用户名: 密码: 验证码:
衰减、场地响应等地震波传播相关信息综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震激发的波,经过传播路径、仪器、场地等因素的调制作用成为台站地震记录,即台站记录是震源、路径、仪器、场地等多种因素的耦合,而基于地震记录研究震源信息、路径衰减、场地响应等则是逆向的解耦过程。基于地震学理论、通过各种计算技术,从地震波形资料中解析出关于地震震源力学参数、地震波传播介质及台站场地响应信息是地震研究的重要内容,也是认识地震孕育、发生、发展过程,了解地震孕育背景构造特征等的有效途径。本文在地震学前沿理论方法基础上使用最新计算机技术开展以下三个方面的工作。
     本文第一部分,在逆向双台谱比法的基础上,提出了基于谱比法的地震波衰减与场地响应联合反演方法。与逆向双台谱比法相比,该方法对数据条件限制降低,增加了可用数据量,获得地震波衰减参数外,还同时获得场地响应参数。使用该方法,选取首都圈台站记录的同区域小震资料,评估首都圈台站场地响应,计算相应研究区地震波衰减参数。研究表明,在1Hz~6Hz频率范围内,基岩台场地响应小、平坦且稳定,土层台对低频率波放大作用高于对高频率波的放大作用,地震波衰减参数与区域地震活动性相关。同样使用该方法,选取浙江省区域地震台网台站记录的台湾地震波形资料,评估浙江省丘陵地带基岩台站场地响应,计算了穿越台湾海峡较单一路径Lg波衰减参数,通过区域地震记录震级偏离情况对该研究场地响应结果的可靠性进行了检验。
     第二部分基于弱散射的尾波理论开展地震波尾波衰减研究。文章详细阐述了基于Aki模型及Sato模型的尾波衰减参数计算的原理方法,定量分析不同滤波器及相关性能、地震波噪声、数据采样、尾波流逝时间等对计算结果的影响。根据计算特点,针对Aki模型在数据采样方面提出了动态采样方法,针对Sato模型提出了最佳线形段自动判断算法。研究表明,利用动态采样代替固定窗长的静态采样方法,在拟合数据段较短的情况下,结果更稳定。
     利用浙江、宁夏及首都圈台网近年来记录的数字地震波资料,研究相应地区地震波尾波衰减特征,并结合地震活动情况,研究了地震波衰减参数与区域地震活动的关系,对研究结果的可靠性进行了论证。研究发现,Q0大小除了与射线穿过区域地震活动性、地震地质条件有关外,与台站位置所处的局部地形及地震地质构造有关。地震活动程度越高、地震波衰减越快,衰减参数Q0值越小。研究中,我们发现地震波衰减参数Q0与η具有负相关关系。小震序列对相应区域介质衰减的影响表现为,衰减参数η趋势性降低,而Q0不具有趋势性特征。
     根据数据条件,使用基于Sato模型计算的衰减参数Q0构建区域衰减参数图像,分析华北区域历史大震活动与衰减参数图像的关系,结果表明,研究区Ms7级以上地震均发生在低Q0区或Q0高梯度递变区。
     第三部分为综合研究部分。在这一部分,使用浙江珊溪水库地震序列波形资料,开展了地震定位、小震震源参数、地震波衰减、综合段层面解等研究。在地震定位方面提出了在虚波走时方程基础上的遗传算法定位,由此得到的定位结果与浙江省台网用hypo81方法定位结果相比,走时残差大幅降低,定位质量明显提高。
     基于虚波走时方程,将非线性方程线性化,求解获得震源位置及虚波速度初值,之后计算初值走时残差,由走时残差的标准偏差的2倍计算在经度、纬度、深度及虚波速度产生的最大误差,构造遗传种群,利用遗传算法进行二次定位,获得地震定位的最终结果。利用该方法,对浙江珊溪水库震群进行重新定位,结果表明:地震基本上集中发生在一个近乎垂直的北西向的断层面内,断层面走向136°,倾角87°。小震综合面解获得的结果与定位结果基本一致;震源深度平均4.7km,最大深度9.5km,最浅1.7km,地震震中呈北西向狭窄条带分布,沿北西方向地震震源深度趋势性增大,在条带西北端有大约3.5km的地震不连续空段;利用Borun模型计算的小震震源参数结果表明,该震群地震震源参数没有表现出明显有别于构造地震的特征,地震应力降多在0.33 MPa左右,平均应力降为0.88MPa,根据应力降空间分布的情况判断,该地震条带西北端地震活动不连续段处于应力降低值区。
     根据数据处理要求,本研究自主开发了界面友好、功能完善,数据输入、输出及参数配置操作方便实用的数字地震波处理软件,软件运行节省内存、速度快、流程可控。
Seismic record is a record coupled with seismic source, path, instrument and site. Study on seismic source information, path attenuation, site response and so on based on seismic records is the reverse of the decoupling process. It is an important content of seismic research to extract characteristics of seismic mechanical parameters, propagation media characteristics, site characteristics from seismic record, based on the theory of seismology, through a variety of computing technology. And it is effective way to understand the process of earthquake preparation, development, occurs and the background and other structural features of earthquake preparation. In this study, three areas of work were carried out based on the latest cutting-edge computer technology and the cutting-edge seismology theory methods.
     In the study, on the basis of the reverse two-station spectral ratio method, a joint inversion method which allows simultaneous determination of Lg wave attenuation and site response from spectral amplitude ratios was developed. Compared with the reverse two-station spectral ratio method, this method reduced the data constraints, increased the amount of available data, obtain the site response parameters, besides the seismic wave attenuation parameters. This is the first part of this research and is the groundbreaking work in this study. The method was used successfully for estimating site response of Zhejiang seismic network statgions and Metropolitan area seismic network station, and applied to invert for the parameters of Lg wave attenuation corresponding region. The comparison with other results suggested that our results are highly reliable.
     In the second part, the study on seismic coda attenuation was carried out based on weak scattering theory of coda. The principle and method of coda attenuation parameter calculation based on Aki and Sato model were elaborated, and the effect of different filters and their properties, seismic noise, data sampling, coda lapse time on the calculation results were analyzed quantitatively. According to the calculation features, the dynamic sampling method was proposed for Aki model, and the best linear segment automatically determining algorithm was proposed for Sato model. Studies on calculation method have shown that the result used dynamic sampling method was more stable than that used static sampling when the fitting data were shorter. If the selection of filter and its properties didn't cause the waveform distortion, it would not affect the result.
     Selecting the digital seismic data recorded by Zhejiang region earthquake network, Ningxia region earthquake network and metropolitan earthquake network in recent years, we calculated Qc(f) value of coda in relative region, polyfited relationship between Qc(f) value and frequency in corresponding region. Considering the seismic activity, we studied the relationship between the attenuation parameters of seismic wave and the seismic activity. According to the data We constructed Qo images and analyzed the relationship between images and region's historical seismic activity in northern China.
     Studies have shown that the value of the coda Qo was related to not only local topography and geological structure near the location of the stations but also the seismic activity, seismic-geology of the region that the seismic wave pass through. The higher the level of seismic activity, the faster seismic wave attenuation, coda Qo is smaller. In the study, we found that the coda attenuation parameter Qo is negatively correlated withη. The effect of small earthquake sequences on the attenuation of the media in corresponding region has shown that the attenuation parametersηdropped with tendency, but Qo didn't have the characteristics of tendency.
     In the third part, we selected the digital seismic data of Shanxi reservoir earthquake recorded by fixed stations and temporary stations, With these data we carried out on the earthquake location, a small local earthquake source parameters, attenuation of seismic waves, integrated surface solutions of small earthquakes and other research. In the earthquake location, the nonlinear virtual travel time equation was linearized and solved, and the source position, initial virtual velocity and travel time residuals were obtained. Then taking two times the standard deviation as a time residuals to calculate maximum error generated from longitude, latitude, depth and virtual velocity. The genetic population was structured using the maximum error and the end result of earthquake location was obtained by genetic algorithm. Using this method, the results significantly reduce travel time residuals, location quality has improved significantly compared to with the results of Zhejiang Province Network hypo81 positioning. Reservoir earthquake location shows that:the earthquake is largely concentrated in a nearly vertical, north west of the fault plane, whose normal and north angle of 46°, and east angle of 44°, and vertical angle of 87°. The result is in agreement with that of small earthquake comprehensive mechanism solution. The average depth of the earthquake 4.7km, maximum depth of 9.5km, the minimum depth of 1.7km. Epicenter was northwest narrow band distribution, and focal depth increased along the northwest direction. There is a seismic discontinuities space segment at about 3.5km the northwest end of the strip. The characteristics source parameters obtained by using the Brun model significantly different from that tectonic earthquakes. Seismic stress drop is about more than the 0.33 MPa, the average stress drop 0.88Mpa. According to the stress drop spatial distribution, the seismic discontinuities space segment at the northwest end of the strip is a low stress drop one.
     According to the data processing requirements, this study developed a user-friendly digital seismic processing software, The software is fully functional, data input, output and parameter configuration easy to operate, the software is running to save memory, speed, flow control.
引文
陈运泰,林邦慧,林中洋等,1975,根据地面形变的观测研究1966年邢台地震的震源过程,地球物理学报,28:164-182。
    陈运泰、黄立人、林邦慧等.1979,用大地测量资料反演的1976年唐山地震的位错模式,地球物理学报,22:,201-217。
    陈运泰,吴忠良,王培德等,2000.数字地震学.北京:地震出版社:1-14.
    丁玉美,高西全等,数字信号处理.西安:西安电子科技大学出版社,2000.
    嵇少丞,王茜,杨文采.2009.华北克拉通泊松比与地壳厚度的关系及其大地构造意义,地质学报,28(3):324-330
    李白基,秦嘉政,钱晓东,等.2004.云南姚安地区尾波衰减.地震学报,26:47-52
    韩竹军,徐杰,冉勇康等.2003,华北地区活动地块与强震活动,中国科学(D),33:108-118.
    刘建华,刘福田,阎晓蔚等.2004,华北地区Lg尾波衰减研究Lg尾波Q0地震成像.地球物理学报,47(6):1044-1052
    刘芳,苗春兰,高艳玲,2007.内蒙古中西部地区尾波Q值研究.地震27:72-80.
    刘丽芳,秦嘉政.2006.会泽5.3级和文山5.3级地震序列震源参数研究.地震研究29:43—49
    李一正等.1985.滇西地区震级与地震矩标度,地震研究.8:617—632
    刘明,徐洪波,宁国勤编著.2006.数字信号处理一原理与算法实现.清华大学出版社207-212。
    兰从欣,刘杰,郑斯华,等,北京地区中小地震震源参数反演,地震学报,2005,27:498-507
    刘希强,石玉燕,曲均浩等.2009.品质因子的尾波测定方法讨论.中国地震25:11一23.
    毛玉平,万登堡.2001.2000年云南姚安6.5级地震[M].北京:科学出版社,90.
    秦嘉政,叶建庆,钱晓东等,2003,2000年姚安地震的震源参数,地球物理学报,46:633-641.
    师海阔等,2011,基于Sato模型的宁夏及邻区尾波Q值研究,地震,31:118-126。
    许忠准、阎明、赵仲和,1983,由多个小地震推断的华北地区构造应力场的方向,地震学报5:268-279
    许卫卫,郑天愉.2005,渤海湾盆地北西盆山边界地区泊松比分布.地球物理学报,48(5): 1077-1084
    王峻,刘启元,陈九辉等.2009,首都圈地区的地壳厚度及泊松比.地球物理学报,52(1):57-66
    魏红梅,贺曼秋,黄世源等,2009.重庆荣昌地区尾波Qc值特征.西北地震学报31:97-101.
    杨智娴,陈运泰,等.2002.张北—尚义地震序列的重新定位和发震构造.地震学报.24:366-377
    杨明芝,马禾青,廖玉华,2007.宁夏地震活动与研究.北京:地震出版社.
    张天中,高龙生,张卫平.1990.滇西实验场区的Q值极其随时间窗变化[J].地震学报,12(1):12-21.
    朱新运,陈运泰,2007,用Lg波资料反演场地效应与地震波衰减参数,地震学报,29(6)569-580.
    朱新运等,2010,珊溪水库精细地震定位及构造研究,中国地震,26(4),380-391
    朱新运,于俊谊等,2008,基于MATLAB的小震震源参数计算软件研制,西北地震学报,30(6):380-384.
    朱新运,魏红梅等,2009,基于MATLAB的S波分裂参数计算软件研制,大地测量与地球动力学,29(6):380-384.
    朱新运,刘杰,张帆等,2006,基于Aki模型的近震S波尾波Q值求解及分析软件研制,地震研究,29(3):76-80
    朱新运等,2005.基于SAT0模型的近震S波尾波Q值求解及分析软件研制,地震地磁观测与研究,26(3):63-70
    Aki,K.2004,北京大学学术报告。
    Aki K.,1969. Analysis of the seismic coda of local earthquakes as scatter waves, J. Geophys. Res. 74:615-631
    Aki K., Chouet B.1975. Origin of coda waves:source, attenuation and scattering effects. J. Geophys. Res.80:3322-3342.
    Aki K., Richards P.G.1980.Quantitative Seismology Theory and Methods, (Vo 1.1). W. H. Freeman and Company.
    Aki, K.1980a. Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys. Earth Planet. Interiors.21:50-60.
    Aki, K.1980b. Scattering and attenuation of shear waves in the lithosphere. J. Geophys. Res.85: 6496-6504.
    Amerbeh W. B., Fairhead J. D.1989. Coda Q estimates in the mount CAmereroon Volcanic region West Africa. Bull. Seism.Soc. Am.79:1589-1600.
    Atkinson G. M., Boore D.M.2006. Earthquake Ground-Motion Prediction Equations for Eastern North America. Bull Seis. Soc. Am.96:2181-2205.
    Bakun W. H.1984. Seismic moment, local magnitudes and coda-duration magnitude for earthquakes in central California, Bull Seis. Soc. Am.74:439-458.
    Baumgardt D R.1990. Investigation of teleseismic Lg blockage and scattering using regional arrays. Bull Seism Soc Am:2261-2281.
    Billings S. D., Kennett B. L. N., Sambridge M. S.1994. Hypocenter genetic algorithms incorporating problem-specific information. Geophys J Int,118:693-706.
    Bindi, D., Parolai, S., Grosser, H., Milkereit, C., and Karakisa, S.2006. Crustal attenuation characteristics in Northwestern Turkey in the range from 1 to 10 Hz. Bull Seis. Soc. Am., 96:200-214.
    Bonilla L. F, Steidl J. H., Lindley G. T., et al.1997. Site amplification in San Fernando Valley, California:Variability of site effect estimation using the S-wave, coda and H/V methods. Bull. Seism. Soc. Amer.87:710-730.
    Borcherdt R. D.1970. Effects of local geology on ground motion near San Francisco Bay. Bull. Seism. Soc. Amer.60:29-61.
    Brune J N.1970. Tectonic stress and the spectra of seismic shear waves from earthquake. J. Geophys Res,75:4997-5009.
    Brune J N.1971. Correction. J Geophys Res,76:5002.
    Campillo M., Plantet J. L., Bouchon M.1985. Frequency-dependence attenuation in the crust beneath central France from Lg waves:Data analysis and numerical madeling. Bull. Seism. Soc. Amer.75:1395-1412.
    Canas J. A. and Mitchell B.J.1978.Imteral variation of surface wave anelastic attenuation in the Pacific Ocean. Bull Seism Soc Am,68:1637-1650.
    Carpenter P. J. and Sanford A. R.1985.Apparent Q for upper crustal rocks the central Rio Grande Rift. J. Geophys. Res,90:8661-8674
    Castro, R. R., Anderson, J. G., and Singh, S. K.1990. Site response, attenuation and source spectra of S waves along the Guerrero, Mexico, subduction zone. Bull. Seismol. Soc. Am., 80:1481-1503.
    Castro R. R., Rebollar C. J., Inzunza L. et al.2003. Directbody Wave Q estimates in northern Baja California Mexico. Physics of the Each and Planetary Interiors.103:33-38.
    Cha'vez D E, and K F Priestley.1986. Measurement of frequency dependent Lg attenuation in the Great Basin, Geophys Res Lett,16,551-554.
    Chal E.1987. Spectral scaling of earthquakes in the Miramichi region of New Brunswick. Bull. Seismol. Soc.Am.,77:347-365.
    Chun K.-K., Gogdon F. W., Richard J. K., et al.1987. A novel technique for measuring Lg attenuationresults from eastern Canada between 1 to10. Bull. Seism. Soc. Am.77:398-419.
    Chen S. Z. and Athinson G. M.2002. Global comparasions of earthquakes source spectra, Bull. Seis. Soc. Am.92(3):885-895
    Chout B.1979.Temporal Variation in the attenuation of earthquake coda near Stone Canyon, California[J].Geophys Res Lett,6:143-146
    Chung T. W., and Lee K.2002. Attenuation of high-frequency Lg waves around the Yangsan Fault area, the southeast Korea. J Korean Geophys Soc.5:1-8.
    Chung T. W., Park Y. K., Kang I. B., et al.2005. Crustal Q-1 in South Korea Using the Source Pair/Receiver Pair Method. Bull. Seism. Soc. Amer.,95:512-520.
    Chung T. W., Noh M-H., Kim J-K., et al.2007. A study of the regional variation of low-frequency Q-1Lg around the Korean Peninsula, Bull. Seism. Soc. Amer.97:2190-2197
    Cong L., Mitchell B.J.1998. Lg coda Qo and its relation to the Geology and tectonics of the Middle East. Pure Appl Geophys.158:563-585.
    Cong L. J., Mejia Mitchell B J.2000. Attenuation dispersion of P waves in near the New Madrid seismic zone. Bull. Seism. Soc. Am.90:679-689
    Crosson R. S.1976. Crustal structure modeling of earthquake data,l,Simultameous least squares estimation of hypocenter and velocity parameters. J Geophys Res,81:3036-3046.
    Dainty A. M.1981.A scattering model to explain seismic Q observations in the lithosphere between 1 and 30 hz. Geophys Res Letters,8:1126-1128
    De Miguel F, J M Ibanez, G Alguacil, J A Canas, F Vidal, J Morales, J A Pena, A M Posadas, and F Luzo'n.1992.1~18 Hz Lg attenuation in the Granada Basin (southern Spain), Geophys. J Int,111:270-280.
    De Souza J.L. and Mitchell B.J.1998. Lg coda Q variations across South America and their relation to crustal evolution. Pure Appl Geophys.158:587-612
    Domingguez T., Rebollar C. J.1997. Attenuation of coda waves at the Cerro Prieto Geothermal Field,Baja California, Mexico. Bull. Seism. Soc. Amer.87:1368—1374.
    Domi'nguez T, Rebollar C. J., and R. R. Castro.1997. Regional variations of seismic attenuation of Lg waves in southern Mexico, J Geophys Res,102:27501-27509.
    Domi'nguez T, and C J Rebollar.1997. Regional variations of seismic attenuation from coda and Lg waves in northern Baja California. J Geophys Res,102:15259-15268.
    Drouet S., Souriau A., Cotton F.2005. Attenuation, Seismic Moments, and Site Effects for Weak-Motion Events:Application to the Pyrenees. Bull. Seism. Soc. Am.,95:1731-1748.
    Dwyer J. J., Herrmann R. B., Nuttli O. W.1983. Spatial attenuation of the Lg wave in the Central United States. Bull. Seism. Soc. Am.73:781-796
    Gao L.S., Lee L.C., Biswas N.N. et al.1983a.Comparison of the effects between single and multiple scattering on coda waves for local earthquakes. Bull. Seism. Soc. Am.73: 377-389.
    Gao L. S., Biswas N. N., Lee L. C.1983b. Effects of multiple scattering on coda waves in three-dimensional medium. Pure Appl. Geophys.121:3-15.
    Giampiccolo E., D'Amico S., Patane'D, et al.2007.Attenuation and Source Parameters of Shallow Microearthquakes at Mt. Etna Volcano, Italy. Bull. Seism. Soc. Am.97:184-197.
    Geiger L.1912. Probability method for the determination of earthquake picenters from arrival time only. Bull. St. Louis. Univ,8:60-71.
    Gupta H. K.2001. Short-term earthquake forecasting may be feasible at Koyna, India. Tectonophysics,338:353-357.
    Gupta H. K.2002. A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna. India. Earth-Sci. Rev.58:279-310.
    Gupta H. K.2005. Artificial water reservoirs-triggered earthquakes with special emphasis at Koyna. Current Science.88:1628-1631.
    Gupta H. K., Shashidhar D, Periera M, et al.2006,Prediction of an M-4 earthquake in Koyna region comes true. Jour Geol Soc India,68:149-150.
    Hasegawa H. S.1985. Attenuation of Lg waves in the Canada Shield. Bull Seism Soc Amer,75:1 569-1582.
    Herrmann R. B. and Kijko A.1983. Modeling some empirical vertical component Lg relation. Bull. Seism. Soc. Amer.73:157-171.
    Herrmann R. B.1980. Q estimates using the coda of the local earthquake. Bull. Seism. Soc. Am. 70: 447-468.
    Herraiz M., Espinosa A. F.1987. Coda waves:a review. Pure and Applied Geophysics.125: 499-577.
    Hartzell S. H.1992. Site response estimation from earthquake data. Bull. Seism. Soc. Amer.82:2 308-2327.
    Hartzell S.,Leeds A., Frankel A., et al.1996. Site Response for urban Los Angeles using aftershorks of the North riase earthquake. Bull. Seism. Soc. Am.86:168-S172.
    Horasan G., Guney A. B.2004. S-wave attenuation in the Sea of Marmara, Turkey. Physics of the Earth and Planetary Interiors.142:215-224.
    Holland J. H.1975.Adaptation in Natural and Artificial Systems, Ann Arbor, MI:The University of Michigan Press.
    Hwang H. J., Mitchell B. J.1987. Shear velocities and the frequency dependence of Qβ in stable and tectonically active regions from surface wave observations. Geophys J. R. astr. Soc.90:575-613.
    Iwata, T., Irikura K.1988. Source parameters of the 1983 Japan earthquake sequence, J. Phys. Earth.36:155-184.
    Jacobson R. S., Shor G. G., Shor J., et al.1984. A comparison of velocity and attenuation between the Nicobar and Bengal deep sea fans. J.Geophys.Res.89:6181-6196
    Jin A., Aki K.,1988, Spatial and temperal correlation between coda Q and seismicity in China. Bull. Seism. Soc. Am.,78:741-769.
    Jin A., Moya C. A., Ando M.2000.Simultaneous determination of site response and source parameters of small earthquakes along the Atotsugawa Fault Zone,Central Japan, Bull. Seism. Soc. Am.90:1430-1445.
    Kvamme L B, Havskov J.1989. Q in Southern Norway[J].Bull Seis Soc Amer,79:1575-1588
    Kennett B.1986. Lg waves and structural boundaries. Bull Seism Soc Am.76:1133-1141.
    Knopoff, L, Schwab F., and E Kausel.1973. Interpretation of Lg. Geophys J. R. Astr. Soc. 33:389-404.
    Klein, F. W.,1978. Hypocenter location program HYPOINVERSE, U. S. Geol. Surv., Open-File Rept.78-694,102 pp.
    Kumar N., Parvez I.A., Virk H. S.2005. Estimation of coda wave attenuation for NW Himalayan region using local earthquakes. Physics of the Earth an d Planetary Interiors.151:243-258.
    Lee W. B.,Solomon S. C.1979. Simuhaneous inversion of surface wave phase velocity and attenuation:Rayleigh and Love waves over continental and oceanic paths. Bull. Seism. Soc. Am.69:65-95.
    Lienert B. R.,Berg E.,Frazer L. N.1986. Hypocenter:An earthquake location method using centered, scaled, and adaptively damped least squares[J]. Bull. Seism. Soc. Am.76:771-783.
    Liu Z., Wuenscher M. E., Herrmann R. B.1994. Attenuation of body waves in the central New Madrid seismic zone, Bull. Seism. Soc. Am.84:1112-1122.
    Langston C. A.1979. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J. Geophys Res.84:4749-4762.
    Lachet C. and Bard P.Y.1994. Numerical and Theoretical Investigations on the Possibilities and Limitations of Nakamura's Technique., J. Phys. Earth,42, pp.377-397.
    Lachet C., Hatzfeld D., Bard P., et al.1996. Site Effect and Microzonation in the City of Thessaloniky (Greece). Comparison of Different Approaches. Bull. Seism. Soc. Am. 86:1692-1703.
    McNamara D E, T J Owens, and W R Walter.1996. Propagation characteristics of Lg across the Tibetian Plateau. Bull Seism Soc Am,86;457-469.
    Moya C. A., Aguirre J., Irikura K.2000. Inversion of source parameters and site effects from strong ground motion records using genetic algorithms. Bull. Seism. Soc. Am.90:977-992
    Mitchell B. J.1995. Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation. Rev. Geophys.33:441-462.
    Mitchell B.J., Pan Y.and Xie J.,el al.1997. Lg coda Q variation across Eurasia and its relation to crustal evolution. J. Geophys. Res.102:22767-22779.
    Mitchell B.J., Baqer S., Akinci A.,el al.1998. Lg coda Q in Australia and its relation to crustal structure and evolution.Pure Appl Geophys.158:639-653.
    Mitra S., Priestley K., Gaur V. K., et al.2006. Frequency-dependent Lg attenuation in the Indian platform, Bull. Seism. Soc. Am.,96:2449-2456.
    Moya C. A., Aguirre J., Irikura K.2000. Inversion of source parameters and site effects from strong ground motion records using genetic algorithms. Bull Seism Soc Amer,90:977-992.
    Murphy J L, Bennett.1982. Adiscrimination analysis of short-period regional seismic data recorded at Tonto Forest Observatory. Bull. Seism. Soc. Am.,72:1351-1366.
    Nath S. K., Biswas N. N., Dravinski M. et al.2001. Determination of S-wave site response in Anchorage, Alaska in the 1-9 Hz frequency band. Pure Appl Geophys,159:2673-2698.
    Nath S K, Sengupta P, Sengupta S, et al.2000. Site response estimation using strong motion network:A step towards microzonation of Sikkim Himalayas. Seismology, Special Section.79: 1316-1326.
    NavaF. A., Arthur R. G., Castro R. R. et al.1999. S wave attenuation in the coastal region of Jalisco—Colima, Mexico, Physics of the Earth and Planetary Interiors,115:247-257.
    Nelson G. D., John E.1990. Earthquake locations by 3-D finite-difference travel times. Bull. Seism. Soc. Am.80:395-410.
    Panza G F, and G Calcagnile.1975. Lg, Li, and Rg from Rayleigh models, Geophys J. R. Astr. Soc.40:475-487.
    Paul A, D Jongmans, M Campillo, P Malin, and D Baumont.1996. Amplitude of regional seismic phases in relation to crustal structure of the Sierra Nevada, California. J Geophys Res,.101: 25243-25254.
    Pavlis G., Booker J. R.1983. Progressive multiple event location (PMLE). Bull. Seism. Soc. Am. 73:1753-1777.
    Pulli J.J.1984. Attenuation of coda waves in New England. Bull. Seism. Soc. Am.74:1149-1166.
    Pujol J.1988.Comments on the joint determination of hypocenter and station corrections. Bull. Seism. Soc. Am.78:1179-1189.
    Raul R C, Cristina C, Oscar R, et al.2008. Seismic Attenuation in Northeastern Sonora, Mexico. Bull Seism Soc Am,98:722-732.
    Rapine R R, J F Ni, and T M Hearn.1997. Regional wave propagation in China and its surrounding regions. Bull Seism Soc Am,87:1622-1636.
    Rautain T. G. and Khalturin V. I.1978. The use of the coda for determination of earthquake source spectrum. Bull. Seis. Soc. Amer.,75:1371-1382
    Riepl J., Bard P.-Y., Hatzfeld D., et al.1998. Detailed evaluation of site-response estimation methods across and along the sedimentary valley of Volvi (EURO-SEISTEST). Bull. Seism. Soc. Amer.88:488-502.
    Robert J M, Victor E C.1999. Regional waveform propagation in the Arabian Peninsula, J Geophys Res.104:20221-20235.
    Rodgers A J, and S Y Schwartz.1998. Lithospheric structure of the Qiangtang Terrane, northern Tibetan Plateau, from complete regional waveform modeling:evidence for partial melt, J Geophys Res,103:7137-7152.
    Sambridge M. S. Gallaghen K.1993. Hypocenter location using genetic algorithnics, Bull. Seismol. Soc. Am.83:1467-1491.
    Sanders C.O., Nixon L.D.1995. S-wave attenuation structure in Long Valley Caldera California, from three-component S-to-P amplitude ratio data. J. Geophys. Res.100:12395-12404.
    Sato H.1977. Energy propagation including scattering effects:single isotropic scattering approximation. J. Phys. Earth.25:27-41.
    Sato H., Fehler M. C.1998. Seismic Wave Propagation and Scatteringin the Heterogeneous Earth. Springer. New York,308.
    Sereno T J, S R Bratt, and T C Bache.1988. Simultaneous inversion of regional wave spectra for attenuation and seismic moment in Scandinavia. J Geophys Res,93:2019-2035.
    Sereno T J.1990. Frequency-dependent attenuation in eastern Kazakhstan and implications for seismic detection thresholds in the Soviet Union.Bull Seism Soc Am,.80,2089-2105.
    Shearer P. M.1999.Intruduction to Seismology, New York. Cambridge University Press.92-113.
    Shi J, Kim W. Y. and P. G. Richard.1996. Variability of crustal attenuation in the northeastern United States from Lg waves. J Geophys Res,101:25231-25242.
    Shi Jing-hua, Kim W.-Y., G. Richards.1998. The Corner Frequencies and Stress Drops of Interplate Earthquakes in the Northeastern United States. Bull. Seism. Soc. Am.88:531~542.
    Shih X. R., K.-Y. Chun, and T. Zhu.1994. Attenuation of 1-6 sec. Lg waves in Eurasia. J Geophys Res,99:23859-23874.
    Singh S. K., Herrmann R. B.1983. Regionalization of crustal coda Q in the continental United States,J.Geophys. Res.88:527-538.
    Shin T._C, Herrmann R B.1987. Lg attenuation and source studies using 1982 MIRAMICHI. Bull Seism Soc Am,77:384-397.
    Spence W.1980. Relative epicenter determination using P-wave arrival-time differences. Bull. Seism. Soc. Am.70:171-183.
    Steidl, J. H., Tumarkin A. G., and R. J. Archuleta.1996. What is a reference site? Bull. Seism. Soc. Am.86:1733-1748.
    Suteau A. M., Whitcomb J. H.1979. A local earthquake coda magnitude and its relation to duration, moment MO and local magnitude ML. Bull Seism Soc Am.69:353-368
    Tsujura, M.,1966. Frequency analysis of seismic waves:1, Bull.Earthq.Res.Inst.,Tokyo Univ. 44:873-891.
    Tusa G., Brancato A., Gresta S.2006.Source Parameters of Microearthquakes in Southeastern Sicily, Italy. Bull Seism Soc Am.96:968-983
    Winkler K., Nur A.1982. Seismic attenuation:effects of pore fluids and frictional sliding. Geophysics.47:1-15.
    Williams R. A., Stephenson W. J., Frankel A. D., et al.2000. Correlation of 1 to 10Hz earthquake resonances with surface measurements of S-wave reflections an d refractions in the upper 50m. Bull. Seism. Soc. Am.90:1323—1331.
    Waldhauser F, Ellsworth W L.2000. A double-difference earthquake location algorithm:method and application to the Northern Hayward Fault, California. Bull. Seism. Soc. Am.90:1353-1368.
    Wong V., Cecilio C. J., Mungui'a L.2001. Attenuation of Coda Waves at the Tres Vi'rgenes Volcanic Area, Baja California Sur, Me'xico. Bull. Seism. Soc. Am.91:683-693.
    Xie J.and Nuttli O.W.1988.Interpretation of high-frequency coda at large distances:stochastic modeling and method of inversion. Geophysical Journal.95:579-595
    Xie J. and Mitchell B.R.1990.A back-projection method for imaging large-scale lateral variations of Lg coda Q with application to continental Africa. Geophys. J. Int.100:161-181.
    Zucca J.J.,Hutchings L.J., Kasameyer P.W.1994. Seismic velocity and attenuation structure of the Geysers Geothermal Field, California. Geothermics.23:111-126.
    Zhang J, Lay T., Zaslow J., and W. R. Walter.2002. Source effects on regional seismic discriminant measurements, Bull. Seism. Soc. Am.92:2926-2945.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700