S W. Lower bound solutions for bearing capacity of jointed rock [J]. Computers and Geotechnics,2004,31:23-36.
    [123]李泽,王均星.基于非线性规划的岩质变坡有限元塑性极限分析下限法研究[J].岩石力学与工程学报,2007,26(4):747-753.
    [124]陈炜,王均星.节理岩质边坡的块体元塑性极限分析下限法[J].岩土工程学报,2008,30(2):272-277.
    [125]杨小礼.线性与非线性破坏准则下岩十极限分析方法及其应用[J].中南大学博十学位论文,2002.
    [126]范金星,王均星,王开治,等.拱坝三维有限元塑性极限分析[J].湖南水利水电,1995,(1):10-13.
    [127]钱向东.混凝十拱坝强度计算与极限荷载分析[D].河海大学博十学位论文,2005.
    [128]LYAMIN A V. Three dimensional Lower Bound Limit Analysis Using Nonlinear Programming [D]. Newcastle:The university of newcastle,1999.
    [129]CHEN J. Slope Stability Analysis Using Rigid Elements [D].Hong Kong:The Hong Kong Polytechnic University,2004.
    [130]杨强,程勇刚,赵亚楠,等.混凝土拱坝极限分析[J].水利学报,2003,47(10):38-43.
    [131]陈炜,李泽,王均星,等.三维块体元塑性极限分析下限法[J].岩十力学,2010,31(11):3645-3650
    [132]陈炜,王均星,辛丽萍,等.楔形体稳定的塑性极限分析下限法[J].岩十工程学报,2009,31(3):431-436.
    [133]王根龙,伍法权,祁生文,等.加锚岩质边坡稳定性评价的极限分析上限法研究[J].岩石力学与工程学报,2007,26(12):2556-2563.
    [134]DUNCAN J M, Goodman R E. Finite element analyses of slopes in jointed rock [J].U.S. Army Corps of Engineers.1968:276
    [135]BENKO B.Numerical modeling of complex slope deformation [D]. University of Saskatchewan.1997.
    [136]SEED R B, MITCHELL J K, SEED H B. Kettlemen hills waste landfill slope failure Ⅱ: stability analysis[J]. Journal of Geotechnique and Engineering.1990,116(4):669-690.
    [137]STEAD D, BENKO E E, COGGAN J. Failure mechanisms of complex landslides:A numerical modeling perspective[C]. Landslides in Research, Theory and Practice:Proceedings of the 8th International Symposium on Landslides. London,2000
    [138]EBERHARDT E, STEAD D. Mechanisms of slope instability in thinly bedded surface mine slopes[C].Proceedings of 3th International IAEG conference.Rotterdam,1998.
    [139]EBERHARDT E, STEAD D, COGGAN J, et al.An integrated numerical analysis approach to the Randa rockslide[C]. Proceedings of 1st European Conference on Landslides. Netherlands,2002:355-362.
    [140]ANAGOSTI P. Three dimensional stability of fill dams[C]. Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering. Neterlands, 1969.
    [141]SHI G H. Discontinuous deformation analysis—a new numerical model for the statics and dynamics of block systems [D]. University of California.1988.
    [142]王在泉.复杂边坡工程系统稳定性研究[M].徐州:中国矿业大学出版社,2000
    [143]BROWN E T. Analytical and computational methods in engneering rock mechanics [M]. NewYork:John Willy & Sonltd,1987
    [144]SHI G H, Goodman R E. Generalization of two dimensional discontinuous deformation analysis for forward modeling [J], International Journal for Numerical and Analytical Methods in Geomechanics,1989,13:359-380
    [145]JING L. A review of techniques, advances and outstanding issues in numerical modeling for rock mechanics and rock engineering [J]. Int. J. Rock. Mech & Min.Sci.2003,40: 283-353.
    [146]CUNDALL P A. A computer model for simulating progressing large-scale movements in blocky systems[C]. Proceedings of the Symposium of the International Society of Rock Mechanics. Rotterdam:A. A Balkema,1971,1:8-12.
    [147]寇晓东,周维垣,杨若琼.FLAC-3D进行三峡船闸高边坡稳定分析[J].岩石力学与工程学报,2001,19(5):630—633.[148]王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991.
    [149]麻凤海,王泳嘉.地层沉降控制的可变形离散单元模拟[J].岩石力学与工程学报,1999,18(2):176—179.
    [150]黄润秋.边坡治理工程数值模拟研究[J].地质灾害与环境保护,1996,7(1):69—76.
    [151]黄盛铨,刘君,孔宪京.强度折减DDA法及其在边坡稳定分析中的应用[J].岩石力学与工程学报,2008,27(Suppl):1799-1806.
    [152]张国新,赵妍,石根华,等.模拟岩石边坡倾倒破坏的数值流形法[J].岩土工程学报,2007,29(6):800—805.
    [153]郑智能,张永兴,董强,等.边坡落石灾害的颗粒流模拟方法[J].中国地质灾害与防治学报,2008,19(3):46—49.
    [154]STEAD D, EBERHARDT E, COGGAN J S. Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques [J]. Engineering Geology,2006,83:217-235.
    [155]石根华.数值流形方法与非连续变形分析[M].裴觉民译.北京:清华大学出版社,1997.
    [156]张有天,周维垣.岩石高边坡的变形与稳定[M].北京:中国水利水电出版社,1999
    [157]邬爱清,J‘秀丽,李会中,等.非连续变形分析方法模拟千将坪滑坡启动与滑坡全过程[J].岩石力学与工程学报,2006,25(7):1297-1303.
    [158]张国新,赵妍,彭校初.考虑岩桥断裂的岩质边坡倾倒破坏的流形元模拟[J].岩石力学与工程学报,2007,26(9):1773-1780.
    [159]寇晓东,周维垣,杨若琼.FLAC3D进行三峡船闸高边坡稳定分析[J].岩石力学与工程学报,2001,20(1):6-10
    [160]张利洁,黄正加,雷菁. FLAC—3D在边坡岩体稳定性分析中的应用[J].岩土力学,2005,26(S1):61-65.
    [161]TANG C A. Numerical simulation on progressive failure leading to collapse and associated seismicity [J]. Int. J. Rock. Mech &Min. Sci,1997,34(2):249-261.
    [162]TANG C A, KAISER P K.Numerical Simulation of cumulative damage and seismic energy release during brittle Rock Failure-part I:fundamentals [J].Int J Rock Mech Min Sci 1998; 35:113-121.
    [163]李连崇,唐春安,邢军,等.节理岩质边坡变形破坏RFPA模拟分析[J].东北大学学报,2006,27(5):559-562.
    [164]LI L C, Tang C A, LI C W, et al. Slope Stabil ity Analysis by SRM-based rock failure process analysis (RFPA) [J]. Int. J. Geomech & Geoeng.2006,1:1-12.
    [165]LI L C, Tang C A, ZHU W C, et al. Numerical Analysis of Slope Stability Based on the gravity increase method [J]. Computers and Geotechniques.2009,36:1246-1258.
    [166]唐春安,唐烈先,李连崇,等.岩十破裂过程分析RFPA离心加载法[J].岩土工程学报,2007,29(1):71-76.
    [167]XU Q J, YIN H L, CAO X F, et al. A temperature-driven strength reduction method for slope stability analysis [J].Mechanics Research Communications.2009,36:224-231
    [168]DAWSON EM, ROTH W H, DRESCHER A. Slope Stability Analysis by strength reduction [J]. Geotechnique,1999,49(6):835-840.
    [169]MATSUI T, SAN K C, Finite Element Slope Stability Analysis by Shear Strength Reduction Technique[J]. Soils and Foundations.1992,32(1):59-70.
    [170]LUAN M T, WU Y J, NIAN T K. An alternating criterion based on development of plastic zone for evaluating slope stability by shear strength reduction FEM [C]. Proceedings of the Sina-Japanese Symposiumon Geotechnical Engineeri, Beijing, China,2003:181-188.
    [171]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报,2001,23(4):407-411.
    [172]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.
    [173]ZHENG H, SUN G H, LIU D F. A practical procedure for searching critical slip surfaces of slopes based on the strength reduction technique [J]. Computers and Geotechnics,2009,36:1-5.
    [174]赵尚毅,郑颖人,邓卫东.用有限元强度折减法进行节理研制边坡稳定性分析[J].岩石力学与工程学报,2003,22(2):254—260.
    [175]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381—3388.
    [176]徐奴文,唐春安,沙椿,等.基于强度折减法的高陡岩质边坡稳定性分析[C].2009年全国十木工程博十生学术论坛优秀论文集.长沙:中南大学出版社,2009:191-198.
    [177]EINSTEIN E H. Uncertainty in rock mechanics and rock engineering - then and now[C]. Proceedings of the 10th International Congress of ISRM. [S.l.]:South Africa Institute of Mining and Metallurgy,2003:281-293.
    [178]祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993.
    [179]刘汉东.水电工程岩质高边坡安全度标准研究[J].华北水利水电学院学报,1998,19(1):40—44.
    [180]张社荣,贾世军,郭怀志.岩石边坡稳定的可靠度分析.岩十力学,1999,20(2):57—66.
    [181]赵寿刚,兰雁,沈细中,等.蒙特卡罗法在十质边坡可靠性分析中的应用[J].人民黄河,2006,28(5):65—66.
    [182]LI K S, LUMB Probabilistic design of slopes [J]. Canadian Geotechnical Journal,1987,24(4):520-535.
    [183]苏永华,赵明华,蒋德松.响应面方法在边坡稳定可靠度分析中的应用[J].岩石力学与工程学报,2006,25(7):1417-1424.
    [184]祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993.
    [185]刘汉东.水电工程岩质高边坡安全度标准研究[J].华北水利水电学院学报,1998,19(1):40—44.
    [186]苏永华,何满潮.利用矩点估计法简化响应面可靠度指标的计算[J].工程力学,2007,24(7):11—15.
    [187]姚耀武,陈东伟.十坡稳定可靠度分析[J].岩土工程学报,1994,16(2):80—87.
    [188]DUZGUN H S B, YACEMEN M S, KORPUZ C. A methodology for reliability-based design of rock slopes [J]. Rock Mechanics and Rock Engineering,2003,36(2):95-120.
    [189]HASOFER A M, LIND N C. Exact and invariant second-moment code format [J]. Journal of the Engineering Mechanics Division, ASCE,1974,100(1):111-121.
    [190]王家臣.边坡工程随机分析原理[M].北京:煤炭科学出版社,1996.
    [191]解守益.三峡库区典型滑坡的可靠度研究[D].北京:中国科学院地质研究所硕士学位论文,1995.
    [192]孙民伟,李小根,王玲玲.小浪底进水口边坡的可靠度分析中若干规律的探讨[J].华北水利水电学院学报,2005,26(4):51—54.
    [193]FENG X., Wang Y. Yao J. A neural network model for real-time roof pressure prediction in coalmines [J]. Int. J.Rock Mech. Min.Sci & Geomech. Abstr.1996,33(6):647-653
    [194]李彰明,模糊分析在边坡稳定性评价中的应用[J].岩石力学与工程学报,1997,16(5):490-495.
    [195]张小辉,王辉,戴富初,等.基于关系矩阵和模糊集权的斜坡稳定性综合评价[J].岩石力学与工程学报,2000,19(3):346-35.
    [196]夏元友,朱瑞赓.岩质边坡稳定性多层次模糊综合评价系统研究[J].程地质学报,1999,7(1):46-53.
    [197]黄润秋,许强.突变理论在工程地质中的应用[J].工程地质学报.1993,1(1):65-73
    [198]陈新民,罗国煜.基于经验的边坡稳定性灰色系统分析与评价[J].岩土工程学报.1999,21(5):638-641
    [199]许传华,朱绳武,房定旺.边坡稳定性的ISODATA模糊聚类分析[J].金属矿山,2000,23(4):24-26
    [200]李亮,迟世春,林皋.禁忌模拟退火复合形法及其在边坡稳定性分析中的应用[J].岩石力学与工程学报,2005,24(18):3342-3349.
    [201]谢全敏,夏元友.岩体边坡稳定性的可拓聚类预测方法研究.岩石力学与工程学报.2003,22(3):438-441.
    [202]刘红丹,毛朝亮,关永平.边坡稳定性分析方法及数值模拟[J].水利与建筑工程学报,2010,8(3):101-103.
    [203]王劲松,陈正阳,梁光华.GPS一机多天线公路高边坡实时监测系统研究[J].岩土力学,2009,30(5):1532—1536.
    [204]刘超,高井祥,王坚,等.GPS/伪卫星技术在露天矿边坡监测中的应用[J].煤炭学报,2010,35(5):755-759.
    [205]何秀凤,桑文刚,贾东振.基于GPS的高边坡形变监测方法[J].水利学报,2006,37(6):746-770.
    [206]史云,陈实,冯苍旭,等.地质灾害监测新仪器——激光微小位移监测系统[J].中国地质灾害与防治学报,2002,3(1):72—77.
    [207]FRUNEAU B, ACHACHE J, DELACOURT C. Observation and model ing of the Saint-Etienne-de-tine landslide using SAR interferometry [J]. Tectonophys,1996,265(3-4):181-190.
    [208]张青,史彦新,朱汝烈.TDR滑坡监测技术的研究[J].中国地质灾害与防治学报,2001,6(2):67—69.
    [209]谭捍华,傅鹤林.TDR技术在公路边坡监测中的应用试验[J].岩土力学,2010,31(4):1331—1336.
    [210]TU X B, DAI F C, LU X J, et al. Toppling and stabilization of the intake slope for the Fengtan hydropower station enlargement project, Mid-South China[J]. Engineering Geology,2007,91(2/4):152-167.
    [211]TOSHITAKA K. Monitoring the process of ground failure in repeated landslides and associated stability assessments [J]. Engineering Geology,1998,50(1/2):71-84.
    [212]BROWN E T.Geotechnical Monitoring in Surface and Underground Mining-an overview [A]. In:Szwedzicki T ed. Geotechnical Instrumentation and Monitoring in Open Pit and Underground mining[C]. Rotterdam:A.A. Balkema,1993.
    [213]DUNNICLIFF J. Geotechnical Instrument for Monitoring Field Performance [M].New York: Wiley,1988.
    [214]付冰清,薛果天.新滩深部变形监测与趋势预测[J].水利学报,1993,1:72-79.
    [215]张奇华,严忠祥.柘林水电站扩建工程厂房后坡安全监测与预测分析[J].岩土力学,2002,23(4):516-519.
    [216]戴会超.三峡永久船闸高边坡安全监测[J].岩石力学与工程学报,2004,23(17):2907-2912.
    [217]张曙光,冯兴常.三峡工程双线五级船闸及其高边坡渗流监测成果分析[J].大坝与安全,2004,4:18-21.
    [218]刘艳辉,戴谦训,刘大安,等.龙滩水电站左岸蠕变体B区边坡位移监测分析[J].工程地质与学报,2005,13(2):269-274.
    [219]王洪德,干爱军,韩子夜.监测工作在链子崖危岩体防治工程中的重要作用[J].中国地质灾害与防治学报,2004,15(S1):101-104.
    [220]金海元,徐卫亚,孟永东,等.锦屏一级水电站左岸边坡稳定综合预报研究[J].岩石力学与工程学报,2008,27(10):2058—2063.
    [221]张金龙,徐卫亚,金海元,等.大型复杂岩质高边坡安全监测与分析[J].岩石力学与工程学报2009,28(9):1819-1827.
    [222]刘造保,徐卫亚,金海元,等.锦屏一级水电站左岸岩质边坡预警判据初探[J].水利学报,2010,41(1):101—107.
    [223]孟永东,徐卫亚,刘造保,等.复杂岩质高边坡工程安全监测三维可视化分析[J].岩石力学与工程学报,2010,29(12):2500-2509.
    [224]二滩水电开发有限责任公司.岩土工程安全监测手册[M].北京:中国水利水电出版件,1999.
    [225]GIBOWICZ S J, YOUNG R P, TALEBI S, et al. Source parameters of seismic events at the underground research laboratory in Manitoba, Canada:scaling relations for events wi th moment magnitude smaller than-2[J]. Bulletin of the Seismological Society of America, 1991,81:1157-1182.
    [226]GIBOWICZ S J,Kijko A. An Introduction to Mining Seismology [M].New York:Academic Press,1994.
    [227]BLAKE W, LEIGHTON F,DUVALL W I. Microseismic techniques for monitoring the behavior of rock structures[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts,1975,12(4):69.
    [228]张银平.岩体声发射与微震监测定位技术及其应用[J].工程爆破,2002,8(1):5861.
    [229]MCCREARY R, MCGAUGHEY J, POTVIN Y, et al. Results from microseismic monitoring,conventional instrumentation, and tomography surveys in the creation and thinning of a burst-prone sill pillar[J]. Pure and Appl ied Geophysics,1992,139(3/4): 349-373.
    [230]赵兴东,唐春安,李元辉,等.基于微震监测及应力场分析的冲击地压预测方法[J].岩石力学与工程学报,2005,24(增1):4745-4749.
    [231]段东.煤与瓦斯突出影响因素及微震前兆分析[D].东北大学博十学位论文,2009.
    [232]ORTLEPP W D. RaSiM comes of age-A review of the contribution to the understanding and control of mine rockbursts [A]. In:Controlling seismic risk-Proceedings of sixth international symposium on rockburst and seismicity in mines (Edited by Potvin Y, Hudyma M) [C]. Nedlands:Australian Centre for Geomechanics,2005:3-20.
    [233]POTVIN Y, HUDYMA M R. Keynote address:Seismic monitoring in highly mechanized hardrock mines in Canada and Australia [A]. In:Proceedings of fifth international symposium on rockburst and seismicity in mines (Edited by van Aswegen G, Durrheim R J, Ortleep W D) [C]. Johannesburg:The South African Institute of Mining and Metallurgy, 2001:267-280.
    [234]COOK N G W. The application of seismic techniques to problems in rock mechanics [J]. International Journal of Rock Mechanics and Mining Science.1964(1):169-179.
    [235]MENDECKI A J. Real time quantitative seismicity in mines [A]. In:Proceedings of sixth international symposium on rockburst and seismicity in mines (R. P.Young, ed) [C]. Rotterdam:Balkema,1993:287-296.
    [236]MENDEEKI A J. Keynote leeture:Principle of monitoring seismic rockmass response to mining [A],In:Proceedings of the fourth international symposium on rockbursts and seismieity in mines (Edited by Gibowiez S J) [C]. Rotterdam:A. A.Balkema,1997:69-80.
    [237]MENDECKI A J. Data-driven understanding of seismic rockmass response to mining [A]. In: Proceedings of fifth international symposium on rockburst and seismieity in mines (Edited by van Aswegen G, Durrheim R J, Ortleep W D) [C]. Johannesburg:The South African Institute of Mining and Metallurgy,200:1-9
    [238]FUNK C, VAN ASWEGAN G, Brown B. Visualisation of seismicity. In:Proceedings of the 4th international symposium on rockbursts and seismicity in mines (Edited by Gibowicz S J) [C]. Rotterdam:A. A Balkema,1997:81-87.
    [239]LYNCH R A, MENDECKI A J. High-resolution seismic monitoring in mines [A].In: Proceedings of fifth international symposium on rockburst and seismicity in mines (Edited by Van Aswegen G, Durrheim R J, Ortleep W D) [C]. Johannesburg:The South African Institute of Mining and Metallurgy,2001:19-24.
    [240]KAISER P K, VASAK P, SUORINENI F T. New dimensional s in seismic data interpretation with 3-D virtual reality visualtion for burst-prone mines [A]. In:Controll ing seismic risk-Proceedings of sixth international symposium on rockburst and seismicity in mines (Edited by Potvin Y, Hudyma M) [C]. Nedlands:Australian Center for Geomechanics, 2005:33-45.
    [241]EBRAHIM-TROLLOPE R, JOOSTE Y.Seismic hazard quantification [A]. In:Controlling seismic risk- Proceedings of sixth international symposium on rockburst and seismicity in mines (Edited by Potvin Y, Hudyma M) [C]. Ned lands:Australian Center for Geomechanics,2005:157-164.
    [242]RIEMER K L. Interpreting complex waveforms from some mining related seismic events [A]. In:Controlling seismic risk-Proceedings of sixth international symposium on rockburst and seismicity in mines (Edited by Potvin Y, Hudyma M) [C]. Nedlands: Australian Center for Geomechanics,2005:247-254.
    [243]LYNCH R A, WUITE R, SMITH B S. Microseismic monitoring of open pit slopes [A]. In: Controlling seismic risk- Proceedings of sixth international symposium on rockburst and seismicity in mines (Edited by Potvin Y, Hudyma M) [C]. Nedlands:Austral ian Center for Geomechanics,2005:581-592.
    [244]ALEXANDER J, TRIFU C-I. Monitoring mine seismicity in Canada [A]. In:Controlling seismic risk-Proceedings of sixth international symposium on rockburst and seismicity in mines (Edited by Potvin Y, Hudyma M) [C]. Nedlands:Australian Center for Geomechanics,2005:353-358.
    [245]牟宗龙,窦林名,巩思园,等.矿井SOS微震监测网络优化设计及震源定位误筹数值分析[J].煤矿开采,2009,14(3):8-12.
    [246]MILEV A M, SPOTTISWOODE S M,RORKE A J, et al. Seismic monitoring of a simulated rock burst on a wall of an underground tunnel [J]. Journal of the South African Institute of Mining and Metallurgy,2001,101 (5):253-260.
    [247]THEODORE I U, TRIFU C I. Recent advances in seismic monitoring technology at Canadian mines [J]. Journal of Applied Geophysics,2000,45(4):225-237.
    [248]WANG H L, GE M C. Acoustic emission/microseismic source location analysis for a limestone mine exhibiting high horizontal stresses [J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(5):720-728.
    [219]GE M C. Efficient mine microseismic monitoring [J].International Journal of Coal Geology,2005,64(1/2):44-56.
    [250]TRIFU CI, SHUMILA V. Microseismic monitoring of a controlled collapse in Field Ⅱ at Ocnele Mari, Romania[J]. Pure and Applied Geophysics.2010,16(1/2)7:27-42.
    [251]KAISER P K. Seismic hazard evaluation in underground construction[C].//Proceedings of the 7th international symposium on rockburst and seismicity in mines, Controlling seismic hazard and sustainable development of deep mines (RaSiM7),New York:Rinton Press,2009,1-26.
    [252]HUDYMA M R. Analysis and interpretation of clusters of seismic events in mines[D]. Unpublished PhD Thesis, University of Western Australia, Perth, Australia,2008.
    [253]HIRATA A, KAMEOKA Y.HIRANO T. Safety management based on detection of possible rock bursts by AE monitoring during tunnel excavation [J].Rock Mechanics and Rock Engineering,2007,40(6):563-576.
    [254]BARIA R, MICHELET S, BAUMGARTNER J.Creation and mapping of 5000 m deep HDR/HFR reservoir to produce electricity [C]. In:Proceedings of the World Geothermal Congress 2005, Antalya, Turkey,2005, Paper 1627,8pp.
    [255]TEZUKA K, NIITSUMA H. Stress estimated using microseismic clusters and its relationship to the fracture system of the Hijiori hot dry rock reservoir [J]. Engineering Geology,2000,56(1/2):47-62.
    [256]微地震监测技术[EB/OL]. (2010,07,05) [2011,10,15]. http://baike.baidu.com/view/1162.htm.
    [257]CAI M, MORIOKA H, KAISER P K. Back-analysis of rock mass strength parameters using AE monitoring data [J]. International Journal of Rock Mechanics and Mining Science,2007,44:538-549.
    [258]CAI M, KAISER P K, MARTIN C D. Quantification of rock mass damage in underground excavations from microseismic event monitoring [J]. International Journal of Rock Mechanics and Mining Science,2001,38:1135-1145.
    [259]CAI M, KAISER P K, MARTIN C D. A tensile model for the interpretation of microseismic events near underground openings [J].Pure and Applied Geophysics,1998,153:67-92.
    [260]YOUNG R P, COLLINS D S, REYES-MONTES J M, et al. Quantification and interpretation of seismicity [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41:1317-1327.
    [261]YOUNG R P, COLLINS D S. Seismic studies of rock fracture at the Underground Research Laboratory, Canada [J]. International Journal of Rock Mechanics and Mining Sciences, 2001,38:787-799.
    [262]COLLINS D S, PETTITT W S,YOUNG R P. High-resolution mechanics of a microearthquake sequence [J].Pure and Applied Geophysics,2002,159:197-219.
    [263]MARTINO J B, CHANDLER N A. Excavation-induced damage studies at the Underground Research Laboratory [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41:1413-1426.
    [264]李世愚,和雪松,张少泉,等.矿山地震监测技术的进展及最新成果[J].地球物理学进展,2004,19(4):853-859.
    [265]张少泉,张诚,修济刚,等.矿山地震研究评述[J].地球物理学进展,1993,8(3):69-85.
    [266]郑治真,刘万琴,陆其鹄,等.公里尺度地球物理实验、观测和研究[R].国家自然科学基金资助项目研究报告,1995.
    [267]李世愚,腾春凯,刘晓红,等.1999年度中俄合作岩石破裂实验研究[J].国际地震动态,2000(3):1-3.
    [268]薛冠群,谢晋珠.用地音和瓦斯监测预警突出的尝试[J].煤矿安全,1995(2):40-42.
    [269]李庶林,尹贤刚,郑文达,等.凡口铅锌矿多通道微震监测系统及其应用研究[J].岩石力学与工程学报,2005,24(12):2048-2053.
    [270]姜福兴,叶根喜,王存文,等.高精度微震监测技术在煤矿突水监测中的应用[J].岩石力学与工程学报,2008,27(9):1932-1938.
    [271]姜祸兴,王存文,杨淑华,等.冲击地压及煤与瓦斯突出和透水的微震监测技术[J].煤炭科学技术,2007,35(1):26-28.
    [272]姜福兴,LUO X,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究[J].岩土工程学报,2003,25(1):23-25.
    [273]姜福兴,杨淑华,成云海,等.煤矿冲击地压的微地震监测研究[J].地球物理学报,2006,49(5):1511-1516.
    [274]成云海,姜福兴,张兴民,等.微震监测揭示的C型采场空间结构及应力场[J].岩石力学与工程学报,2007,26(1):102-107.
    [275]成云海,姜福兴,程久龙,等.关键层运动诱发矿震的微震探测初步研究[J].煤炭学报,2006,31(3):273-277.
    [276]潘一山,赵扬锋,官福海,等.矿震监测定位系统的研究及应用[J].岩石力学与工程学报,2007,26(5):1002-1011.
    [277]吕长国,窦林名,何江,等.桃山煤矿S O S微震监测系统建设及应用研究[J].中国煤炭,2010,11:86-90.
    [278]陆菜平,窦林名,吴兴荣,等.煤岩冲击前兆微震频谱演变规律的试验与实证研究[J].岩石力学与工程学报,2008,27(3):519-525.
    [279]贺虎,窦林名,巩思园,等.高构造应力区矿震规律研究[J].中国矿业大学学报,2011,40(1):7-13.
    [280]唐礼忠,杨承祥,潘长良.大规模深井开采微震监测系统站网布置优化[J].岩石力学与工程学报,2006,25(10):2036-2042.
    [281]唐礼忠,XIA K W,李夕兵.矿山地震活动多重分形特性与地震活动性预测[J].岩石力学与工程学报,2010,29(9):1818-1824.
    [282]杨承祥,罗周全,唐礼忠.基于微震监测技术的深井开采地压活动规律研究[J].岩石力学与工程学报,2007,26(4):818-824.
    [283]陈炳瑞,冯夏庭,曾雄辉,等.深埋隧洞TBM掘进微震实时监测与特征分析[J].岩石力学与工程学报,2011,30(2):275-283.
    [284]陈炳瑞,冯夏庭,肖亚勋,等.深埋隧洞TBM施工过程围岩损伤演化声发射试验[J].岩石力学与工程学报,2010,29(8):1562-1569.
    [285]XU N W, TANG C A, LI L C, et al. Microseismic monitoring and stability analysis of the left bank slope in Jinping first stage hydropower station in southwestern China [J]. International Journal of Rock Mechanics & Mining Sciences.2011. Vol.48:950-963.
    [286]XU N W, TANG C A,LI H, et al. Excavation-induced microseismicity:microseismic monitoring and numerical simulation [J]. Journal of Zhejiang University-Science A.2011. in press.
    [287]XU N W, TANG C A, LI H, et al. Optimal design of microseismic monitoring networking and error analysis of seismic source location for rock slope [J].Open Civil Engineering Journal [J],2011,5:36-45.
    [288]XU N W, TANG C A, SHA C, et al. Application of a microseismic monitoring system in high rock slope[C]. International Symposium on Risk Control and Management of Design, Construction and Operation in Underground Engineering (IRCM2009).2009. October 20-22 Dalian, China.
    [289]徐奴文,唐春安,周钟,等.岩石边坡潜在火稳区域微震识别方法[J].岩石力学与工程学报,2011,30(6):893-900.
    [290]徐奴文,唐春安,吴思浩,等.微震监测技术在大岗山水电站右岸边坡中的应用[J].防灾减灾工程学报,2010,30(增1):216-221.
    [291]TANG C A, WANG J M, ZHANG J J.Preliminary engineering appliction of microseismic monitoring technique to rockburst prediction in tunneling of Jinping Ⅱ project [J]. Journal of Rock Mechanics and Geotechnical Engineering,2011,2(3):193-208.
    [292]赵兴东,石长岩,刘建坡,等.红透山铜矿微震监测系统及其应用[J].东北大学学报(自然科学版),2008,29(3):399-402.
    [293]刘超,唐春安,李连崇,等.基于背景应力场与微震活动性的注浆帷幕突水危险性评价[J].岩石力学与工程学报,2009,28(2):366-372.
    [294]严明,苗放,王十天,等.岩体声发射监测在马步坎高边坡岩体稳定研究中的应用[J].地质灾害与环境保护,1998,9(1):29—33.
    [295]李金河,玉国进.永久船闸边坡稳定性声发射监测[J].岩十力学,2001,22(2):478—480.
    [296]秦四清,李造鼎.岩石声发射技术概论[M].成都:西南交通大学出版社,1993.
    [297]杨远清,侯克鹏.声发射技术在某露天矿边坡稳定性监测中的运用[J].矿业快报,2008,11:102—104.
    [298]冯夏庭,杨成祥.智能岩石力学(2)—参数与模型的智能辨识[J].岩石力学与工程学报,1999,18(3):350
    [299]杨天鸿,芮勇勤,朱万成,等.炭质泥岩泥化夹层的流变特性及长期强度[J].实验力学,2008,23(5):396—402.
    [300]GEERALT VDH, JOACHIM R, THOMAS M, et al. Finite element simulation of a slow moving natural slope in the Upper-Austrian Alps using a visco-hypoplast ic constitutive model [J].Geomorphology,2009, (103):136-142.
    [301]KILBURN CRJ, PETLEY D N. Forecasting giant, catastrophic slope col lapse:Lessons from Vajont, northern Italy [J]. Geomorphology,2003, (54):21-32.
    [302]陈卫兵,郑颖人,冯夏庭,等.考虑岩土体流变特性的强度折减法研究[J].岩土力学,2008,29(1):101-105.
    [303]郑东健,顾冲时,吴中如.边坡变形的多因素时变预测模型[J].岩石力学与工程学报,2005,24(17):3180—3184.
    [304]张我华,金伟良,李鸿波.岩石边坡稳定性的随机损伤力学分析[J].水利学报,2005,36(4):413—419.
    [305]杨学堂,王匕.边坡稳定性评价方法及发展趋势[J].岩土工程技术,2004,18(2):103—106.
    [306]李守巨,刘迎曦,孙伟.智能计算与参数反演[M].北京:科学出版社,2008.
    [307]冯夏庭,周辉,李邵军,等.复杂条件下岩石工程安全性的智能分析评估和时空预测系统[J].岩石力学与工程学报,2008,27(9):1741-1756.
    [308]邓建辉,丰定祥,葛修润.边坡弹性模型位移反分析及其工程应用[J].水利学报,1998,(1):14-17.
    [309]邓建辉,李焯芬,葛修润.BP网络和遗传算法在岩石边坡位移反分析中的应用[J].岩石力学与工程学报,2001,20(1):1-5.
    [310]邓建辉,李焯芬,葛修润.岩石边坡松动区与位移反分析[J].岩石力学与工程学报,2001,20(2):171-174.
    [311]DENG J H, LEE C F.Displacement back analysis for a steep slope at the Three Gorges Projects site [J]. International Journal of Rock Mechanics and Mining Sciences, 2001,38(2):259-268.
    [312]盛谦,丁秀丽,冯夏庭,等.三峡船闸高边坡考虑开挖卸荷效应的位移反分析[J].岩石力学与工程学报,2000,19(增刊):987—993.
    [313]李建林.卸荷岩体力学[M].北京:中国水利水电出版社,2003.
    [314]下瑞红,李建林,刘杰,等.考虑岩体开挖卸荷动态变化水电站坝肩高边坡三维稳定性分析[J].岩石力学与工程学报,2007,26(S1):3515-3521.
    [315]陈胜宏,陈尚法,杨启贵.三峡工程船闸边坡的反馈分析[J].岩石力学与工程学报,2001,20(5):619—626.
    [316]周火明,盛谦,李维树,等.三峡船闸边坡卸荷扰动区范围及岩体力学性质弱化程度研究[J].岩石力学与工程学报,2004,23(7):1078-1081.
    [317]CAI M,MORIOKA H,KAISER P K,et al.FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations[J]. Int. J. Rock Mech & Min. Sci.,2007,44:550-564.
    [318]秦四清.岩石声发射技术及应用[D].东北大学博士学位论文,1992.
    [319]SHEARER P M. Introduction to seismology[M]. Cambridge:Cambridge University Press,1999.
    [320]刘超.采动煤岩瓦斯动力灾害致灾机理及微震预警方法研究[D].大连理工大学博十学位论文,2011.
    [321]纪洪广.混凝十材料声发射性能研究与应用[M].北京,煤炭工业出版社,2003.
    [322]谭峰屹.钙质砂声发射试验研究[D].中国科学院武汉岩土力学研究所博十学位论文,2007.
    [323]唐礼忠.深井矿山地震活动与岩爆监测及预测研究[D].中南大学博十学位论文,2008.
    [324]MENDEEKI A J. Real time quantitative seismieity in mines [A]. In:Proceedings of sixth international symposium on rockburst and seismieity in mines (R. P. Young, ed)[C]. Rotterdam:Balkema,1993:287-296.
    [325]MENDEEKI A J.Seismic monitoring in mines [M]. London:Chapman & Hall,1997.
    [326]LACHENICHT R, Wiles T, van Aswegan G. Integration of deterministic modeling with seismic monitoring for the assessment of the rockmass reponse to mining:Part Ⅱ Application [A]. In:Proceedings of fifth international symposium on rockburst and seismicity in mines (Edited by van Aswegen G, Durrheim R J, Ortleep W D) [C]. Johannesburg:The South African Institute of Mining and Metallurgy,2001:389-395.
    [327][波]GIBOWCIZ S J,KIJKO A.修济刚,徐平,杨心平,泽.矿山地震学引论[M].北京:地震出版社,1998.
    [328]KIJKO A. An algorithm for the optimum distribution of a regional seismic network [J]. Pure.Appl.GeoPhys.1977,115:999-1009.
    [329]ANGUS ERRINGTION. Sensor placement for microseismic event location [D]. Department of Electrical Engineering at University of Saskatchewan.2006.Saskatoon, Saskatchewan.
    [330]KIJKO A, Sciocatti M. Optimal spatial distribut ion of seismic stations in mines [J]. Int. J. Rock Mech & Min. Sci,1995,32(6):607-615.
    [331]VAN ASWEGEN G, BUTLER A. Applications of quantitative seismology in SA Gold Mines [A]. In:Young R P ed. Proceedings of the 3rd International Symposium on Rockburst and Seismicity in Mines [C]. Kingston:A. A. Balkerrma,1993.261-266.
    [332]胡静云,林峰,彭府华,等.香炉山钨矿残采区地压灾害微震监测技术应用分析[J].中国地质灾害与防治学报,2010,21(4):109-115.
    [333]于承峰.基于微震监测技术的注浆帷幕区稳定性研究[D].东北大学硕十学位论文,2008.
    [334]陈炳瑞,冯夏庭,李庶林,等.基于粒子群算法的岩体微震源分层定位方法[J].岩石力学与工程学报,2009,28(4):740-749.
    [335]田玥,陈晓非.地震定位研究综述[J].地球物理学进展,2002,17(1):147-155.
    [336]康玉梅,刘建坡,李海滨,等.一类基于最小二乘法的声发射源组合定位算法[J].东北大学学报 (自然科学版),2010,31(11):1648-1656.
    [337]NELDER I.A, MEAD R. A Simplex method for function minimization [J], Computer Journal,1965,7:308-373.
    [338]GENDZWILL D.J.,PRUGGER A. F. Algorithms for microearthquake locations [J].Proc.4"' Symp.On Acoustic Emissions and Microseismicity, Penn State Uninversity, College Park, Pennsylvania,1985.
    [339]林峰,李庶林,薛云亮,等.基于不同初值的微震源定位方法[J].岩石力学与工程学报,2010,29(5):996-1002.
    [340]牟磊育,赵仲和,张伟,等.用INGLADA与GEIGER方法实现近震精定位[J].中国地震,2006,22(3):294-302.
    [341]GEIGER L. Probability method for the determination of earthquake epicenters form the arrival time only [J]. Bulletin of Saint Louis University,1912,8:60-71.
    [342]陆菜平,窦林名,吴兴荣,等.岩体微震监测的频谱分析与信号识别[J].岩土工程学报,2005,27(7):772-775.
    [343]曹安业,窦林名,秦玉红,等.高应力区微震监测信号特征分析[J].采矿与安全工程学报,2007,24(2):146-151.
    [344]王继,陈九辉.应用人工神经元网络方法自动检测地震事件[J].地震地磁观测与研究,2008,29(3):41-45.
    [345]张杰.凡口矿深部微震信号辨识方法研究[J].采矿技术,2009,9(4):66-67.
    [346]朱卫星,宋洪亮,曹自强,等.自适应极化滤波在微地震信号处理中的应用[J].勘探地球物理进展,2010,33(5):367-371.
    [347]赵旭生.声发射监测井下动力灾害的噪声处理方法[J].煤炭科学技术,2005,33(3):51-55.
    [348]宋维琪,何欣,吕世超.应用卡尔曼滤波识别微地震信号[J].石油地球物理勘,2009,44(1)增:34-38.
    [349]杨光亮,朱元清,于海英.基于HHT的地震信号自动去噪算法[J].大地测量与地球动力学,2010,30(3):39-42.
    [350]高淑芳,李山有,武东坡,等.一种改进的STA/LTA震相自动识别方法[J].世界地震工程,2008,24(2):37-41.
    [351]MILKEREIT B, BOHLEN T, ADAM E, et al. Reservoir imaging monitoring:A modeling study [J].EAGE 64"'Conference & Exhibit ion-Florence, Italy,2002,27-30.
    [352]LINVILLE A F, MEEK R A. A procedure for optimally removing localized coherent noise [J]. Geophysics,1995,60(1):191-203.
    [353]朱卫星.相关滤波在微地震数据处理中的应用[J].勘探地球物理进展,2007,30(2):130-134.
    [35]许大为,潘一山,李国臻,等.基于小波变换的矿山微震信号滤波方法研究[J].矿业工程,2007,5(2):66-68.
    [355]罗俊海,李录明,叶丹霞,等.基于改进的RBF模糊神经网络滤波的噪声消除[J].系统仿真学 报,2007,19(21):4918-4921.
    [356]杨丽娟,张白桦,叶旭桢.快速傅里叶变换FFT及其应用[J].光电工程,2004,31(Sup):1-4.
    [357]秦玉红.矿井开采引发矿震规律及其应用研究[D].中国矿业大学博士学位论文,2005.
    [358]杨志国,于润沧,郭然,等.微震监测技术在深井矿山中的应用[J].岩石力学与工程学报,2008,27(5):1066-1073.
    [359]USGS, Tech Report [EB/OL]. (2008,10,11) [2011,10,10]. http://quake.wr.usgs.gov/recenteqs/beachball.html.
    [360]BRUCE R. JULIAN, ANGUS D. MILLER, G. R. Foulger. Non-double-couple earthquakes[J]. Theory, Reviews of Geophysics,36(4):525-549.
    [361]唐礼忠,汪令辉,张君.大规模开采矿山地震视应力和¨变形与区域性危险地震预测[J].岩石力学与工程学报,2011,30(6):1168-1178.
    [362]AKI K. Scaling Law of Seismic Spectrum [J].J.GeoPhys. Res.,1967,72:1217-1231.
    [363]BOORE D M, BOATWRIGHT J. Average Body-wave Radiation Coefficients [J]. Bull, seism. Soc.Am.74.1984:1615-1621.
    [364]MCGARR A. Seismic Moments and volume changes [J]. J. GeoPhys. Res,1976,81 (8):1487-1494.
    [365]BRUNE J N. Tectonic Stress and the Spectra of Seismic Shear Waves [J].J. GeoPhys. Res.,1970,75:4997-5009
    [366]KEILIS-BOROK V I. The study Of Earthquake mechanism, in The Mechanics of Fault ing, With Special Reference to the fault-plane work, J.H.Hodgson (editor), Dominion Obs., Ottawa,1959:279.
    [367]WYSS M, BRUNE J N. Seismic Moment, Stress and Source dynamics for Earthquakes in the California-Nevada region[J]. J. Geophys. Res.,1968,73:4681-4694.
    [368]SENATORSKI P. A macroscopic approach towards Earthquake Physics:the meaning of the Apparent Stress [J]. Physica-A,2005,358:551-574.
    [369]SENATORSKI P. Apparent Stress Scaling and Statistical trends [J]. Physics of the earth and planetary interiors,2007,160(3):230-244.
    [370]李芳,李宇彤,刘友富.视应力方法在群震性质判定中的应用[J].地震,2006,26(4):45-51.
    [371]刘红桂,王培玲,杨彩霞,等.地震视应力在地震预测中的应用[J].地震学报,2007,29(4):437-445.
    [372]SNOKE J A, LINDE A T, SACKS I S. Apparent Stress:An Estimate of the Stress Drop [J]. Bull.Seism.Soc.Am.1983,73:339-348.
    [373]陈学忠,王小平,王林瑛.地震视应力用于震后趋势快速判定可能性[J].国际地震动态,2003,295(7):1-4.
    [374]MADARIAGA R. Dynamics of an expanding circular fault [J]. Bull. Seism. Soc.Am., 66.1979:639-666.
    [375]GUTENBERG B, RICHTER C F. Frenquency of earthquakes in California [J]. Bulletin of the Seismological Society of America,1944,34:185-188.
    [376]HANKS T C, KANAMORI H. A moment magnitude scale [J]. Journal of Geophysical Research, 1979,84:2348-2350.
    [377]HASEGAWA H S. Lg spectra of local earthquakes recorded by the eastern Canada telemetered network and spectral scaling[J].Bulletin of the Seismological Society of America,1983,73(4):1041-1061.
    [378]BRUMMER R K, RORKE A J. Case studies on large rockbursts in South African gold mines [C].In Proceedings of Rockbursts and Seismicity in Mines. Minneapolis. (Editors:Y. Potvin, M. R. Hudyma), Perth, Australia Centre for Geomechanics,2005,511-517.
    [379]TABELI S, MOTTAHED P, PRITCHARD C J. Monitoring seismicity in some mining camps of Ontario and Quebec[C]. In Proceedings of Rockbursts and Seismicity in Mines, Krakow, (Editors:S Gibowicz, S Lasocki),1997,117-120.
    [380]SIMSER B P, FALMAGNE V, GAUDREAU D, et al. Seismic response to mining at the Brunswick mine. Canadian Institute of Mining and Metallurgy Annual General Meeting, Montreal, 2003,12.
    [381]KAISER P K, MCCREATH D R, TANNANT D D. Canadian rockburst support handbook,1996,324.
    [382]中国水电顾问集团成都勘测设计研究院.四川省雅砻江锦屏一级水电站左岸边坡安全监测与稳定性分析报告[R].成都:中国水电顾问集团成都勘测设计研究院,2010.4.
    [383]黄润秋,林峰.岩质高边坡卸荷带形成及其工程性状研究[J].工程地质学报,2001,9(3):228-232.
    [384]罗平平,朱岳明,赵咏梅,等.岩体灌浆的数值模拟[J].岩土工程学报,2005,27(8):918-921.
    [385]裴向军,黄润秋,李正兵,等.锦屏一级水电站左岸卸荷拉裂松弛岩体灌浆加固研究[J].岩石力学与工程学报,2011,30(2):284-288.
    [386]DELGADO J, MERCER R. Microseismic monitoring and rockbursting activity at the Campbell mine, Ontario, Canada [C]. In proceedings of the 41st U. S. Sypmosium on Rock Mechanics (USRMS):"50 years of Rock Mechanics-Landmarks and Future Challenges".Golden, Colorado.2006.
    [387]SLADE J, ASCOTT B. Impact of rockburst damage upon a narrow vein gold deposit in the Eastern Goldf ields, Western Australia. In proceedings of International Seminar on Deep and High Stress Mining, Austral ian Center for Geomechanics, Perth, Australia, Section 27,2002,19.
    [388]BLAKE W, HEDLEY D G F. Rockburst case histories for North American hardrock mines. Report for CAMIRO Mining Division.2001,73.
    [389]MCKINNON S D. Triggering of seismicity remote from active mining excavations [J]. Rock Mechanics and Rock Engineering.2006,39(3):255-279.
    [390]GRINCERI M. Structural and spatial controls to seismicity at the Big Bell gold mine [D]. Unpublished Undergraduate Thesis, Department of Civil and Resource Engineering, University of Western Australia,2002.
    [391]REIMNITZ M. Shear-slip induced seismic activity in underground mines:a case study in Western Australia [D]. Unpublished Undergraduate Thesis, Department of Civil and Resource Engineering, University of Western Australia,2004,125p.
    [392]MOLLISON L, SWEBY G, POTVIN Y. Changes in mine seismicity following a mine shutdown [C]. In proceedings of Advanced Rock Mechanics Practice for Underground Mines. Australian Center for Geomechanics,22-23 March 2001, Perth,13.
    [393]姜福兴,刘伟建,叶根喜,等.构造活化的微震监测与数值模拟耦合研究[J].岩石力学与工程学报,2010,29(Supp.2):3590-3597.
    [394]李全林,于涛,郝柏林,等.地震频度——震级关系的时空扫描[M].北京:地震出版社,1979.
    [395]LEGGE N B, Spottiswoode S M. Fracturing and microseismicity ahead of a deep gold mine stope in the pre-remnant stages of mining [C]. In Proceedings of the 6th International Congress on Rock Mechanics, Montreal,1987,1071-1078.
    [396]HUDYMA M R, MILNE D, GRANT D R. Geomechanics of sill pillar mining in rockburst prone conditions. Final report:sill pillar monitoring using conventional methods[R]. Mining Research Directorate,1995,104.
    [397]LEI X L, KUSUNOSE K, NISHIZAWA O, et al.Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring [J]. Journal of Geophysical Research,2000,105:6127-6139.
    [398]WANG C L, WU A X, LIU X H, et al. Study on fractal characteristics of b value with microseismic activity in deep mining [J]. Procedia Earth and Planetary Science,2009, 1:592-597.
    [399]CICHOWICZ A, GREEN R W E, BRINK A v Z, et al. The space and time variation of micro-event parameters occurring in front of an active stope [C]. In Proceedings of Rockbursts and Seismicity in Mines. Minneapolis. (Editors:C Fairhurst). Rotterdam, A A Balkema, 1990,171-175.
    [400]DUPLANCIC P. Characteristion of caving mechanisms through analysis of stress and seismicity [D]. Unpublished PhD Thesis, University of Western Australia, Perth, Australia,2001,157.
    [401]BOATWRIGHT J, FLETCHER J B. The partition of radiated energy between P and S waves [J]. Bulletin of the Seismological Society of America,1984,74:361-376.
    [402]URBANCIC T I, FEIGNER B, YOUNG R P. Influence of source region properties on scaling relations for M<0 events [J].Pure and Applied Geophysics,1992,139(3/4):721-739.
    [403]MCGARR A.Some applications of seismic source mechanism studies to assessing underground hazard [C].In Rockburst and Seismicity in Mines (eds. Gay,N. C., and Wainwright, E. H.), Symp. Ser.6 (South Africa Inst. Min. Metal 1984) pp.199-208.
    [404]唐世斌.混凝土温湿型裂缝开裂过程细观数值模型研究[D].大连理工大学博十学位论文,2009.
    [405]WONG R H C, LIN P, TANG CA. Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression [J]. Mechanics of Materials,2006,38:142-159.
    [406]TANG C A, LIU H, LEE P K K, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part Ⅰ [J]:Effects of heterogeneity [J]. International Journal of Rock Mechanics and Mining Science.2000,37:555-569.
    [407]朱万成,唐春安,黄志平,等.静态和动态载荷作用下岩石劈裂破坏模式的数值模拟[J].岩石力学与工程学报,2005,24(1):1-7.
    [408]朱万成,唐春安,杨天鸿,等.岩石破裂过程分析(RFPA2D)系统的细观单元本构关系及验证[J].岩石力学与工程学报,2003,22(1):24-29
    [409]ZHU W C, TANG C A. Micromechanical model for simulating the fracture process of rock [J].Rock Mechanics and Rock Engineering.2004,37(1):25-56.
    [410]唐春安,李连崇,李常文,等.岩土工程稳定性分析RFPA强度折减法[J].岩石力学与工程学报,2006,25(8):1522-1530.
    [411]贾蓬,唐春安,杨天鸿,等.强度折减法在岩石隧道稳定性研究中的应用[J].力学与实践,2007,29(3):50-55.
    [412]唐春安.岩石破裂过程声发射的数值模拟研究[1],岩石力学与工程学报,1997,16(4):368-378.
    [413]TANG CA, YANG W T, FU Y F, et al. New approach to Numerical Method of Modelling Geological Processes and Rock Engineering Problems-continuum to discontinuum and linearity to nonlinearity [J]. Engineering Geology.1998,49(3-4):207-214.
    [414]TANG CA, KOU S Q, LINDQVIST P A. Numerical Simulation of Loading Inhomogeneous Rocks [J], Int.J.Rock. Mech & Min.Sci.,1998,35(7):1001-1006.
    [415]崔维成.复合材料结构破坏过程的计算机模拟[J].复合材料学报,1996,13(4):102-11
    [416]ZHU WC, TANG CA, HUANG Z P, et al. A Numerical Study of the Effect of Loading Conditions on the Dynamic Failure of Rock [J]. Int. J. Rock. Mech.& Min. Sci.,2004,41 (3):424-424.
    [417]朱万成.混凝土断裂过程细观数值模型及其应用[D].东北大学博十学位论文,2000.
    [418]YANG T H, THAM LG, TANG CA, et al. Influence of Heterogeneity of Mechanical Properties on Hydraulic Fracturing in Permeable Rocks. ROCK MECH & ROCK ENGNG,2004,37(4): 251-275.
    [419]YANG T H, XU T, RUI RQ, et al. The Deformation Mechanism of A Layered Creeping Coal Mine slope and the Associated Stability Assessments [J]. Int. J. Rock. Mech & Min. Sci., 2004,41(3):525-525.
    [420]LIANG Z Z, TANG CA, LI H X, ZHANG Y B. Numerical Simulation of the 3D Failure Process in Heterogeneous Rocks[J]. Int. J. Rock Mech & Min. Sci.,2004,41(3):419-419.
    [421]唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003.
    [422]大连力软科技有限公司RFPA用户手册[M].大连:大连力软科技有限公司,2005.
    [423]刘晓明.金属矿隐患空区三维信息获取及其动力失稳数值分析计算研究[D].中南大学博土学位论文,2010.
    [424]梁正召.三维条件下岩石破裂过程分析及其数值试验方法研究[D].东北大学博十学位论文,沈阳,2005.
    [425]周创兵,卢文波,姜清辉,等.锦屏一级水电站枢纽区左岸边坡稳定性分析及支护措施专题研究报告[R].武汉:武汉大学,2005.
    [426]张公平,刘康,吉华伟,等.四用省雅砻江锦屏一级水电站左岸边坡安全监测与稳定性反馈分析专题报告[R].成都:中国水电顾问集团成都勘测设计研究院,2009.
    [427]徐奴文,唐春安,沙椿,等.考虑弱层置换的岩质边坡稳定性分析[J].岩土力学2011,32(Supp.1):495-500.
    [428]梁正召,唐春安,张永彬,等.岩石三维破裂过程的数值模拟研究[J].岩石力学与工程学报,2006,25(5):931—936.
    [429]LIANG Z Z, TANG C A., LI H X, et al.Numerical simulation of 3-D failure process in heterogeneous rocks [J]. Int. J. Rock Mech. Min. Sci.41 (3):419-419.
    [430]张永彬,唐春安,张怀,等.岩石破裂过程分析系统中的应力并行求解,岩石力学与工程学报,2006,25(3):479-483.
    [431]张永彬,唐春安,梁正召,等.岩石破裂过程分析系统并行计算方法研究,岩石力学与工程学报,2006,25(9):1795-1780.
    [432]ZHANG Y F, TANG C A, ZHANG Y B, et al.Fractural process and toughening mechanism of laminated ceramic composites [J]. ActaMechanicaSolidaSinica,2007,20(2):141-149.
    [433]ZHANG J X, TANG C A, GUO X Z, et al. Effect of reinforcement speciality on average fracture spacing of reinforced concrete specimen[J]. Materials Science and Engineering A,2009,499:271-274.
    [434]唐烈先.RFPA离心机法在岩十工程破坏分析中的应用研究[D].东北大学博十学位论文,2008.
    [435]TANG C A, LI L C. RFPA centrifugal model-theory and application [J]. Failure Mechanics Letters,2005,3:41-42.
    [436]陈祖煜,汪小刚,杨健,等.岩质边坡稳定分析——原理·方法·程序[M].中国水利水电出版社,2005.
    [437]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].科学出版社,2002.
    [438]中国水电顾问集团成都勘测设计研究院.左岸边坡观测成果分析报告[R].成都:中国水电顾问集团成都勘测设计研究院,2009.
    [439]张金龙,徐卫亚,徐飞,等.深卸荷变形拉裂岩体锚索预应力损失规律研究[J].岩石力学与工程学报,2009,28(增2):3965-3970.
    [440]孟永东,徐卫亚,田斌,等.高边坡工程安全监测在线分析系统研发及应用[J].三峡大学学报(自然科学版),2009,31(5):20-26.
    [441]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570.
    [442]申维.自组织理论和耗散结构理论及其地学应用[J].地质地球化学,2001,29(3):1-7.
    [443]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004.
    [444]谢和平.岩石混凝十损伤力学[M].徐州:中国矿业大学出版社,1998.
    [445]谢和平,SANDERSOn D J,PEACOCK D C P.雁型断裂的分形模型和能量耗散[J].岩土工程学报,1994,26(1):1-7.
    [446]谢和平.岩石混凝十损伤力学[M].徐州:中国矿业大学出版社,1998.
    [447]谢和平,鞠杨,黎立云,等.岩体变形破坏过程的能量机制[J].岩石力学与工程学报,2008,27(9):1729-1740.
    [448]谢和平,彭瑞东,周宏伟等.基于断裂力学与损伤力学的岩石强度理论研究进展[J].自然科学进展,2004,14(10):1086-1092.
    [449]彭瑞东,谢和平,鞠杨.砂岩拉伸过程中的能量耗散与损伤演化分析[J].岩石力学与工程学报,2007,26(12):2526-2531.
    [450]谢和平,彭瑞东,鞠杨等.岩石破坏的能量分析初探[J].岩石力学与工程学报,2005,24(15):2603-2608.
    [451]谢和平,鞠杨.分数维空间中的损伤力学研究初探[J].力学学报,1999,31(3):300-310.
    [452]赵阳升,冯增朝,万志军.岩体动力破坏的最小能量原理[J].岩石力学与工程学报,2003,22(11):1781-1783.
    [453]潘岳,王志强.岩体动力火稳的功能增量—突变理论研究方法[J].岩石力学与工程学报,2004,23(9):1433-1438.
    [454]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [455]喻勇,尹健民.三峡花岗岩在不同加载方式下的能耗特征[J].岩石力学与工程学报,,2004,23(2):205-208.
    [456]STEFFLER ED, EPSTEIN JS, CONLEY E G. Energy partitioning for a crack under remote shear and compression [J]. Int. J. Fracture,2003,120:563-580.
    [457]胡柳青,李夕兵,赵伏军.冲击载荷作用下岩石破裂损伤的耗能规律[J].岩石力学与工程学报,2002,21(Supp2):2304-2308
    [458]潘岳,张孝伍.狭窄煤柱岩爆的突变理论分析[J].岩石力学与工程学报,2004,23(11):1797-1803.
    [459]朱维申,李术才,程峰.能量耗散模型在大型地下洞群施工顺序优化分析中的应用[J].岩土工程学报,2001,23(3):333-336.
    [460]朱维申,程峰.能量耗散本构模型及其在三峡船闸高边坡稳定性分析中的应用[J].岩石力学与工程学报,2000,19(3):261-264.
    [461]金丰年,蒋美蓉,高小玲.基于能量耗散定义损伤变量的方法[J].岩石力学与工程学报,2004,23(12):1976-1980.
    [462]华安增.地下工程周围岩体能量分析[J].岩石力学与工程学报,2003,22(7):1054-1059.
    [463]MIKHALYUK A V, ZAKHAROV V V.Dissipation of Dynamic-loading Energy in Quasi-elastic Deformation Processes in Rocks[J]. Applied Mechanic and Technical Physics (English translation of PMTF, Zhurnal Prikladnoi Mekhaniki Tekhnicheskoi Fiziki),1997,38(2): 312-318.
    [464]SUJATHA1 V, KISHEN C. Energy release rate due to friction at bi-material interface in dams [J].J.Eng. Mech.,2003, (7):793-800.
    [465]高文学,刘运通.冲击载荷作用下岩石损伤的能量耗散[J].岩石力学与工程学报,2003,22(11):1777-1780.
    [466]李如生.非平衡态热力学和耗散结构[M].北京:清华大学出版社,1986.
    [467]陈剑平.岩十体变形的耗散结构认识[J].长春科技大学学报,2001,31(3):288-293.
    [468]冯西桥,余寿文.准脆性材料细观损伤力学[M].北京:高等教育出版社,2002.
    [469]尤明庆,华安增.岩石试样破坏过程的能量分析[J].岩石力学与工程学报,2002,21(6):778-781.
    [470]SOLECKI R, CONANT R J.Advanced Mechanics of Materials [M]. London:Oxford University Press,2003.
    [471]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.
    [472]谢和平.分形-岩石力学导论[M].北京:科学出版社,1996.
    [473]XIE H P. Fractals in rock mechanics [M]. Netherlands:A. A. Balkema Publishers,1993.
    [474]GUTENBERG B, RICHTER C F. Magnitude and energy of earthquakes [J], Ann. Geo.,1956, 9:1-15.
    [475]梯恩梯当量[EB/OL]. (2011,07,21) [2011,10,25]. http://baike.baidu.com/view/1150647.htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700