用户名: 密码: 验证码:
基于飞秒激光激励半导体材料的太赫兹源与探测技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹源与探测技术是太赫兹研究领域中最重要的部分,其中基于超快光脉冲激励半导体方式的太赫兹源与探测系统,由于其重要的研究及应用价值而受到广泛关注。本论文着重于研究超快激光激励半导体产生太赫兹辐射这一现象背后所蕴藏的物理机制,通过建立模型,利用解析、数值计算等手段获得太赫兹辐射强度的数学表达式,探讨影响太赫兹源发射效率以及太赫兹探测系统探测性能的各物理因素,最终获得提高太赫兹源效率与优化探测系统性能的方法。具体研究内容如下:
     (1)利用drude-Lorentz模型描述半导体内光生载流子在内建电场与外部磁场作用下的运动以及利用电偶极矩辐射模型得到了基于半导体表面电场驱动光生电流产生太赫兹辐射的太赫兹电场表达式,研究了半导体外加磁场引起的太赫兹辐射增强现象,并通过计算模拟得到了外磁场的变化对太赫兹辐射的影响,给出了增强效率最高时,外加磁场的状态。另外还对比了几种常用半导体的太赫兹辐射效率和外磁场的增强因子。
     (2)研究了基于光学整流非线性效应的太赫兹辐射源,通过理论推导和计算得到了太赫兹辐射场与泵浦光电场偏振方向、晶体表面晶向、晶体方位角之间的函数关系表达式。分别讨论了泵浦光正入射,斜入射情况下的太赫兹辐射场极值问题,通过软件绘图我们直观地对比了不同条件下的太赫兹辐射场状态,得到了使太赫兹辐射强度最大时,各参数应该满足的条件。
     (3)研究了太赫兹电光取样探测系统中的平衡探测方法,获得了探测信号与探测光偏振方向、电光晶体表面晶向,晶体方位角之间的函数关系表达式,给出了探测信号最优时,各参数应该满足的条件。结合前面光整流太赫兹源内容研究了太赫兹收发器(terahertz transceiver)中电光晶体的晶面取向问题,给出了最优晶向。
     (4)研究了晶体内非线性过程中由于色散引起的相位失配问题,分别讨论了非线性晶体作为太赫兹发射晶体以及作为太赫兹探测晶体时,相位失配效应带来的影响。首先横光学声子振动频率限制了太赫兹发射与探测的频谱宽度,其次由于光在晶体中的色散,相位失配将不可避免,晶体厚度的增大将面临非线性过程作用长度的增加及相位失配问题在频带上的扩展这一对矛盾体。我们通过模拟计算获得了不同晶体、不同晶体厚度、不同泵浦光脉宽条件下的太赫兹发射频谱和探测频谱,通过对这些频谱的对比分析,我们总结了选择非线性晶体以及晶体厚度的依据。
The technology of terahertz (THz) source and detection is the most significant part in the area of terahertz research. Specially, the terahertz source and detection systerms based on the method of exciting the semiconductor with an ultrafast pulse have attracted more attention because of important value of research and application. This manuscript focused on physical mechanisms in the process of terahertz radiation from the excited semiconductor. We obtained amplitude expressions of terahertz electric field using analytic and numerical computation. We discussed the generation efficiency and detection sensitivity of terahertz systerms and found physical factors which affected them strongly. Finally we demonstrated the optimal combination of those factors to optimize the working efficiency of terahertz generation & detection systerms. The details of my work are listed in the following:
     (1) By employing the Drude-Lorentz model to analy the motion of photogenearted carriers in the semiconductor surface under the influence of both external magnetic field and built-in electric field, we obtained amplitude expressions of terahertz electric field. Then the effects on enhanceing terahertz radiation, of laser incident angle, intensity and direction of the external magnetic field, and the semiconductor's features were under discussion. We clarified the optimal orientation of external magnetic to maximize the output power of terahertz radiation.
     (2) We studied the terahertz generation based on optical rectification and present a set of equations describing the terahertz generation in the zincblende crystals. Moreover, the dependence of terahertz emission efficiency on the polarization and incident angle of pump beam, the crystal-orientation, the azimuth angle is discussed. We also discussed the THz generation under the normal incidence and the oblique incidence of incident beam. Figures generated by MATLAB have been compared and analized to find the optimal combination of physical factors refered above.
     (3) We introduced the terahertz detection of electro-optic sanpling and calculated the detected signal by the method of balance-detection. We show the dependence detection of THz field on the crystal-orientation and the polarization of probe beam. Since the orientation and polarization are chosen arbitrarily, the equations supplied by us are valid in general cases. For the experimental setup with transceiver which transmits and detects terahertz radiation in the same crystal, we have demonstrated the optimal combination of both parameters above to optimize the working efficiency.
     (4) We studied the effect of phase mismatch in the nonlinear process generated inside the crystals, the optical dispersion in the electro-optic crystal affects the THz pulse detection. We found the transverse optical (TO) phonon resonance frequency limit the abilitivity of detection. We presented both the frequency spectrum of THz generation and the THz detection. The distribution of frequency spectrum is affected by the crystal materials, the thickness of crystal and the duration of incident pulse. According to the relevant physics formulas, We make a program by Matlab to simulate the changes of both the generated THz pulse and detecteded THz pulse with different parameters, we obtained some conclusion about the choices of crystal materials and the thickness, which make a great significant for THz source and detection systerm.
引文
[1]Fitch M. J., Osiander R. Terahertz waves for communications and sensing. Johns Hopkins Apl Technical Digest,2004,25(4):348-355
    [2]许景周,张希成.太赫兹科学技术和应用.北京:北京大学出版社,2006.4-6
    [3]Mukherjee P., B. Gupta. Terahertz (THz) Frequency Sources and Antennas-A Brief Review. International Journal of Infrared and Millimeter Waves,2008,29(12): 1091-1102
    [4]Tonouchi M. Cutting-edge terahertz technology. Nature Photonics,2007,1(2): 97-105
    [5]Redo-Sanchez, X.C. Zhang. Terahertz science and technology trends. Ieee Journal of Selected Topics in Quantum Electronics,2008,14(2):260-269
    [6]Aurele J. L.Adam, Paul C. M. Planken. TeraHertz imaging of hidden paint layers on canvas. Optics Express,2009,17(5):3407-3416
    [7]Takahashi H., M. Hosoda. Frequency domain spectroscopy of free-space terahertz radiation. Applied Physics Letters,2000,77(8):1085-1087
    [8]Hua Z. Nondestructive defect identification with terahertz time-of-flight tomography. Sensors Journal, IEEE,2005,5(2):203-208
    [9]Hirori H. Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses. Japanese Journal of Applied Physics Part 2-Letters & Express Letters,2004,43(10A):L1287-L1289
    [10]Yamashita M. Noncontact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope. Applied Physics Letters,2008, 93(4):041117-3
    [11]Kawase K. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Optics Express,2003,11(20):2549-2554
    [12].张雯,雷银照.太赫兹无损检测的进展.仪器仪表学报,2008,29(7):1563-1568
    [13]Woodward R.M. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Physics in Medicine and Biology,2002,47(21):3853-3863
    [14]Tonouchi M. Cutting-edge terahertz technology. Nature Photonics,2007,1(2): 97-105
    [15]P. Y. Han, X. C. Zhang. Time-domain transillumination of biological tissues with terahertz pulses, Opt.Lett.,2000,25(4):242-245
    [16]M. Brucherseifer, M. Nagel, P. Haring Bolivar. Label-free probing of the binding state of DNA by time-domain terahertz sensing, Appl. Phys. Lett.,2000,77(24): 4049-4052
    [17]M. Nagel, P. Haring Bolivar, M. Brucherseifer. Integrated THz technology for label-free genetic diagnostics, Appl. Phys. Lett.,2002,80(1):154-156
    [18]D. M. Mittleman, M. Gupta, R. Neelamani. Recent advances in terahertz imaging, Appl. Phys. B,1999,68(6):1085-1094
    [19]W. R. Tribe, A. David. Hidden object detection:security applications of terahertz technology, Proc. of SPIE,2004,5354,168-176
    [20]John F Federicil, Brian Schulkin, Feng Huang, et al. THz imaging and sensing for security applications-explosives, weapons and drugs, Semicond. Sci. Technol.,2005, 20(7):S266-S280
    [21]Federici J., L. Moeller. Review of terahertz and subterahertz wireless communications. Journal of Applied Physics,2010,107(11):111101
    [22]'Piesiewicz R., Islam M N. Towards Short-Range Terahertz Communication Systems: Basic Considerations, in Applied Electromagnetics and Communications, ICECom 2005.18th International Conference on.,2005.5-7
    [23]R. W. McMillan. Terahertz Imaging. Millimeter-Wave Radar,2006.15-17
    [24]Mathis L E S, Parker J T. Stimulated emission in band spectrum of nitrogen. Appl. Phys. Lett.,1963,3(1):16-18
    [25]Chang T Y, Bridges T J. Laser action at 452,496, and 541mm in optically pumped CH3F. Opt. Commun.,1970,1(9):423-426
    [26]Madey J M. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys.,1971,42(5):1906-1913
    [27]Carr G L, Martin M C, McKinney W R, et al. High-power terahertz radiation from relativistic electrons. Nature,2002,420(6912):153-156
    [28]Ivanov Y L, Vasiley. Cyclotron resonance laser in p-Ge, Sov. Tech. Phys. Lett.,1983, 9:264-268
    [29]Gousev Y P, Altukhov I V, Korolev K A, et al. Widely tunable continuous-wave THz laser. Appl. Phys. Lett.,1999,75(6):757-759
    [30]Faist J, Capasso F, Sivco D L, et al. Quantum Cascade Laser. Science,1994, 264(5158):553-556
    [31]Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor heterostructure laser. Nature,2002,417(6885):156-159
    [32]Hu Q, Williams B S, Kumar S, et al. Resonant phonon assisted THz quantum-cascade lasers with metal-metal waveguides. Semi. Sci. Tech.,2005,20(7):S228-S235
    [33]Convert G, Yeou T, Mouton P C. Contribution al'etude de la vascularisation du rein. Proc.4th Int. Congr. Microwave Tubes,1963,4:739-742
    [34]Golant M B, Alekseenko Z T, Korotkova Z S, et al. Series of wide-range small power generators for submillimeter wave range. Pribory I Tekhnika Eksp.,1965,3:231-235
    [35]Gunn J B. Microwave oscillations of current in III-IV semiconductors. Sol. St. Comm.,1963,1(4):88-91
    [36]Montgomery D D, M. I. T. Rep. Groups of differentible and real or complex analytic transformations. The Annals of Mathematics,1945.813-818
    [37]Dyakonov M, Shur M S. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys. Rev. Lett.,1993,71 (15):2465-2468
    [38]Knap W, Deng Y, Rumyantsev S. Resonant detection of sub-terahertz and terahertz radiation by plasma waves in submicron field-effect transistors. Appl. Phys. Lett., 2002,81(24):4637-4639
    [39]Deng Y, Kersting R, Xu J, et al. Millimeter wave emission from GaN high electron mobility transistor. Appl. Phys. Lett.,2004,84 (1):70-72
    [40]Auston D H. Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett.,1975,26(3):101-103
    [41]Lee C. Picosecond optoelectronic switching in GaAs. Appl. Phys. Lett.,1977,30 (2): 84-86
    [42]Auston D H, Cheung K P, Smith P R. Picosecond photoconducting Hertzian dipoles. Appl.Phys.Lett.,1984,45(3):284-286
    [43]Tani M, Matsuura S, Sakai K, Nakashima S. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Appl Opt.,1997,36(30):7853-7859
    [44]Darrow J T, Hu B B. Zhang X-C, Auston D H. Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas. Optics Letters,1990,15(6): 323-325
    [45]You D, Jones R R, Bucksbaum P H, et al. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Optics Letters,1993,18(4):290-292
    [46]Jepsen P U, Jacobsen R H, Keiding S R. Generation and detection of terahertz pulses from biased semiconductor antennas. J.Opt.Soc.Am.B,1996,13(11):2424-2436
    [47]X. C. Zhang, B B Hu, Darrow J, et al. Generation of femtosecond electromagnetic pulses from semiconductor surfaces. Appl. Phys. Lett.,1990,56(11):1011-1013
    [48]Hu B B, Zhang X-C, Auston D H. Temperature dependence of femtosecond electromagnetic pulses from semiconductor surfaces. Appl. Phys. Lett.,1990,57(25): 2629-2631
    [49]D. Dragoman, M. Dragoman. Terahertz fields and applications. Progress in Quantum Electronics,2004,28(1):1-66
    [50]A. G. Davies, E. H. Linfield, M. B. Johnston. The development of terahertz sources and their Applications. Phys. Med. Biol.,2002,47(21):3679-3689
    [51]Gu P, Tani M, Kono S. Study of terahertz radiation from InAs and InSb. J. Appl. Phys.,2002,91(9):5533-5537
    [52]Liu K, Xu J, Yuan T. Terahertz radiation from InAs induced by carrier diffusion and drift. Phys. Rev. B,2006,73(15):155330
    [53]Yang K, Richards P, Shen Y R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3. Appl. Phys. Lett.,1971,19(11):320-323
    [54]Chuang S L, Schmitt-Rink S, Green B I, et al. Optical rectification at semiconductor surfaces. Phys. Rev. Lett,1992,68(1):102-105
    [55]Zhang X-C, Jin Y, Yang K, et al. Resonant nonlinear susceptibility near the GaAs band gap. Phys. Rev. Lett.,1992,69(15):2303-2306
    [56]Nahata A, Auston D H, Wu C, Yardley J T. Generation of terahertz radiation from a poled polymer. Appl. Phys. Lett.,1995,67(10):1358-1360
    [57]Nahata A, Weling A S, Heinz T F.A wideband coherent terahertz spectroscopy system using optical rectification and electro-optics ampling. Appl. Phys. Lett.,1996, 69(16):2321-2323
    [58]Hamster H, Sullivan A, Gordon S, et al. Subpicosecond electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett.,1993,71(17):2725-2728
    [59]Cook D J, Hochstrasser R.M. Intense terahertz pulses by four-wave rectification in air. Optics Letters,2000,25(16):1210-1212
    [60]Uhd Jepsen P, Keiding. S. R. Radiation patterns from lens-coupled terahertz antennas. Optics Letters,1995,20(8):807-809
    [61]Rudd. J. V, Johnson. J, Mittleman. D. M. Quadrupole radiation from terahertz dipole antennas. Optics Letters,2000,25(20):1556-1558
    [62]Wu Q, Zhang X-C. Electro-optic sampling of freely propagating THz field. Optics & Quantum Electronics,1996,28(7):945-951
    [63]Nahata. A, Auston. D. H, Heinz. T. F. Coherent detection of freely propagating terahertz radiation by electro-optic sampling. Appl. Phys. Lett.,1996,68(2):150-152
    [64]Zhang X C, Auston D H. Optoelectronic Measurement of Semiconductor Surfaces and Interfaces with Femtosecond Optics, J. Appl. Phys.,1992,71(1):326-348
    [65]S.C.Howells, L.A.Schlie. Temperature dependence of terahertz pulses produced . different-frequency mixing in InSb. Appl. Phys. Lett.,1995,67(25):3688-3690
    [66]Ryotaro Inoue, Kazuhisa Tajayama, Masayoshi Tonouchi. Angular dependence of terahertz emission from semiconductor surfaces photoexcited by femtosecond optical pulses. J. Opt. Soc. Am. B,2009,26(9):A14-A22
    [67]Chen Y H, Yang Z, Wang Z G, et al. Temperature dependence of Fermi level in low temperature grown GaAs. Appl. Phys. Lett.,1998,72(15):1866-1868
    [68]X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. Kingsley, M. Weiner. Magnetic switching of THz beams. Appl. Phys. Lett.,1993,62(17):2003-2005
    [69]S. Ono, T. Tsukamoto, E. Kawahata, T. Yano, H. Ohtake, N. Sarukura. Terahertz radiation from a shollow Incidence-Angle InAs Emitter in a magnetic field irradiated with femtosecond laser pulses. Appl. Opt.,2001,40(9):1369-1371
    [70]J. Shan, C. Weiss, R. Beigang, T. Heinz. Origin of magnetic enhancement in the generation of terahertz radiation from semiconductor surfaces. Opt. Lett.,2001, 26(11):849-851
    [71]M. Hangyo, M. Migita, K. Nakayama. Magnetic field and temperature dependence of terahertz radiation from InAs surfaces excited by femtosecond laser pulses. J. Appl. Phys.,2001,90(7):3409-3412
    [72]C. Weiss, R. Wallenstein, R. Beigang. Magnetic-field-enhanced generation of THz radiation in semiconductor surfaces. Appl. Phys. Lett.,2000,77(25):4160-4162
    [73]H. Takahashi, Y. Suzuki, M. Sakai, et al. Significant enhancement of terahertz radiation from InSb by use of a compact fiber laser and an external magnetic field. Appl. Phys. Lett.,2003,82(13):2005-2007
    [74]Kai Liu, Jingzhou Xu, Tao Yuan, et al. Terahertz radiation from InAs induced by carrier diffusion and drift. Phys. Rev. B.,2006,73(15):155330
    [75]Yulei Shi, Xinlong Xu, Yuping Yang, et al. Anomalous enhancement of terahertz radiation from semi-insulating GaAs surfaces induced by optical pump. Appl. Phys. Lett.,2006,89(8):081129
    [76]F. H. Su, F. Blanchard, G. Sharma, et al. Terahertz pulse induced intervalley scattering in photoexcited GaAs. Optics Express.,2009,17(12):9620-9629
    [77]孙红起,赵国忠,张存林等.不同中心波长飞秒脉冲激发InAs表面辐射太赫兹波的机理研究.物理学报,2008,57(2):790-795
    [78]E. Hendry, M. Koeberg, J. Pijpers, et al. Reduction of carrier mobility in semiconductors caused by charge-charge interactions. Phys. Rev. B.,2007,75(23): 233202
    [79]H. Ohtake, H. Murakami, H. Takahashi, et al. Anomalous power and spectrum dependence of terahertz radiation from femtosecond-laser-irradiated indium arsenide in high magnetic fields up to 14T. Appl. Phys. Lett.,2003,82(8):1164-1166
    [80]G. Klatt, F. Hilser, W. Qiao, et al. Terahertz emission from lateral photo-Dember currents. Optics Express.,2010,18(5):4939-4947
    [81]X.-C. Zhang, Y. Jin, K. Ware, et al. Difference-frequency generation and sum-frequency generation near the band gap of zincblende crystals. Appl. Phys. Lett., 1994,64(5):622-624
    [82]A. Rice, Y. Jin, X. F. Ma, et al. Terahertz optical recitification from<110> zinc-blende crystals. Appl. Phys. Lett.,1994,64(11):1324-1326
    [83]J. Ahn, A. V. Efimov, R. D. Averitt, et al. Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses. Optics Express.,2003,11(20):2486-2496
    [84]M. Reid, R. Fedosejevs. Terahertz emission from (100) InAs surfaces at high excitation fluences. Appl. Phys. Lett.,2005,86(1):011906
    [85]H. J. Peng, D. E. Aspnes. Dipole-radiation model for terahertz radiation from semiconductors. Appl. Phys. Lett.,2005,86(21):212109
    [86]Guibao Xu, Yujie J. Ding, Hongping Zhao, et al. THz Generation from InN Films Based on Interference between Optical Rectification and Photocurrent Surge. CLEO/IQEC,2009. CTuG5
    [87]Xiaodong Mu, Yujie J. Ding, Kejia Wang, et al. Resonant terahertz generation from InN thin films. Optics Lett.,2007,32(11):1423-1425
    [88]Xiaodong Mu, Yujie J. Ding, Yuliya B. Zotova. Transition from photocurrent surge to resonant optical rectification for terahertz generation in p-InAs. Optics Lett.,2007, 32(22):3321-3323
    [89]田艳,王洋,赵国忠.太赫兹波段硅的光学特性研究.现代科学仪器,2006,2:51-54
    [90]G. Gallot, Z. Jiangquan, R. W. McGowan, et al. Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation. Appl. Phys. Lett.,1999,74(23):3450-3452
    [91]Q.Wu, X. C. Zhang. Terahertz broadband GaP electro-optic sensor. Appl. Phys. Lett., 1997,70(14):1784-1786
    [92]M. B. Johnston, D. M. Whittaker, A. Corchia, et al. Theory of magnetic-field enhancement of surface-field terahertz emission. J. Appl. Phys.,2002,91(4):2104-2106
    [93]钱士雄,王恭明.非线性光学——原理与进展.上海:复旦大学出版社,2011.14-17
    [94]Jie Shan, Tony F. Heinz. Terahertz Radiation from Semiconductors, Ultrafast Dynamical Processes in semiconductors.edited by Kong-ThonTsen, Springer,2004. 13-16
    [95]Ping Gu, Masahiko Tani. Terahertz Radiation from Semiconductor Surfaces, Terahertz Optoelectronics. Topics in Applied Physics, edited by Kiyomi Sakai, Springer,2005.65-66
    [96]R. W. Boyd. Nonlinear Optics. New York:Academic,1992.1-8
    [97]L. Duvillaret, S. Rialland, J.-L. Coutaz. Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimization of their orientation. J. Opt. Soc. Am. B.,2002,19(11):2704-2715
    [98]Nick C. J. van der Valk, Tom Wenckebach, Paul C. M. Planken. Full mathematical description of electro-optic detection in optically isotropic crystals. J. Opt. Soc. Am. B.,2004,21(3):622-631
    [99]. Q. Chen, M. Tani, Zhiping Jiang, et al. Electro-Optic transceivers for terahertz-wave applications. J. Opt. Soc. Am. B.,2001,18(6):823-831
    [100]Q. Chen, Zhiping Jiang, M. Tani, et al. Electrooptic terahertz transceiver. Electron. Lett.,2000,36(15):1298-1299
    [101]X. C. Zhang, Y. Jin, K.Yang, et al. Resonant Nonlinear Susceptibility near GaAs Band Gap. Phys. Rev. Lett.,1992,69(15):2303-2306
    [102]Xu Xie, Jingzhou Xu, X.C.Zhang. Terahertz wave generation and detection from a CdTe crystal characterized by different excitation wavelengths. Optics Lett.,2006, 31(7):978-980
    [103]Bahoura Messaoud. Herman Gregory S, Barnes Norman P, et al. Terahertz wave source via different-frequency mixing using cross-Reststhrahlen band dispersion 'compensation phase matching:a material study. Proceedings of SPIE,2000, 3928(2000):132-140
    [104]Nick C. J. van der Valk, Paul C. M. Planken, Anton N. Buijserd, et al. Infiluence of pump wavelength and crystal length on the phase matching of optical recitification. J. Opt. Soc. Am. B,2005,22(8):1714-1718
    [105]B. Pradarutti, G. Matthaus, S. Riehemann, et al. Highly efficient terahertz electro-optic sampling by material optimization at 1060 nm. Optics Communications,2008, 281:5031-5035
    [106]B. Sartorius, H. Roehle, H. Kunzel, et al. All-fiber terahertz time-domain spectrometer operating at 1.5μm telecom wavelengths. Opt. Express,2008,16:9565-9570
    [107]A. Schneider, M. Stillhart, P. Gunter. High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths. Opt. Express, 2006,14:5376-5384
    [108]M. Nagai, K. Tanaka, H. Ohtake, et al. Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56μm fiber laser pulses. Appl. Phys. Lett.,2004,85:3974-3976
    [109]M. Vossebiirger, M. Brucherseifer, G. C. Cho, et al. Propagation effects in electro-optic sampling of terahertz pulses in GaAs. Appl. Opt.,1998,37:3368-3371
    [110]J. Faure, J. Van. Tilborg, R. A. Kaindl, et al. Modeling laser-based table-top THz source:Optical recitification, propagation and electro-optic sampling. Optical & Quantum Electronics,2004,36(8):681-697
    [111]W. L. Faust, C. H. Henry, R. H. Eick. Dispersion in the Nonlinear Susceptibility of GaP near the Reststrahl Band. Phys Rev.,1968,173(3):781-786
    [112]G. Gallot. J. Zhang, R.W. McGowan, et al. Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation. Appl. Phys. Lett.,1999,74(23):3450-3453

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700