用户名: 密码: 验证码:
太赫兹通信系统及表面等离子体光波导器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类进行通信的历史已很悠久。早在远古时期,人们就通过简单的语言、壁画等方式交换信息。到了近现代,借助科学技术的不断改革与进步,通信技术也得以迅猛发展。但是随着生产的发展,大规模改造自然的需要以及人们生产和生活的日益社会化和国际话,所需要传递的信息数量几乎每周,每月都呈现创纪录的天文数字。现在已建立的有线和无线通信系统在通信容量和通信效率方面正日益显露出局限性。
     THz波介于微波与远红外光之间,处于电子学向光子学的过渡领域,它集微波通信与光通信的优点于一体,同时在传输等方面也表现出独有的特性。THz技术可广泛应用于雷达、遥感、国土安全与反恐、高保密的数据通讯与传输、大气与环境监测、实时生物信息提取以及医学诊断等领域。因此,THz研究对国民经济和国家安全有重大的应用价值。同时,由于太赫兹频段属于空白频段,现在没有分配执照,可望提供固网和移动网的高服务质量(QoS)宽带多媒体10Gb/s左右的无线业务。
     电子学和光子学的发展,极大地促进了数据处理和传输能力。随着科学技术的发展,高度集成化成为主流的发展方向。传统介质集成光学器件由于衍射极限的限制,在小型化、集成化方面遇到瓶颈。表面等离子体是强烈束缚在金属和电介质材料界面上的一种特殊的电磁场形式。表面等离子体波导有着在亚波长尺度内对光的传导能力。通过适当的波导结构设计,就可以突破衍射极限的限制。因此,人们开始关注表面等离子波及其器件,希望能够在微纳米级的器件和光回路中得到广泛应用。
     本文主要内容和创新点如下:
     1.详细介绍了国内外太赫兹通信的研究情况;以太赫兹通信系统的整体框架,介绍和分析了太赫兹通信的一些关键技术和最新研究成果;对太赫兹的技术发展趋势和应用前景做了展望。
     2.从麦克斯韦方程出发,介绍了表面等离子激元共振基本原理,特性以及激发方式。
     3.在传统狭缝等离子波导的基础上提出了异质双圆柱形纳米线等离子波导的结构设计。该结构主体由GaAs以及Ag纳米线组成,通过结构参数的调整,最小可以将波导中的传输模限制在只有衍射极限1/600大小的模场面积中。与此同时,通过结构尺寸的调整我们可以使传输距离增加到mm的范围内。
     4.通过在金属槽型等离子波导中引入高折射率介质材料,可将传输模能量耦合限制在高折射率材料中,以减少金属损耗。该波导结构设计可将槽型波导所支持的传输距离延长2倍,并且通过调整结构上方涂层折射率可以实现对传输距离的控制。
     5.利用麦理论讨论了纳米金属颗粒以及纳米金属壳颗粒的表面等离子光学特性,结合等离子增益补偿原理,提出了具有增益补偿的的金纳米壳等离子激光颗粒的设计,分别对比分析了在包层以及同时在包层和芯中加入增益介质的情况,发现在壳两侧的包层及芯中同时加入增益介质更有利于受激辐射的产生。同时通过调整结构参数,其工作波长可实现在600nm-1000nm区间可调。
The history of human communication has been very long. Back to ancient times, people with simple language, murals, etc. to exchange information. To the modern, with the continuing reform of science and technology,communication technology is in a rapid development. The magnitude of information is changing greatly because of the following reasons, such as the development of production, the requirement of massive nature remodeling and the increasing socialization and internationalization of modern production and living. The limitations of existing wire and wireless communications systems in capacity and efficiency are emerging increasingly.
     Terahertz electromagnetic radiation is one of the last remaining unexplored regions of the electromagnetic spectrum. The THz region, occupying a large portion of the electromagnetic spectrum between the infrared and microwave bands. It has the following features: higher data transfer rate (about 10Gb/s), good direction, higher safety, lower scatter, higher transmittance and so on. THz wave technology can be applied to various scientific fields such as radar, remote sensing, safety inspection, antiterrorism, secure communication, atmospheric/environmental monitoring, real-time biology extraction, medical diagnosis and so on. Now Terahertz technology is becoming a research focus in communication field in developed countries
     High level of integration is the development direction of modern science and technology. The traditional medium integrated optic components have bottleneck in miniaturization and integration because of the limit of diffraction. Surface plasmons (SPs) are a special kind of electromagnetic field, which are strongly confined to the interface of metal and dielectric materials. Plasmon waveguides can guide optical field in sub wavelength scale, even can break through the diffraction limit. Now it has been the focus of research and hoped to be used in nanometer components and circuit.
     The main contents and key creation points of this dissertation are as follows:
     1. We briefly introduced the research situation of terahertz communication domestic and overseas. Analyzed the overall framework of terahertz communication . Gave a review of some key technology in THz communication , and displayed some latest research achievement. We also give a outlook on the developing trend and application prospect of THz wave technology.
     2. Gave a detailed introduction to surface plasmon and it’s characters from solving the Maxwell equations
     3. We proposed a design of the surface plasmon waveguide, called hybrid nanoline plasmonic waveguide. It consists of a dielectric nanowire separated from a metal nanoline by a nanoscale dielectric gap. The coupling between the plasmonic and waveguide modes across the gap allows effective sub wavelength transmission in non-metallic regions. In this way the hybrid mode can be strongly confined to sizes as small as 1/600 of the area of a diffraction limited spot
     4. Introduced a high refractive index dielectric core into the channel plasmon waveguide which will allow us to confine most of the energy within it, because of the low loss constant compare to metal, the mode propagation length of our structure can be at least 2 times longer than that of the traditional channel waveguide.
     5. We studied the optical properties of the metal nanoparticle, metal nanoparticle with dielectric shell, and the metal nanoshell respectively with Mie theory. Based on the theory of stimulated emission of surface Plasmon assisted by gain materials, we give a feasible solution that add the gain materials to both dielectric materials in and out of the metal shell, so the metal nanoshell particle can give a stimulated emission, and the emission wavelength can be designed from 600nm to 1000nm by change the shell size and thickness.
引文
[1] S. Cherry. Edholm's law of bandwidth. IEEE Spectr, 2004, 41(7), 58-60.
    [2] Ken Suto, Jun-ichi Nishizawa. Developments of terahertz wave generation technologies. Proc. of SPIE. 2004, 54(1), 311-319.
    [3] Charles A, Schmuttenmaer, Exploring dynamics in the Far-Infrared with terahertz spectroscopy. Chem. Rev. 2004, 104(4), 1759-1779.
    [4] Radoslaw Piesiewicz, Martin Jacob, Martin Kochet, et. al.. Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments. IEEE J.Selected Topics In Quantum Electronics, 2008, 14(2),421-430.
    [5] Akihiko Hirata, Toshihiko Kosugi, Hiroyuki Takahashi et. al.. 120-GHz-Band millimeter-wave photonic wireless link for 10-Gb/s Data transmission. IEEE Transactions On Microwave Theory And Technology, 2006, 54(05), 1937-1944.
    [6] Tadao Nagatsuma, Akihiko Hirata. 10-Gbit/s wireless link technology using the 120-GHz band. Letters, NTT Technical Review, 2004, 2(11), 58-62,.
    [7] T.Kosugi, M.Tokumitsu, T.Enoki et al.. 120-GHz Tx/Rx chipset for 10-Gbit/s wireless applications using 0.1-um-gate InP HEMTs. Compound Semiconductor Integrated Circuit Symposium, 2004. IEEE, 2006, 171-174.
    [8] Ryoichi Yamaguchi, Akihiko Hirata, Toshihiko Kosugi et. al., 10-Gbit/s MMIC wireless link exceeding 800 meters, Radio and Wireless Symposium, IEEE, 2008, 6(08), 695-698.
    [9] Robert E. Miles, R. E. Miles, X.C. Zhang, et.al.,Terahertz Frequency Detection and Identification of Materials and Objects, Berlin, Springer, 2007, 325-338.
    [10] T.W.Crowe, Multiplier technology for terahertz applications, Terahertz Electronics Proceedings, Leeds , UK , IEEE, 2002, 910-928.
    [11] Michael J. Fitch, Robert Osiander. Terahertz waves for communications and sensing. Johns Hopkins APL Technical Digest, 2004, 25(4), 348-355
    [12]申金娥荣健刘文鑫,太赫兹技术在通信方面的研究进展,红外与激光工程, 2006, 35(增刊), 342-347.
    [13] A.Hirata, M.Harada, T.Nagatsuma. 120-GHz wireless link using photonic techniques for generation, modulation and emission of millimeter-Wave signals. Journal of Lightwave Technology, 2003, 21(10),2145-53.
    [14] Akihiko Hirata, Toshihiko Kosugi, Nicholas Meisl et. al.. High-directivity photonic emitter using photodiode module integrated with HEMT amplifier for 10-Gbit/s wireless link, Transactions On Microwave Theory And Technology, 2004, 52(8), 1843-1850.
    [15] Tadao Nagatsuma. Exploring Sub-Terahertz Waves for Future Wireless Communications, IRMMW-THz, IEEE, 2006, 2(06), 4.
    [16] F.Nakajima, T.Furuta, H.Ito. High power terahertz wave generation using a resonant antenna integrated uni-travelling-carrier photodiode. Nippon Telegraph and Telephone corporation, 2006, 40(20), 1297- 1298.
    [17] T.Nagatsuma, A.Hirata, R.Yamaguchi, et. al., Sub-Terahertz wireless communications technologies, Dubrovnik , IEEE, 2006, 1-4.
    [18] Toshihiko Kosugi, Masami Tokumitsu, Koichi Murata, et. al.. 120-GHz Tx/Rx waveguide modules for 1O-Gbit/s wireless link system, San Antonio, IEEE, 2006, 25-28.
    [19] Ho-Jin Song, Naofumi Shimizu, Tomofumi Furuta et. al.. Broadband Frequency Tunable Sub Terahertz wave generation using an optical comb, AWGs, optical switches, and a uni-traveling carrier photodiode for spectroscopic applications. J.Lightwave Technology, 2008, 26(15), 2521-2530.
    [20] Akihiko Hirata, Hiroyuki Takahashi, Ryoichi Yamaguchi et. al.. Transmission characteristics of 120-GHz-Band wireless link using radio-on-fiber technologies. J.Lightwave Technology, 2008, 26(15), 2338-2344.
    [21] T.Kleine-Ostmann, K.Pierz, G.Hein et. al.. Audio signal transmission over THz communication channel using semiconductor modulator. Electronics Letters, 2004, 40(2), 124-126.
    [22] T.Kleine-Ostmann, P.Dawson, K.Pierz et. al.. Room-temperature operation of an electrically driven terahertz modulator. Applied physics Letters, 84(18), 3555-3557.
    [23] R.Piesiewicz, T.Kleine-Ostmann, N.Krumbholz, et. al.. Concept and perspectives of future ultra broadband THz communication systems, Shanghai, IEEE, 2006, 96.
    [24] N.Krumbholz, K.Gerlach, F.Rutz et. al.. Omnidirectional terahertz mirrors: A key element for future terahertz communication systems. Appl.Phys.Lett. , 2006, 88(20), 202905.
    [25] Thomas Kurner, Radoslaw Piesiewicz, Martin Koch, et. al., Propagation models, measurements and simulations for wireless communication systems beyond 100 GHz. Torino , IEEE, 2007, 108-111.
    [26] Radoslaw Piesiewicz, Martin Jacob, Joerg Schoebel et. al., Influence of hardware parameters on the performance of future indoor THz communication systems under realistic propagation conditions. Microwave Conference, 2007. European, 2007, 9(12), 1606-1609.
    [27] Radoslaw Piesiewicz, Christian Jansen, Daniel Mittleman et. al.. Scattering analysis for the modeling of THz communication systems. IEEE Transaction On antennas and Propagation, 2007, 55(11), 3002-3009.
    [28] C.Jastrow, K.Munter, R.Piesiewicz et. al.. 300GHz transmission system. Electronics Letters, 2008, 44(3), 213-214.
    [29] Ibraheem A. Ibraheem, Norman Krumbholz, Daniel Mittleman et. al.. Low-Dispersive dielectric mirrors for future sireless Terahertz communication systems. IEEE Microwave and Wireless components Letters, 2008, 18(1), 67-69.
    [30] Ibraheem A.Ibraheem, Norman Krumbholz, Daniel Mittleman et. al.. Low-Dispersive dielectric reflectors for future wireless Terahertz communication systems. IRMMW-THz. Joint 32nd, Cardiff, IEEE, 2008, 12(9), 930-931.
    [31] M.Koch. Terahertz applications and techniques, Optical Fiber Communication Conference, California , Optical Society of America, 2006
    [32] Christian Jansen, Radoslaw Piesiewicz, Daniel Mittleman et. al.. The Impact of reflections from stratified building materials on the wave propagation in future Indoor Terahertz communication systems. IEEE Transaction On antennas and Propagation, 2008, 55(5), 1413-1419.
    [33] Q. Chen, Z .Jiang, X.C. Zhang, All-optical THz imaging. Proc. SPIE, 1999, 36(17), 98-105.
    [34] A. Menikh, R. MacColl, C.A. Mannella, et. al., Terahertz biosensing technology: Frontiers and progress, Chem.Phys.Chem., 2002, 3, 655-658.
    [35] Qi Wu and, Xi-Cheng Zhang. Design and characterization of traveling-wave electro-optic terahertz sensors. IEEE, Journal Of selected topics in quantum electronics, 1996, 2(3), 693-700.
    [36] K. Liu, X. Zhang, J. Xu. GaSe crystals for broadband terahertz wave detection. US Patent Appl. 2005, 85(6), 863-865.
    [37] H. Zhong, J. Xu, X. Xie et. al..Nondestructive defect identification with terahertz time-of-flight tomography. IEEE, Sensors Journal, 2005, 5(2), 203-208.
    [38] N.M. Froberg, B.B. Hu, X.C. Zhang et. al..Terahertz radiation from a photoconducting antenna array . IEEE, Journal of Quantum Electronics, 1992, 28(10), 2291-2301.
    [39]中国科学院网站http://www.cas.cn/10000/10003/10000/2009/134952.htm
    [40]王卓,姚建铨, ZnGeP2晶体差频产生THz波的研究,科学技术与工程,2007, 17(13), 3101-3103.
    [41]姚建铨,路洋, THz辐射的研究和应用新进展,光电子·激光, 2005, 16(4), 503-507.
    [42]孙博,姚建铨,基于光学方法的太赫兹辐射源,中国激光, 2006, 33(10), 1349-1359.
    [43] Y. Lu , B. G. Zhang, Y. Z . et. al., Analysis of surface-emitted terahertz-wave difference frequency generation in slant-stripe-type MgO-Doped periodically poled lithium niobate. IRMMW-THZ, Shanghai, IEEE 2006, 4, 103-103.
    [44] Zhang T. L., Zhu X. Y., Zhao P. et. al..Widely tunable, dual-signal-wave optical parametric oscillator for terahertz generation by using two periodically poled crystals. IRMMW-THZ, Shanghai, IEEE 2006, 4, 104-104.
    [45] Yuye Wang, Baigang Zhang, Yizhong Yu et. al..Theoretical study of dual-wavelength PPKTP-OPO as a source of DFG THz-wave. IRMMW-THZ, Shanghai, IEEE 2006, 4, 105-105.
    [46] Sun B., Yao J. Q., Wang Z. et. al..Study of tunable terahertz-wave generation in isotropic semiconductor crystals based on dual-wavelength KTP-OPO operating near degenerate point. IRMMW-THZ, Shanghai, IEEE 2006, 4, 107-107.
    [47] Zhao P., Zhang B. G., Yu Y. Z. et. al..Theoretical investigation of dual-wavelength terahertz wave generation based on slant-stripe-type periodic poled lithium niobate crystal. IRMMW-THZ, Shanghai, IEEE 2006, 4, 109-109.
    [48] Liu H., Xu D. G., Zhao P. et. al.. Propagation characteristics of two-dimensional photonic crystals in the terahertz range. IRMMW-THZ, Shanghai, IEEE 2006, 4,238-238.
    [49] Huan Liu, Jianquan Yao, Degang Xu et. al..Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals. Optics Express, 2007, 15(2), 695-703.
    [50] Liu Huan, Yao Jianquan, Xu Degang et. al..Propagation characteristics of two-dimensional photonic crystals in the terahertz range. Applied Physics B-Lasers and Optics, 2007, 87(1), 57-63.
    [51] Youfu Geng, Xiaoling Tan, Peng Wang et. al..Design of terahertz photonic crystal fiber by finite difference frequency domain method. Journal of Optics: Pure and Applied Optics, 2007, 9(11), 1019-1023.
    [52] Liu Huan, Yao Jian-Quan, Zheng Fang-Hua et. al.. A Novel Woodpile T hree-Dimensional Terahertz Photonic Crystal. Chinese Physics Letters, 2007, 24(5), 1290-1293.
    [53]孙博,姚建铨,王卓.利用各向同性半导体晶体差频产生可调谐THZ辐射的理论研究.物理学报, 2007, 56(3), 1390-1396.
    [54]何志红,姚建铨,时华锋等.光泵重水气体产生THz激光的半经典理论分析.物理学报, 2007, 56(10), 5802-5807.
    [55]何志红,姚建铨等.抽运光强度对光学抽运重水气体产生THz激光的影响分析.物理学报, 2007, 56(11), 6451-6456.
    [56] Yangxiang Bao, Xiao Huang, Zhihong He, et. al..Effects of pump source on spectra of optically pumped sub-millimeter wave laser. International Journal of Infrared and Millimeter Waves, 2006, 27(10), 1315-1322.
    [57] Sun Bo, Yao Jianquan, Zhang Baigang et. al..Theoretical study of phase-matching properties for tunable terahertz-wave generation in isotropic nonlinear crystals. Optoelectronic Letters, 2007, 53(2), 152-146.
    [58] Geng Youfu, Tan Xiaoling, Wang Peng et. al..Transmission loss and dispersion in plastic terahertz photonic band-gap fibers. Apllied physics B: Lasers and optics, 2008, 91(2) ,333-336.
    [59] Li Jiusheng, Yao Jianquan. Novel optical controllable terahertz wave switch. Optics Communications. 2008, 281(23), 5697-5700.
    [60] Li Jiusheng, Yao Jianquan. Controllable terahertz wave attenuator. Microwave and Optical Technology Letters, 2008, 50(7), 1810-1812.
    [61] Geng Youfu, Tan Xiaoling, Zhong Kai et. al..Low loss plastic Terahertz photonic band-gap fibers. Chinese Physics Letters, 2008, 25(11), 3961-3963.
    [62] Li Jiusheng, Yao Jianquan. Controllable terahertz wave attenuator. Microwave and Optical Technology Letters, 2008, 50(7), 1810-1812.
    [63] He Zhihong, Yao Jianquan, Ren Xia et. al., Study of optimal gas pressure in optically pumped D2O gas terahertz laser, Proceedings of SPIE, the International Society for Optical Engineering , 2008, 6840, 84004
    [64]刘欢,徐德刚,姚建铨,基于GaSe和ZnGeP2晶体差频产生可调谐太赫兹辐射的理论研究,物理学报, 2008, 57(9), 5662-5669.
    [65]郑芳华,刘欢,李喜福,产生太赫兹辐射源的Nd:YAG双波成准连续激光器,中国激光, 2008, 35(2), 200-205.
    [66]何志红,姚建铨,任侠,紧凑型超辐射光泵重气体THz激光器的研制,光电子.激光, 2008, 19(1), 34-37.
    [67] Huang Lei, Sun Bo, Yao Jianquan et. al..Collinear phase-matching study of t erahertz-wave generation via difference frequency mixed in GaAs and Inp. Optoelectronics Letters, 2008, 4(3), 234-238.
    [68] Liu Huan, Zheng Fanghua, Yao Jianquan, A simultaneous dual-wavelength diode-end-pumped Nd:YAG laser operating at 1319 nm and 1338 nm: a pumping source for high coherent terahertz generation., Conference on Lasers and Electro Optics and the Pacific Rim Conference on Lasers and Electro-Optics, 2008, 782-783.
    [69] He Zhihong, Yao Jianquan, Shi Huafeng et. al..The numerical calculation and analyze of the pulse-laser pumped D2O gas terahertz laser,RMMW-THz, Cardiff ,2008, 12, 470-471.
    [70]曹铁岭,姚建铨,郑义,基于法布里-珀罗干涉仪的太赫兹波波长测试方法,光学仪器, 2008, 30(2), 13-16.
    [71] Lewi Tonks , Langmuir, Oscillations in ionized gases, Physical review, 1929, 33, 195-211
    [72] A.D.Boardman, Electromagnetic Surface Modes .(Wiley, NewYork,1982).
    [73] H.Raether,Surface Plasmons on Smooth and Rouh Surfaces and on Gratings, Berlin,SPringer 1988.
    [74] J.R.Sambles, G.W.Bradbe, Fuzi, Yang, Optical excitation of surface plasmons: An introduction, ContemPorary Physies,1991, 32(3):173-183,.
    [75] Fuzi Yang, J. R. Sambles, G. W. Bradberry, Long-range surface modes supported by thin films, Phys. Rev. B , 1991, 44(11), 5855–5872
    [76] R. E. Camley, D. L. Mills, Collective excitations of semi-infinite superlattice structures: Surface plasmons, bulk plasmons, and the electron-energy-loss spectrum, Phys. Rev. B, 1984, 29(4), 1695-1706
    [77] Genzel, L., Infrared absorption by surface phonons and surface plasmons in small crystals, Surface Science, 1973, 34(1), pp. 33-49
    [78] E. Burstein, Polaritons: the electromagnetic modes of media, eports on Progress in Physics, 1974, 37(7), 817-926
    [79] Wood, R. W., On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum,Proceedings of the Physical Society of London, 1902,18(1), 269-275
    [80] Fano, U., The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves), Journal of the Optical Society of America, 1941, 31(3),213-222
    [81] R. H. Ritchie, Plasma Losses by Fast Electrons in Thin Films, Phys. Rev, 1957, 106(5), 874-881
    [82] C. J. Powell, J. B. Swan, Origin of the Characteristic Electron Energy Losses in Aluminum, Phys. Rev, 1959,115(4),869-875
    [83] E. A. Stern ,R. A. Ferrell, Surface Plasma Oscillations of a Degenerate Electron Gas, Phys. Rev,1960,120(1), 130-136
    [84] A. Hessel , A. A. Oliner ,A New Theory of Wood’s Anomalies on Optical Gratings, Applied Optics, 1965, 4(10),1275-1297
    [85]吴斌,王庆康,基于金属表面等离子体的光学器件,2006, 27(5), 513-518
    [86] Sergey, Bozhevolnyi, Valentyn S. Volkov,et.al.,Channel plasmon subwavelength waveguide components including interferometers and ring resonators,Nature, 2006, 440(23), 508-511
    [87] T.W.Ebbesen, H.J.Lezec, H.F.Ghaemi, et.al., Extraordinary optical transmission through sub wavelength hole arrays, letters to nature, 1998, 391(12),667-669
    [88] Sergey A. Darmanyan, Anatoly V. Zayats1, Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study, Physical Review B, 2003, 67(3), 035424
    [89] Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 1993,71(13), 1994–1997
    [90] Lewenstein, M., Balcou, P., Ivanov, et.al.,Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A,1994. 49(3), 2117–2132
    [91] Chang, Z., Rundquist, A., Wang, H.,et.al., Generation of coherent soft X rays at 2.7 nm using high harmonics. Phys. Rev. Lett. 1997, 79(16), 2967–2970
    [92] Strickland, D. , Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 1985, 56(3), 219–221
    [93] Seres, J. Laser technology: Source of coherent kiloelectronvolt X-rays. Nature 2005, 433(10), 596
    [94] Seungchul Kim, Jonghan Jin, Young-Jin Kim,et.al.,,High harmonic generation by resonant plasmon field enhancement, Nature, 2008, 453(5), 757-760
    [95] H. J. Lezec, A. Degiron, E. Devaux, et.al.,Beaming Light from a Subwavelength Aperture, Science, 2002, 297(5582), 820-822
    [96] L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec ,et.al., Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations, Phys. Rev. Lett, 2003, 90(16), 167401
    [97] Dhaliwal, R. S., Enichen, W. A., Golldaday, S. D.,et.al., PREVAIL—Electron projection technology approach for next-generation lithography,. IBM Journal of Research and Development , 2001, 45(5), 615-638.
    [98] S. Y.Chou, P. R.Krauss, P. J. Renstrom, Imprint Lithography with 25-Nanometer Resolution, Science 1996, 272(5258), 85-87.
    [99] M.Colburn, T.Bailey, B. J.Choi, et.al., Development and Advantages of Step-and-Flash Lithography,Solid State Technol. 2001, 44(7), 67-78.
    [100] McAlpine, M. C., Friedman, R. S., Lieber, C. M., High performance nanowire electronics and photonics on glass and plastic substrates, Nano Lett., 2003, 3(11), 1531-1535
    [101] Piner, R. D.,Zhu, J., Xu, F.et.al., "Dip-Pen" Nanolithography, Science, 1999, 283(5402), 661-663.
    [102] Zhang, H., Chung, S.-W.,Mirkin, C. A., Fabrication of Sub-50-nm Solid-State Nanostructures on the Basis of Dip-Pen Nanolithography,Nano Lett., 2003, 3(1), 43-45.
    [103] J. B. Pendry , Negative Refraction Makes a Perfect Lens ,Phys. Rev. Lett, 2000, 85(18), 3966-3969
    [104] Nicholas Fang, Hyesog Lee, Cheng Sun, et.al.,Sub–Diffraction-Limited Optical Imaging with a Silver Superlens, Science, 2005, 308 (5721): 534-537
    [105] S. Nakamura, G. Fasol, Stephen Pearton, The Blue Laser Diode: GaN-Based Light Emitting Diode and Lasers, Berlin, Springer, 1997.
    [106] E. F. Schubert, J. K. Kim, Solid-State Light Sources Getting Smart, Science , 2005, 308(5726), 1274-1278
    [107] J. Vuckovic, M. Loncar, A. Scherer, Surface plasmon enhanced light-emitting diode, IEEE J. Quant. Electr. , 2000, 36(10), 1131-1144
    [108] Raffaele Colombelli, Federico Capasso, Claire Gmachl,et.al., Far-infrared surface-plasmon quantum-cascade lasers at 21.5μm and 24μm wavelengths , Appl. Phys. Lett., 2001, 78(18), 2620-2622
    [109] Koichi Okamoto, Isamu Niki, Axel Scherer, Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy, Applied Physics Letters, 2005, 87(7), 071102
    [110] Alessandro Tredicucci, Claire Gmachl, Federico Capasso, et.al., Single-mode surface-plasmon laser, Appl. Phys. Lett., 2000,76(16), 2164-2166
    [111] C.Manolatou, F.Rana, Subwavelength Nanopatch Cavities for Semiconductor Plasmon Lasers,IEEE Journal of quantum electronics, 2008,. 44(5), 435-447
    [112] F. Oulton, Volker J. Sorger, Thomas Zentgraf ,Plasmon lasers at deep subwavelength scale, Nature, 2009, 461(1),629-632
    [113] Harry A. Atwater, Albert Polman, Plasmonics for improved photovoltaic devices nature, Nature Materials, 2010, 9(10), 205-213
    [114] K.R. Catchpole, A. Polman, Plasmonic solar cells, Optics express, 2008, 16(26),21793-21800
    [115] Green, M. A. , Solar Cells: Operating Principles, Technology and System Applications , Prentice-Hall , Australia ,1982
    [116] Yablonovitch, E., Cody, G. D. ,Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electr. Dev.,1982, 29(2), 300–305.
    [117] Dekman, H. W., Roxlo, C. B. , Yablonovitch, E. , Maximum statistical increase of optical absorption in textured semiconductor films. Opt. Lett. 1983, 8(9), 491-493.
    [118] P. Andrew, W. L. Barnes, Energy transfer across a metal film mediated by surface plasmon polaritons . Science,2004, 306(5698), 1002-1005.
    [119] K. R. Catchpole, A. Polman, Design principles for particle plasmon enhanced solar cells, Appl. Phys. Lett., 2008, 93(19), 191113\
    [120] Yu. A. Akimov, W. S. Koh, S. Y. Sian, et.al.,Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles? , Applied Physics Letters ,2010, 96(7), 073111
    [121] Fahr, S., Rockstuhl, C. , Lederer, F. Metallic , Nanoparticles as intermediate reflectors in tandem solar cells. Appl. Phys. Lett. 2009, 95(12), 121105
    [122] Pacifici, D., Lezec, H. , Atwater, H. A. , All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon., 2007, 1(7), 402–406
    [123] R. J.Walters, R. V. A.van Loon, I. Brunets, et.al., A silicon-based electrical source of surface plasmon polaritons. Nature Mater., 2010, 9(1), 21–25 .
    [124] E.Verhagen, L. Kuipers, A. Polman, Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence. Opt. Express, 2009,17(17), 14586–14597
    [125] Rashid Zia, Jon A. Schuller, Anu Chandran , Plasmonics: the next chip-scale technology, Materialstoday, 2006, 9(7), 21-27
    [126] M. T.Bohr, Interconnect Scaling - The Real Limiter to High Performance ULSI, Electron Devices Meeting, 1995, 5237203 ,241-244
    [127] Chiang, T.-Y., Impact of joule heating on scaling of deep sub-micron Cu/low-k interconnects. IEEE Symp. VLSI Circuits, Dig. Tech. Papers ,2002, 7425715 ,38-39
    [128] K.Banerjee, The effect of interconnect scaling and low-k dielectric on the thermal characteristics of the IC metal, Tech. Dig. IEDM ,1996, 8(11), 65-68
    [129] D. A. B.Miller, Rationale and challenges for optical interconnects to electronic chips, Proceedings of the IEEE,2000, 88(6), 728-749
    [130] Guoqing Chen, Hui Chen, Mikhail Haurylau, et al., Predictions of CMOS compatible on-chip optical interconnect, SLIP, New York 2005
    [131] Ozbay, Ekmel, Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions, Science, 2006, 311(5758), 189-193
    [132] Joannopoulos J D, Meade R D, Winn J N. , Photonic Crystals : Molding the Flow of Light, Princeton University Press, Princeton, 1995
    [133] D.W. Lubbers, N. Opitz, The pCO2/Po2 optrode: Anew probe for measuring pCO2 and pO2 of gases and liquids, Naturforschung C, 1975, 30 (1), 532–533.
    [134] A. Brecht, G. Gauglitz, Optical probes and transducers, Biosensors Bioelectron,1995,10 (9), 923–936.
    [135] G. Gauglitz, Opto-Chemical and Opto-Immuno Sensors, Sensor Update vol. 1, VCH, Weinheim, 1996.
    [136] G. Boisde, A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides, Artech House, Boston, 1996
    [137] Bo Liedberg, Claes Nylander,Ingemar Lunstr?m, Surface plasmon resonance for gas detection and biosensing,Sensors and Actuators, 1983. 4(2), 299-304
    [138] R Gordon, Surface Plasmon Nanophotonics: A Tutorial, Nanotechnology Magazine, 2008, 931481, 13-18
    [139] Satoshi Mitsugi, Yong-Joo Kim ,Kenya Goto, Finite-Difference-Time-Domain Analysis for Electro-Magnetic Field Distribution on Near-Field Optical Recording Probe Head, Optical Review, 2001 , 8(2), 120-125
    [140] Jiro Hashizume, Fumio Koyama, Plasmon Enhanced Optical Near-field Probing of Metal Nanoaperture Surface Emitting Laser, Optics Express, 2004, 12(25), 6391-6396
    [141] K.Goto, T. Ono, Yong-Joo Kim, Evanescent light enhancement in a nanometer aperture surrounded by corrugated metal thin film for a terabyte optical disk head, IEEE Transactions on Magnetics, 2005, 41(2),1037-1041
    [142] Peter Zijlstra, James W. M. Chon, Min Gu, Five-dimensional optical recording mediated bysurface plasmons in gold nanorods, Nature, 2009, 459(21), 410-413
    [143]魏劲松,张约品,阮吴,近场光存储及其研究进展,物理,2002, 22(2), 188-196
    [144] Veselago, V. G, The Electrodynamics of Substances with Simultaneously Negative Values ofεandμ, Soviet Physics Uspekhi, 1968,10(4), 509-514.
    [145] J. B. Pendry , Extremely Low Frequency Plasmons in Metallic Mesostructures,Phys. Rev. Lett. 1996,76(25), 4773–4776
    [146] R. A. Shelby, D. R. Smith , S. Schultz, Experimental Verification of a Negative Index of Refraction, Science, 2001, 292(5514),77-79
    [147] H. O. Moser, B. D. F. Casse, O. Wilhelmi, et.al., Terahertz Response of a Microfabricated Rod–Split-Ring-Resonator Electromagnetic Metamaterial, Phys. Rev. Lett., 2005, 94(6), 063901
    [148] D. Schurig, J. J. Mock, B. J. Justice, et.al., Metamaterial Electromagnetic Cloak at Microwave Frequencies, Science, 2006, 314(5801), 977-980
    [149] Qiang Bai, Jing Chen, Nian-Hai Shen, et.al.,Controllable optical black hole in left-handed materials,Optics Express,2010, 18(3), 2106-2115
    [150] I.Alexeff, W.L.Kang, A plasma stealth antenna for the US Navy, Plasma Science,. 25th Anniversary. IEEE Conference ,1998 ,277
    [151]高艳东,白立春,安永丽,等离子体隐身技术及其应用现状,中国科技信息,2008, (8), 30-31
    [152]邵余红,等离子体隐身与雷达,国防科技, 2007, (8).22-24
    [1] Daryoosh Saeedkia, Amir Hamed Majedi, Safieddin Safavi-Naeini et. al.. Analysis and design of a photoconductive integrated photo-mixer/antenna for terahertz applications. IEEE J. Quantum Electron, 2005, 41(2) , 234–241.
    [2] Saeedkia D, Mansour R R and Safavi-Naeini S. The Interaction of Laser and Photoconductor in a Continuous-Wave Terahertz Photomixer. IEEE J. Quantum Electron, 2005, 41(9) 1188-1196.
    [3] D. Saeedkia, R. R. Mansour, S. Safavi-Naeini. Modeling and analysis of high-temperature superconductive terahertz photo mixers. IEEE Trans. Appl. Super cond., 2005, 15(3), 3847–385.
    [4] A. Karpov, D. Miller, F. Rice et. al.. Low noise 1.2 THz SIS receiver. in 8th Int. Superconduct. Electron. Conf, 2001, June 19–22,:521–522.
    [5] M. Kroug , S. Cherednichenko , M. Choumas et. al.. HEB quasioptical heterodyne receiver for THz frequencies. Proc. 12th Int. Space Terahertz Technol. 2001, 244.
    [6] M.C.Gaidis, H.M.Pickett, C.D.Smith et. Al.. A 2.5 THz receiver frongt-end for spaceborne applications. IEEE Trans-MTT, 2000, 48(4), 733-739.
    [7]王文炜,申金娥,荣健等.太赫兹技术在通信方面的研究进展.红外与激光工程,2006,第35.
    [8] D. Veksler, F. Aniel, S. Rumyantsev et. al.. GaN Heterodimensional Schottky Diode for THz Detection. IEEE Sensors, 2006, 1-4244-0376-6, 323-326.
    [9] J. C. Cao, H.C. Liu, C.Y. Song et. al.. Terahertz quantum-well photodetector. Appl.Phys.Lett., 2004, 84(20), 4068-4070.
    [10] Akihiko Hirata, Toshihiko Kosugi, Hiroyuki Takahashi et. al.. 120-GHz-Band millimeter-wave photonic wireless link for 10-Gb/s Data transmission. IEEE Transactions On Microwave Theory And Technology, 2006, 54(05), 1937-1944.
    [11] A.Hirata, M.Harada, T.Nagatsuma. 120-GHz wireless link using photonic techniques for generation, modulation and emission of millimeter-Wave signals. Journal of Lightwave Technology, 2003, 21(10),2145-53.
    [12] SchneiderH, LiuH C.. Quantum well infrared photo-detectors. Berlin Heidelberg New York: Springer, 2006, 45.
    [13] J.M. Dai, X. Xie, X. C. Zhang. Detection of broadband terahertz waves with a Laser-Induced Plasma in Gases. Phys Rev Lett., 2006, 97(10), 103903.
    [14] Chiko Otani1, Ran Nakano2, Tohru Taino2 et. al.. Direct and indirect detection of terahertz waves using a Nb-based superconducting tunnel junction. Journal of Physics, Conference Series 43, 2006, 1303–1306
    [15]冯勇,张平.基于Turbo信道编码的H.264视频流的可靠传输研究.计算机与数字工程, 2009, 37(2), 146-148.
    [16] B Park, H Cheon, C Kang et. al.. A novel timing estimation method for OFDM systems. IEEE Communications Letter, 2003, 7 (5) , 239– 241.
    [17] W. Shieh, H. Bao, Y. Tang. Coherent optical OFDM: theory and design. OPTICS EXPRESS, 2008,16(2), 841-859.
    [18] Martin Koch. terahertz communication:A 2020 vision. Terahertz Frequency Detection and Identification of Materials and Objects, 2007, 325-338.
    [19] Peter H. Siegel. Terahertz technolog. Transactions on microwave theory and theory and techniques, 2002, 50(3), 910-928.
    [1] Jackson, John David, Classical electrodynamics, New York, Wiley, 1999, 808
    [2] Ordal MA, BellRJ, AlexanderRW, et.al., Optical properties of fourteen metals in the infrared and far infrared: AI,Co,Cu,Au,Fe,Pb,Mo,Ni,Pd,Pt,Ag,Ti,V,and W, Applied Opties, 1985, 4(24), 4493-4499.
    [3] Marvin J. Weber,Handbook of optical materials, California,CRC,2003,
    [4] A.D.Boardman,Electromagnetic Surface Modes,New York, NY;Wiley
    [5] J. R. Sambles, G. W. Bradbery,Fuzi Yang,Optical excitation of surface plasmons: An introduction Contemporary Physics,ContemPorary Physics, 1991, 32,173– 183
    [6]邱国斌,蔡定平,金属表面电浆简介,物理双月刊48(2):472,2006.
    [7] Heinz Raether,Surface plasmons on smooth and rough surfaces and on gratings,Berlin and New York:Springer-Verlag,1988
    [8] Fuzi Yang, J. R. Sambles, G. W. Bradberry,Long-range surface modes supported by thin films,Phys. Rev. B,1991,44(11),5855–5872
    [9] W. C. Tan, T. W. Preist, J. R. Sambles,et.al, Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings ,Phys. Rev. B ,1998,59(19), 12661-12666.
    [10] J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, Transmission Resonances on Metallic Gratings with Very Narrow Slits ,Phys. Rev. Lett. 1999,83(14), 2845-2848.
    [11] W. P. Chen, G. Ritchie, E. Burstein, Excitation of Surface Electromagnetic Waves in Attenuated Total-Reflection Prism Configurations, Phys. Rev. Lett, 1976,37(15), 993–997
    [12] A.Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,398-410
    [13] Anatoly V Zayats, Igor I Smolyaninov, Near-field photonics: surface plasmon polaritons and localized surface plasmons, JOURNAL OF OPTICS A, 2003,5(4),s16-s50
    [14] Suntak Park, Gwansu Lee, Seok Ho Song, et.al, Resonant coupling of surface plasmons to radiation modes byuse of dielectric gratings, OPTICS LETTERS, 2003,28(20),18701-1872
    [15] H. L. Offerhaus, B. van den Bergen, M. Escalante, et.al, Creating Focused Plasmons by Noncollinear Phasematching on Functional Gratings, Nano Letter,2005, 5(11), 2144-2148
    [16] A. Bouhelier , G. P. Wiederrecht, Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy, Phys. Rev. B, 2005, 71(19), 195406(1)- 195406(7)
    [17] B. Hecht , H. Bielefeldt , L. Novotny , et.al., Local Excitation, Scattering, and Interference of Surface Plasmons, Phys. Rev. Lett., 1996, 77(9), 1889–1892
    [18] Stefan A. Maier, Plasmonics: fundamentals and applications, United Kingdom, springer, 2007
    [1]葛德彪,闫玉波,电磁波时域有限差分方法,西安,西安电子科技大学出版社, 2002
    [2]高庆本,时域有限差分法,北京,国防工业出版社, 1995
    [3] JP Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of computational physics, 1994, 114(2), 185-200
    [4]王长清,电磁场计算中的时域有限差分法,北京,北京大学出版社, 1994
    [5] Allen Taflove, Susan C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, London, Artech House , 2000
    [6]刘琼,周期性结构的表面等离子体共振性能研究,硕士学位论文,中南大学,2009
    [7]曾攀,有限元分析基础教程,北京,清华大学出版社, 2008
    [8] O.C. Zienkiewicz, The Finite Element Method: Its Basis and Fundamentals(6th), Burlington, Elsevier Butterworth-Heinemann, 2005
    [9] Maxwell-Garnett J C., Colours in metal glasses and inmetallic films, Proceedings of the Royal Society of London. 1904, 203: 385–420
    [10] Rytov S M. Electromagnetic properties of a finely stratified medium, Sov. Phys. JETP.1956, 2:466–475
    [11] Ch. HAFNER,R. BALLISTI, The Multiple Multipole Method (MMP),The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,1993,2(1), 1-7
    [12]曹庄琪,导波光学中的转移矩阵方法,上海,上海交通大学出版社,2000
    [13] Purcell, E. M. , Pennypacker, C. R., Scattering and Absorption of Light by Nonspherical Dielectric Grains, Astrophysical Journal,1973,186,705-714
    [14] Moharam M G, Gaylord T K, Rigorous coupled wave analysis of planar grating diffraction. Journal of the Optical Society of America, 1981, 71 (7), 811-818
    [1] Vilson R. Almeida, Qianfan Xu, Carlos A. Barrios, et.al., Guiding and confining light in void nanostructure, Optics Letters, 2004, 29(11), 1209-1211
    [2] J. A. Dionne, H. J. Lezec, Harry A. Atwater, Highly Confined Photon Transport in Subwavelength Metallic Slot Waveguides, Nano Letters, 2006, 6 (9), 1928–1932
    [3] Ruoxi Yang, Rami A. Wahsheh, Zhaolin Lu,et.al., Efficient light coupling between dielectric slotwaveguide and plasmonic slot waveguide, Optics Letters, 2010, 35(5), 649-651
    [4] Chen Long, Shakya Jagat, Lipson Michal, Subwavelength confinement in an integrated metal slot waveguide on silicon, Optics Letters, 2006, 31(14), 2133-2135
    [5] Francesco Dell’Olio, Vittorio M. N. Passaro, Optical sensing by optimized silicon slot waveguides, Optics Express, 2007, 15(8), 4977-4993
    [6] Ewold Verhagen, Jennifer A. Dionne, L. (Kobus) Kuipers, et.al., Near-Field Visualization of StronglyConfined Surface Plasmon Polaritons inMetal-Insulator-Metal Waveguides, Nano Letters, 2008, 8(9), 2925-2929
    [7] Hosseini Amir, Massoud Yehia, Nanoscale surface plasmon based resonator using rectangular geometry, Applied Physics Letters, 2007, 90(18), 181102
    [8] Rong Sun, Po Dong, Ning-ning Feng, et.al., Horizontal single and multiple slot waveguides:optical transmission atλ= 1550 nm, Optics Express, 2007, 15(26), 17967-17972
    [9] P. David Flammer, Jonathan M. Banks, Thomas E. Furtak, et.al., Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements, Optics Express, 2010, 18(20),21013-21023
    [10] Ning-Ning Feng, Mark L. Brongersma, Luca Dal Negro, Metal–Dielectric Slot-Waveguide Structures for the Propagation of Surface Plasmon Polaritons at 1.55μm, IEEE Journal of Quantum Electronics, 2007, 43(6),479-485
    [11] R. Zia, M. D. Selker, P. B. Catrysse, et.al., Geometries and materials for sub-wavelength surface plasmon modes,”J. Opt. Soc. Amer. A, 2004, 21(12), 2442–2446
    [12] L. Liu, Z. Han, S. He, Novel surface plasmon waveguide for high integration, Opt. Express, 2005, 13(17), 6645–6650,
    [13] F. Kusunoki, T. Yotsuya, J. Takahara, et.al., Propagation properties of guided waves in index-guided two dimensional optical waveguides, Appl. Phys. Lett., 2005, 86(21), 211101
    [14] D. F. P. Pile, T. Ogawa, D. K. Gramotnev, et.al., Two- dimensionally localized modes of a nanoscale gap plasmon wave guide, Appl. Phys. Lett., 2005, 87(26), 261114.
    [15] G. Veronis , S. H. Fan, Guided subwavelength plasmonic mode supported by a slot in a thin metal film, Opt. Lett., 2005, 30(24), 3359–3361
    [16] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, et.al., Channel plasmon subwavelength waveguide components including interferometers and ring resonators, Nature, 2006, 440(7083), 508–511.
    [17] L. Chen, J. Shakya, M. Lipson, Subwavelength confinement in an integrated metal slot wave guide on silicon , Opt. Lett., 2006, 31(14), 2133–2135 .
    [18] Qianfan Xu, Vilson R. Almeida, Roberto R. Panepucci, et.al., Experimental demonstration of guiding and confining light in nanometer-size low refractive index material, Optics Letters, 2004, 29(14), 1626-1628
    [19] Pablo Sanchis, Javier Blasco, Alejandro Martínez, et.al., Design of silicon-based slot waveguide configurations for optimum nonlinear performance, Journal of Lightwave Technology, 2007, 25( 5), 1298-1305
    [20] Ning-Ning Feng, Rong Sun, Lionel C. Kimerling, et.al., Lossless strip-to-slot waveguide transformer, Optics Letters, 2007, 32(10), 1250-1252
    [21] Chyong-Hua Chen, Lin Pang, Chia-Ho Tsai, Uriel Levy and Yeshaiahu Fainman, Compact and integrated TM-pass waveguide polarizer, Optics Express, 2005, 13(14),5347-5352
    [22] T.Fujisawa, M.Koshiba, Heoretical investigation of ultrasmall polarization-insensitive 1/spl times/2 multimode interference waveguides based on sandwiched structures, IEEE Photonics Technology Letters, 2006, 18(11),1246-1248
    [23] Jinbiao Xiao, Xu Liu, Xiaohan Sun, Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures, Optics Express, 2007, 15(13), 8300-8308
    [24] Takeshi Fujisawa , Masanori Koshiba, All-optical logic gates based on nonlinear slot-waveguide couplers, Optical Society of America, 2006, 23(4), 684-691
    [25] Heinz Raether,Surface plasmons on smooth and rough surfaces and on gratings,Berlin and New York, Springer-Verlag, 1988
    [26] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization, Physical Review B, 2006, 73(3), 035407
    [27] R. F. Oulton, V. J. Sorger, D. A. Genov, et.al., A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, Nature Photonics, 2008, Vol 2(8), 496-500
    [28] D. F. P. Pile, D. K. Gramotnev, Channel plasmon-polariton in a triangular groove on a metal surface, Optics Letters, 2004, 29( 10), 1069-1071
    [29] D. K.Gramotnev, D. F. P.Pile, Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface, Applied Physics Letters, 2004, 85(26), 6323-6325
    [30] Sergey I. Bozhevolnyi, Valentyn S. Volkov, Elo?se Devaux, et.al., Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,Phys. Rev. Lett,2005, 95(4), 046802
    [31] P. D. Flammer, J. M. Banks, T. E. Furtak, et.al., Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements, Optics Express, 2010, 18(20), 21013-21023
    [32] Yusheng Bian, Zheng Zheng, Ya Liu, et.al., Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement , Optics Express, 2010, 18(23), 23756-23762
    [33]杨纪超,宋牟平,硅狭缝光波导的色散特性及其色散补偿应用的研究,光子学报, 2010, 39(3), 417-421
    [1] Paul Mulvaney, Surface Plasmon Spectroscopy of Nanosized Metal Particles, Langmuir, 1996, 12(3), 788-800
    [2] U. Kreibig, M. Gartz, A. Hilger, Mie resonances : Sensors for physical and chemical cluster interface properties, Ber. Bunsenges. Phys. Chem, 1997, 101(11), 1593-1604
    [3] R. Elghanian, J. J. Storhoff, R. C. Mucic, et.al., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science , 1997 , 277(5329), 1078-1081
    [4] K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, et.al., The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B, 2003, 107(3), 668-677
    [5] McLellan, Joseph M., Li, Zhi-Yuan, Siekkinen, Andrew R., et.al., The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization, Nano Letters,2007,7(4), 1013-1017
    [6] E.K.Payne, K.L.Shuford, S.Pari, et.al., Multipole plasmon resonances in gold nanorods, J. Phys. Chem. B, 2006, 110(5), 2150-2154
    [7] Sihai Chen, Zhiyong Fan, David L. Carroll, Silver Nanodisks: Synthesis, Characterization, and Self-Assembly, J. Phys. Chem. B, 2002, 106(42), 10777-10781
    [8] Jin, Rongchao, Cao, YunWei, Mirkin, Chad A., et.al., Photoinduced Conversion of Silver Nanospheres to Nanoprisms, Science, 2001, 294( 5548), 1901-1904
    [9] E.Prodan, P.Nordlander, Structural Tunability of the Plasmon Resonances in Metallic Nanoshells, Nano Letters, 2003, 3(4), 543-547
    [10] J.Aizpurua, P.Hanarp, D. S.Sutherland, Optical Properties of Gold Nanorings, Physical Review Letters, 2003, 90(5), 057401
    [11] LIU Gang L., YU LU, KIM Jaeyoun, et.al., Magnetic nanocrescents as controllable surface-enhanced raman scattering nanoprobes for biomolecular imaging, Advanced materials, 2005, 17(22), 2683-2688
    [12] Surbhi Lal, Stephan Link, Naomi J. Halas, Nano-optics from sensing to waveguiding, Nature Photonics, 2007, 1(11), 641-648
    [13] Satoshi Kawata, Near Field Optics and Surface Plasmon Polaritons, Springer, Germany, 2001
    [14] Paul Mulvaney, Michael Giersig, Arnim Henglein, Surface chemistry of colloidal gold: deposition of lead and accompanying optical effects, J. Phys. Chem., 1992, 96 (25), 10419–10424
    [15] R.H.Doremus, Optical Properties of Small silver Particles, 1965, 42(1), 414-417
    [16] Richard D. Averitt, Sarah L. Westcott, Naomi J. Halas, Linear optical properties of gold nanoshells, J. Opt. Soc. Am. B, 1999, 16(10), 1824-1831
    [17] Min Hu, Jingyi Chen, Zhi-Yuan Li, et.al., Gold nanostructures: engineering their plasmonic properties for biomedical applications, Chemical Society Reviews, 2006, 35(11), 1084-1094
    [18] Sylvia Underwood, Paul Mulvande, Effect of the Solution Refractive Index on the Color of Gold Colloids, Langmuir, 1994, 10(10), 3427-3430
    [19] C. F. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983
    [20] P. Mulvaney, L. M. Liz-Marza?n, M. Giersigc, et.al., Silica encapsulation of quantum dots and metal clusters, Journal of Materials, 2000, 10(6), 1259-1270
    [21] Luis M. Liz-Marza′n, Michael Giersig, Paul Mulvaney, Synthesis of Nanosized Gold-Silica Core-Shell Particles, Langmuir 1996, 12(18), 4329-4335
    [22] A.E.Neeves, M.H.Birnboim, Composite structures for the enhancement of nonlinear-optical susceptibility, J. Opt. Soc. Am. B, 1989, 6(4), 787-796
    [23] H. C. van de Hulst, Light Scattering by Small Particles, Dover, New York, 1981
    [24] David D. Evanoff, Jr. , George Chumanov, Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections, J. Phys. Chem. B, 2004, 108 (37), 13957–13962
    [25] E. Prodan, C. Radloff, N. J. Halas, A Hybridization Model for the Plasmon Response of Complex Nanostructures, Science, 2003, 302(5644), 419-422
    [26] G. A. Plotz, H. J. Simon, J. M. Tucciarone, Enhanced Total Reflection With Surface-Plasmons, Journal Of The Optical Society Of America, 1979, 69(13), 419-421
    [27] Z. Y. Li, D. Psaltis, OpToFluidic distributed feedback dye lasers, IEEE Journal Of Selected Topics In Quantum Electronics, 2007, 13(2), 185-193
    [28] L. Zhu, X. K. Sun, G. A. DeRose, et.al., Continuous-wave operation of electrically pumped, single-mode, edge-emitting photonic crystal Bragg lasers, Applied Physics Letters, 2007, 90(26), 261116
    [29] S. S. Chang, N. B. Rex, R. K. Chang, Chemical lasing in pendant droplets: lasing-spectra, emission-pattern, and cavity-lifetime measurements, Journal Of The Optical Society Of America B-Optical Physics, 1999, 16(8), 1224-1235
    [30] Marvin J. Weber, Handbook of Laser Wavelengths, U.S.A., CRC PRESS LLC, 1999
    [31] Maziar P. Nezhad, Kevin Tetz, Yeshaiahu Fainman, Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides, Optics Express, 2004, 12(17), 4072-4079
    [32] MA Noginov, G Zhu, AM Belgrave, Demonstration of a spaser-based nanolaser, Nature, 2009, 460(27), 1110-1113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700