用户名: 密码: 验证码:
宽带相干信源测向算法研究及实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代无线电通信中电磁环境日趋复杂,同一频段内的信号越来越密集,大量同频或相干信号同时存在。现有的信号检测设备面临着越来越多的困难,例如,多个同频或相干信号的并行侦测、宽带信号的高分辨率测向、弱信号的检测、多目标的信号跟踪等问题,都是频谱检测系统中亟待解决的重大难题。目前,常用的经典空间谱估计算法已不能满足宽带相干信源DOA估计的需求,因此,研究宽带相干信源的精确测向技术具有重要的实际意义。
     本文对宽带相干信源的空间谱估计算法进行了深入研究,构建了宽带相干信源的数学模型,分析了宽带相干阵列信号的性质及其对经典空间谱估计算法的影响,分析了最大似然和相干信号子空间宽带空间谱估计算法等基本的宽带测向算法性质和特点。
     针对相干信号子空间类算法需要角度预估计问题,提出了一种基于角度扫描的宽带相干信号子空间算法,通过构造正交投影算子,保留了扫描角度处的信号,抑制其它方向的信号,新算法无需角度预估计。该算法较其他算法最突出的优点是,在宽带信源中心频率不一致的条件下仍能达到很好的测向效果。投影正交性测试算法(TOPS)在参考频点处信号子空间估计不准确时,空间谱估计结果会出现严重误差。针对这一问题,提出了解相干的改进TOPS空间谱估计算法(MTOPS),通过阵列协方差矩阵的共轭重构方法,实现了解相干,增强了算法的稳健性。
     高阶阵列累积量具有扩展阵列孔径和抑制噪声(包括高斯噪声和非高斯噪声)能力,在继承高阶累积量阵列信号处理算法优点的基础上,结合信号子空间聚焦算法提出了基于高阶累积量的宽带空间谱估计算法,该方法减小了噪声对空间谱估计的影响,有效提高了测向精度。
     针对ESPRIT算法要求阵列具有平移特性的问题,提出了基于高阶累积量的ESPRIT宽带测向算法,利用高阶累积量虚拟阵元,有效突破了ESPRIT算法对阵列形式的限制,成功地将其应用到均匀圆阵中。
     最后研究了宽带信号测向技术的工程实现,针对宽带信号处理特性对算法的实现进行分析,分别对系统组成、工作原理、硬件设计和技术指标进行详细论述,确定测向工作流程,并对功能的硬件实现进行合理划分。为减少运算时间,对空间谱测向算法中的数学运算进行了优化。同时给出了试验场测试结果,通过实际测向结果与理论仿真对比,验证了本测向系统的有效性。
Electromagnetic environment is becoming more and more complex in modern wireless communication; the density of communication signals which locate in a common band is higher and higher. A lot of signals with the same frequency or coherent sources appear at one time. Detection equipments available face more and more troubles, for instance, detection of multiple signals which are coherent or have common frequency, high resolution direction finding of wideband sources, weak signal extraction, multi-target signals tracting, are all great difficult problems. At the present time, classical spatial spectrum estimation algorithm can not process wideband coherent sources. Consequently, it is meaningful to study precise direction finding techniques of broadband coherent sources.
     Broadband coherent sources spatial spectrum estimate algorithms are investigated extensively in the thesis. Mathematic model of wideband coherent source is built, by which we study characters of broadband coherent sources and its effect on spatial spectrum estimate algorithms.
     Considering coherent signal subspace algorithms have the drawback that it needs the pre-estimation of DOA. Coherent signal subspace algorithms which based on scanning angle are proposed. Through forming orthogonal projection operator, the information from scanning azimuths reserved, while information from other azimuths is suppressed. So the new method achieved good performance with no need of pre-estimation of DOA. Compared with other methods, the algorithm can achieve perfect performance when center frequencies of the wideband sources are not the same. When signal subspace estimation is not perfect in the reference frequency bin, the spatial spectrum estimation would be seriously distorted in the test of orthogonality of projected subspace (TOPS). To resolve the problem, the paper proposed a MTOPS algorithm, which enhances the algorithm's robustness and provides the ability of decorrelation through conjugated reconstruction of the array covariance matrix.
     High order array cumulant has abilities of extending aperture of the array and suppressing noise (including Gaussian noise and non-Gaussian noise). Utilizing signal subspace focusing algorithm, we proposed wideband spatial spectrum estimation method based on high order cumulant, which can reduce the effect of noise on spatial spectrum estimation, the precision of direction finding is improved effectively.
     ESPRIT needs the shift-invariance property of the array, this thesis proposed a ESPRIT wideband direction finding algorithm based on high order cumulant. Using virtual element of array in high order cumulant, we break through the limitations of ESPRIT to array. The algorithm is applied to circular array which dose not have shift-invariance property successfully.
     Finally wideband signal direction finding engineering implementation techniques is studied in detail. Considering the characters of broadband signal processing, realization of the algorithms is analyzed. We discuss system composition, operation principle, hardware design, software design and technical specifications, determine working flow of direction finding, and form a reasonable division of hardware realization of functions. To reduce time of operation, the spatial spectrum estimation algorithm is optimized. Results of performance test in outdoor test site is given, comparison between actual direction finding results and that of simulations is drew, by which the efficiency of the direction system is shown.
引文
[1]H. krim, M. Viberg. Two Decades of Array Signal Processing Research:the parametric approach[J], IEEE Signal Processing Magazine,1996(7):67-94.
    [2]Haykin. S Reilly J.P, Kezys V., Vertatschitsch E. Some aspects of array signal processing[J], IEE Proceedings-F Radar and Signal Processing,1992,139(1):1-26.
    [3]R. O. Schmidt, Multiple Emitter Location and Signal Parameter Estimation[J], IEEE Transaction on Antanna propagation,1986,34(3):276-280.
    [4]R. roy and T. Kailath. ESPRIT-estimation of signal parameter via rotational invariance technique[J], IEEE Transaction on Signal Processing,1989,37(7): 984-999.
    [5]Tadeu N. Ferreira, Segio L. Netto, Paulo S.R. Diniz. Covariance-based Direction of Arrival Estimation With Real Structures[J]. IEEE Signal Processing,2008(15): 757-760.
    [6]B. Ottersten, M. Viberg, T. kailath. Analysis of subspace Fitting and ML Techniques for parameter Estimation from Sensor Array Data[J]. IEEE Transaction on Signal Processing,1992,40(3):590-600.
    [7]B. Porat, B Friedlander. Direction Finding Algorithms Based on High-Order Statistic[J]. IEEE Transaction on Signal Processing,1991,39(9):2016-2024.
    [8]Clergeot H,Tressens S, Ouamri A. Performance of high resolution frequencies estimation methods compared to the Cramer-Rao bounds [J]. IEEE Transaction on Acoustics, Speech, and Signal Processing,1989,37(11):1703-1720.
    [9]Yilong Lu, Minghui Li. Maximum Likelihood DOA Estimation in Unknown Colored Noise Fields[J]. IEEE Transactions on Aerospace and Electronic Systems. 2008,44(3):1079-1090.
    [10]王永良,陈辉,彭应宁,空间谱估计理论与算法[M].2004,清华大学出版社:北京.
    [11]B. Ottersten, T. Kailath. Direction of Arrival Estimation for Wideband Signals Using the ESPRIT Algorithm [J]. IEEE Transaction on Acoustics, Speech, and Signal Processing,1990,38(2):317-327.
    [12]Y. Yeo-Sun, L. M Kaplan, and J.H. McClellan, TOPS:new DOA estimator for wideband signals[J], IEEE Transactions on Signal Processing,2006.54(6): 1977-1989.
    [13]于红旗,宽带信号阵列高分辨到达角估计技术研究[D].2007,国防科技大学博士论文:长沙.
    [14]黄可生,宽带信号阵列高分辨处理技术研究[D].2005,国防科技大学博士论文:长沙.
    [15]N. Cadalli and O. Arikan, Wideband maximum likehood direction finding and signal parameter estimation by using the tree-structured EM algorithm[J], IEEE Transaction on Signal Processing,1999.47(1):201-206.
    [16]M.A. Doron, A.J. Weiss, and H. Messer, Maximum-Likelihood Direction Finding of Wide-Band Sources [J]. IEEE Transaction on Signal Processing,1993.41(1):411.
    [17]Wang H. and M. Kaveh, Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources[J]. IEEE Transaction on Acoustics, Speech, and Signal Processing,1985.33(4):823-831.
    [18]Hong W. and M. Kaveh, On the performance of signal-subspace Processing-Part II:Coherent wide-band systems[J]. IEEE Transaction on Acoustics, Speech, and Signal Processing,1987.35(11):1583-1591.
    [19]Hung H. and M. Kaveh, Focusing matrices for coherent signal-subspace processing[J]. IEEE Transaction on Acoustics, Speech, and Signal Processing, 1988 36(8):1272-1281.
    [20]李福昌,宽带测向算法研究[D].2005,哈尔滨工程大学博士论文:哈尔滨.
    [21]张瑞娟,色噪声环境下宽带参数估计方法研究[D].2005,西安电子科技大学硕士论文:西安.
    [22]张贤达.矩阵分析与应用[M].2004,清华大学出版社:北京.
    [23]Shahrokh Valaee, Benoit Champagne, Peter Kabal,Localization of Wideband Signals Using Least -Squares and Total Least-Squares Approaches [J], IEEE Trans.on Signal Processing,1999 47(5):1213-1222.
    [24]Shan T J, Wax M, Kailath T. On spatial smoothing for estimation of coherent signals[J]. IEEE Transaction on Acoustic,Speech and Signal Processing,1985, 33(4):806-811
    [25]Weixiu Du, R. L, Kirlin. Improved Spatial Smoothing Techniques for DOA Estimation of Coherent Signals[J]. IEEE Transaction on Signal Processing,1991, 39(5):1208-1210.
    [26]Z. Ye Y. Zhang X. Xu C. Liu. Direction-of-arrival estimation for uncorrelated and coherent signals with fewer sensors [J]. IET Microwave Antennas Propagation, 2009,23(3):473-482.
    [27]Z. Ye Y. Zhang, C. Liu. Direction of arrival estimation for uncorrelated and coherent signals with uniform linear array[J]. IET Radar Sonar Navigation,2009, 32(5):144-154.
    [28]Tayfun Akgul, F. Kerem Harmanci, Ugur Sarac. Experimental analysis of detection and localization of multiple emitters in multipath environments [J]. IEEE Transaction on Acoustic,Speech and Signal Processing,2008,50(5):61-70.
    [29]S. Unikeishna Pillai, Byung Ho Kwon, Forward/backward Spatial Smoothing Techniques for Coherent Signal Identification[J], IEEE Transaction on Acoustic,Speech and Signal Processing,1989,37(1):8-15.
    [30]Y-H. Choi, On conditions for the rank restoration in forward backward spatial smoothing[J], IEEE Transaction of Signal Processing,2002,50(11):2900-2901.
    [31]Y-H. Choi, Subspace-based coherent source localization with forward backward covariance matrices, IEE Proc-Radar Sonar Naving,2002,149(3):149-151.
    [32]Williams R T, Prasad S, mahalanbis S K, Sibul L H. An improves spatial smoothing technique for bearing estimation in multipath environmen[J]. IEEE Transaction on Acoustic,Speech and Signal Processing,1988,36(4):425-432.
    [33]Rao B D, Hari K V S. Weighted subspace methods and spatial smoothing analysis and comparison[J]. IEEE Transaction on Signal Processing,1993,41(2):788-803.
    [34]Kundud. D. Modified MUSIC algorithm for estimating DOA of signals [J]. Signal Processing,1996(48):85-89.
    [35]Pian Totarong, Amro El-Jaroudi. Robust High-Resolution Direction-of-Arrival Estimation via Signal Eigenvector Domain[J]. IEEE Journal of Oceanic Engineering,1993,18(4):491-499.
    [36]魏凤梅,相干信源的DOA估计算法研究[D].2005,西安电子科技大学硕士论文:西安.
    [37]何子述,黄振兴,向敬成.修正MUSIC算法对相关信号源的DOA估计性能[J],通信学报,2000,21(10):14-17.
    [38]雷中定,黄绣坤,张树京.高分辨率宽带相干信号波达方向的高效估计.电子信息学报[J],1998,20(3):413-416.
    [39]雷中定,黄绣坤,张树京.宽带相干源波达方向估计的新方法[J].通信学报,1998,19(2):14-19.
    [40]雷中定,黄绣坤,张树京.宽带波达方向估计新方法及性能分析[J].电子学报,1998,26(3):58-61.
    [41]田达,非平稳信号阵列多参量估计技术研究[D].2004,电子科技大学博士论文:成都.
    [42]黄克骥,时频分析方法在阵列信号处理中的应用[D].2004,电子科技大学博士论文:成都.
    [43]刘云,李志舜.基于信号时频表示的宽带源波达方向估计[J].系统仿真学报,2004,16(07):1560-1562.
    [44]刘云,李志舜.宽带波达方向估计的克拉美-罗界研究[J],声学学报,2006,31(2):126-131.
    [45]智婉君,李志舜.基于传播算子的宽带源相干信号子空间测向方法[J].声学学报,2000,12(3):146-149.
    [46]智婉君,严胜刚,李志舜.宽带方位估计的波束域Root-MUSIC算法[J].电子信息学报,2002,24(5):644-648.
    [47]智婉君,严胜刚,李志舜.宽带波束域高分辨方位估计中波束形成矩阵的选择[J].声学学报,2002,27(2):133-136.
    [48]冯西安,黄建国.基于频域模型的宽带信号子空间谱估计方法[J],电子学报2004,32(6):965-967.
    [49]于红旗,刘剑,黄知涛,周一宇.一种基于信号子空间聚焦的宽带DOA估计算法[J].系统工程与电子技术,2008,30(4).
    [50]Thushara D. Abhayapala, Hemant Bhatta. Coherent BroadBand Source Localization by Modal Space Processing [C],10th International Conference on Telecommunications,2003, vol2:1617-1623.
    [51]E. Di Claudio and R. Paris. WAVES:weighted average of signal subspaces for robust wideband direction finding[J], IEEE Transaction on Singal Processing, 2001,49(10):2179-2190.
    [52]Ta-Sung Lee. Efficient Wideband source localization using Beaming invariance technique[J]. IEEE Transaction on signal processing,1994,42(6):1376-1387.
    [53]Fabrizio Sellone. Robust auto-focusing wideband DO A estimation signal processing[J], IEEE Transactions on Signal Processing,86(5), pp 277-282,2005.
    [54]Tuan Do-Hong, Franz Demmel, Wideband Direction-of-Arrival Estimation Using Frequency-Domain Frequency-Invariant Beamformers:An Analysis of Performance. IEEE Transactions on Signal Processing 2004,14(8):383-385.
    [55]T. Engin Tuncer, T. Kaya Yasar. Wideband DOA estimation for nonuniform linear arrays with Wiener array interpolation[C]. IEEE 5th Sensor Array and Multichannel Signal Processing Workshop, SAM 2008:207-211.
    [56]Tuan Do-Hong, Russer P. Wideband direction-of-arrival estimation using spatially interpolated wideband beamformers[C]. IEEE Antennas and Propagation Society Symposium, IEEE Transactions on Signal Processing 2004. V3:2647-2650.
    [57]Friedlander B., Weiss A.J. Direction finding for wide-band signals using an interpolated array[J]. IEEE Transactions on Signal Processing.1993,41(4): 1618-1634.
    [58]Tuan Do-Hong, Peter Russer. An Analysis of Wideband Direction of Arrival Estimation for Closely-Spaced Sources in the Presence of Array Model Errors[J]. IEEE Microwave and Wirelesscomponents letters.2003,13(8):314-316.
    [59]Tuan-Do-Hong, Russer P. Signal processing for wideband smart antenna array applications [J]. IEEE Microwave Magazine,2004(3):57-67.
    [60]赵国庆,雷达对抗原理[M].西安.西安电子科技大学出版社,1999
    [61]Maryam Abolfath Beygi, Ali Olfat,A new subspace method for direction of arrival estimation of multipath signals in DS-CDMA systems[A], PIMRC[C],2007
    [62]Gao Shuyan, Chen Hui, Wang Yongliang, Meng Cangzhen A Novel Algorithm for Estimating DOA of Coherent Signals on Uniform Circular Array[C],International Conference on Radar,2006
    [63]Jin Wang, Yongjun Zhao and Zhigang Wang A novel coherent signal-subspace method forwideband signal location[J], Global Symposium on Millimeter Waves, 2008
    [64]LI Hongsheng HE You YANG Rijie GUAN Jian,Beamspace based DOA estimation methods of coherent sources in the presence of impulsive noise[A], ICSP2006 Proceedings[C],2006
    [65]A. Randazzo, M. A. Abou-Khousa, M. Pastorino,Direction of Arrival Estimation Based on Support Vector Regression:Experimental Validation and Comparison With MUSIC[J], IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS,2007
    [66]Tao Yu and John H.L. Hansen,Robust auto-focusing wideband Bayesian beamforming[J],HSCMA,2008
    [67]Haitao Qu, Lin Qi, Xiaomin Mu, and Shouyi Yang,DOA Estimation of Coherent Wideband LFM Signals Based on Fractional Fourier Transform[A], Proceedings of the First International Conference on Innovative Computing, Information and Control[C],2006
    [68]Mohsin M. Jamalil, Abdel Affo, Nathan Wilkins, Philip D. Mumford, and Ken Hahn,DSP Based Implementation of Direction of Arrival for Wideband Sources[A], IEEE Radar Conference [C],2007
    [69]Jian-Feng Gu Ping Wei,Fast,Algorithm for Estimating 2-D DOA in Coherent Signals Case [A],International Conference on Radar[C],2006
    [70]Kareem Al Jabr, Hyuck M. Kwon, Nizar Tayem,Modified UCA-ESPRIT for Estimating DOA of Coherent Signals Using One Snapshot[A], IEEE Vehicular Technology Conference[C],2008.
    [71]Chen Peng Hou Chao-huan Ma Xiao-Chuan Liang Yi-Hui Yang Jun New Wideband DOA Estimation algorithm for Planar arrays[A], Proceedings of International Symposium on Intelligent Signal Processing and Communication Systems[C],2007.
    [72]梁军利;刘丁;张军英;基于ESPRIT方法的近场源参数估计[J],系统工程与电子技术,2009,31(6),1299-1302.
    [73]唐建红;司锡才;彭巧乐;快速四阶累积量旋转不变子空间算法[J],西安交通大学学报,2009,43(6),88-92.
    [74]刁鸣;陈娟;袁熹;色噪声环境下宽带非高斯信号的测向算法[J],哈尔滨工程大学学报,2009,30(9).
    [75]夏铁骑;汪学刚;郑毅;累量域二维波达方向估计方法[J],电子科技大学学报,2008,37(6).840-843.
    [76]DOGON M C, MENDEL J M. Applications of cumulants to array processing-part I:aperture extension and array calibration[J]. IEEE Trans Signal Processing,1995, 5(43):1200-1216.
    [77]刘全.改进的累量域波达方向矩阵法[J].国防科技大学学报,2001,5(23):89-92.
    [78]刘全.一种新的二维快速波达方向估计方法——虚拟累积量域波达方向矩阵法[J].电子学报,2002,3(30):351-353.
    [79]向前,林春生.累量域虚拟阵列二维波达方向估计法[J].电子与信息学报,2005,2(27):329-331.
    [80]陈建,王树勋.基于高阶累积量虚拟阵列扩展的DOA估计[J].电子与信息学报,2007,5(29):1041-1044.
    [81]雷远,MUSIC算法的研究及DSP实现[D],中国海洋大学,2009.
    [82]黄敏,新型无源探测系统中的超分辨测向系统设计与实现[D],哈尔滨工程大学,2005
    [83]张海燕,李正文,许林.五通道相位干涉仪测向算法及其在TMS320C6711上的实现[J]电子技术应用,2003,(12).
    [84]何山红,朱旭东.宽频带干涉仪测向圆阵中的互耦效应[J],电波科学学报,2002,(05).
    [85]林敏,王淑节,龚铮权.阵元间互耦对测向性能的影响及其校正方法[J]解放军 理工大学学报(自然科学版),2002,(06).
    [86]张海燕.五通道相位干涉仪测向的研究和实现[D],成都理工大学,2004.
    [87]刘兴明.高精度宽开比幅测向方法研究及工程实现[D].电子科技大学,2003
    [88]李颖.均匀圆阵列天线系统性能分析[D]国防科学技术大学,2004.
    [89]舒萌萌,杨峰,聂在平.阵列单元取向对DOA估计的影响[J]电子科技大学学报,2004,(04).
    [90]徐家雄.二维DOA估计的高速并行实现[D]电子科技大学,2006.
    [91]沈逢春.应用于二维DOA估计的DSP硬件系统实现[D]电子科技大学,2005.
    [92]任勋立.波达方向估计方法及其硬件实现[D].西安电子科技大学,2005.
    [93]李军.极大似然和MUSIC算法用于DOA估计的DSP实现[D].电子科技大学,2005.
    [94]郑洪.MUSIC算法在高速处理器上的快速实现[D].电子科技大学,2004.
    [95]张乐.信号子空间分解的FPGA实现[D]电子科技大学,2006.
    [96]徐天赐.智能天线阵列与DOA估计算法的研究及FPGA实现[D]大连海事大学,2006.
    [97]高勇,刘皓,肖先赐,魏平.MUSIC算法在高速DSP上的并行实现[J]通信学报,2000(04).
    [98]阎振华,黄建国,张群飞,张永峰.波束域MUSIC算法的多处理器实时处理[J]计算机工程与应用,2007(09).
    [99]陈昊.空间谱估计算法的高速实现[D]电子科技大学,2003.
    [100]姬靖.基于现代空间谱估计技术的无线电测向监测系统[D].中国海洋大学,2005.
    [101]张志民.基于LabVIEW的无线电测向算法分析与软件实现[D].国防科学技术大学,2005.
    [102]黄敏.新型无源探测系统中的超分辨测向系统设计与实现[D].哈尔滨工程大学,2005.
    [103]陈开东.移动无线电测向监测系统的研究和设计[D].南京理工大学,2003.
    [104]李爱东.区域网无线电监测测向系统的总体设计[D].西南交通大学,2004.
    [105]刘嘉佳.无线电测向定位算法的研究及其应用[D].四川大学,2004.
    [106]张晶.无线电信号频谱监测的多DSP模块的设计与实现[D].北京工业大学,2005.
    [107]刘兴明.高精度宽开比幅测向方法研究及工程实现[D].电子科技大学,2003.
    [108]殷忠诚.无线电电磁环境监测测试及分析系统的设计及实现[D].重庆大学,2003.
    [109]牛志一.国家无线电短波监测系统台情信息管理子系统的设计与实现[D].四川大学,2005.
    [110]付翔.国家无线电短波监测系统测向定位功能的设计与实现[D].四川大学,2006.
    [111]葛照强.矩阵理论及其在工程技术中的应用[M],西安:陕西科学技术出版社.1992.
    [112]刘德树,罗景青,张剑云,空间谱估计及其应用[M],合肥:中国科技大学出版社.1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700