用户名: 密码: 验证码:
人工心脏的经皮传能系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生命科学和生物技术的迅速发展,以人工心脏为代表的医疗植入装置的研究取得了长足的进步,将来人工心脏有可能像心脏起搏器一样得到广泛应用。1995年世界首例永久性人工心脏被植入至患者腹腔内,通过从胸腔引出的导线直接与体外的电池组相连进行供电,这种方式极易造成交叉感染,引发各种并发症,甚至会危及患者生命,因而应用受限。现在欧美临床上人工心脏的供能方式主要集中在经皮传能系统方面,它通过电磁耦合将置于体外的初级线圈携带的能量传递给植入体内的次级线圈以驱动人工心脏工作,人工心脏和体外电源没有任何导线连接,避免了交叉感染,极大地提高了患者的生命质量。随着该技术的发展完善,必将会推动医疗领域无创伤、低风险治疗的进一步发展,具有重要的研究价值和广阔的应用前景。
     本论文建立了人工心脏的经皮传能系统,主要包括能量的经皮传输和体内、外温度信息的无线传输通道。主要工作如下:
     一、基于传统的罐型磁芯,以有限元数值求解方法为支撑,考虑铁芯材料、铁芯结构参数、位置以及线圈轴向错位等因素,进行了电磁场数值模拟与分析,研究变压器的耦合性能及稳定性,以实现基于数值模拟的经皮变压器设计,解决了由于体内空间和体积受限而导致的经皮变压器设计的合理性与传输效率之间的矛盾。
     二、建立并基于经皮变压器的互感模型,对经皮传能系统中的经皮变压器进行性能分析,并对经皮传能系统的几种可行补偿方式进行了对比分析。
     三、设计并制作罐型铁氧体铁芯经皮变压器和罐型组件磁芯PM(PM-Pot Module Cores)经皮变压器;完成罐型和PM经皮变压器的电感值、耦合性能与传输性能的测量与定量分析;研究了初、次级不同补偿方式下的传输性能和频率特性。
     四、采用有限元数值求解方法,对经皮变压器的温度场进行场域计算与分析;研究次级铁芯温升值与负载功率间的关系;并以次级铁芯温升值为标准调整外加电源,以保证人工心脏吸收功率恒定;以JASK2000无线通信开发板为基础,建立体内外信息传输通道。
     五、设计并制作了体内充电电池充放电电路板,以实现体内充电电池的管理;基于能量守恒定理,计算并分析充电电池的放电时间,并进行了三周期的充放电试验与分析。
With the rapid development of life science and bio-engineering, the research of implanted medical device, especially the totally artificial heart (TAH), has made great progress, and the TAH with the character of miniaturization, durability and low-resistance, might be used as widely as the artificial pacemaker. The original electric artificial heart is connected with the battery by the wires which penetrate the skin, leading to high ratio of cross-infection. With the use of transcutaneous energy transmission system (TETS) which does not have any physical connection with the outer battery to drive the TAH, it has greatly prevented infection complications and improved the life quality of the patients. With the development and improvement of this technology, non-invasion and low-risk treatment in medical field will be further promoted, thus it has great research value and application prospect.
     In this paper the TETS, which consists of the transcutaneous energy transmission and temperature data communication through intact skin to power a TAH, has been designed and built. Main tasks are as follows:
     1. The factors affecting the contactless transformer of TETS coupling efficiency(k) are analyzed. With the help of the finite element analysis software, the coupling performance and stability of the transformer are analyzed. And then core material, air gap, geometrical parameters, and coils axial displacement are selected to study their effects on coupling coefficient. By simulating with various values, the transformer is designed. Then a type of high coupling and small size coil is proposed in this paper, which solve the design contradiction between transcutaneous transformer and transmission efficiency.
     2. The working frequency 100 kHz of the TETS is determined according to the primary and secondary current ratio of the transcutaneous transformer. Compared of various compensation methods, it can be obtained theoretically that two capacitors added in series on both sides to compensate the leakage inductances is more suitable for the TETS.
     3. The coupling and energy transmission characteristics mainly including three aspects of the TETS are studied experimentally. Firstly, the coupling for the pot and PM (Pot Module Cores) core transformer with frequency, load, air gap and horizontal displacement is investigated. Secondly, the power transmission characteristic of the TETS with frequency, load, air gap and horizontal displacement is studied with the experimental pot core transformer. Lastly, the applicability of various compensation methods is studied experimentally. The most efficient compensation method of the TETS for TAH, of which two capacitors are added in series on both sides, is obtained experimentally.
     4. The temperature field of transcutaneous transformer is established. Furthermore, an information transmission system is proposed. Through monitoring the temperature of secondary core which reflects the value of load power, the change of temperature can adjust the input power of the primary coil to achieve high system reliability. And a transcutaneous data communication system based on JASK2000 development board is built.
     5. The hardware platform of charging and discharging experiments is built. On the basis of that, the expected life-span of the TETS using the energy conservation theory is deduced, and accordingly its validity is approved. Actural 3-period charging and discharging experiments is operated.
引文
[1] Nishimura T.H.,Eguchi.T.A non invasive rechargeable cardiac pacemaker battery system with a transcutaneous energy transformer.Proceedings of the 20th Annual International Conference of he IEEE Engineering in Medicine and Biology Society,1998,(1):432~435
    [2] Zhao L,Foo C.F,Tseng K.J.A new structure transcutaneous transformer for artificial heart system.IEEE Transactions on Magnetics,1999,35(5):3550~3552
    [3] Tsai C,Chen B,Tsai C.Design of wireless transcutaneous energy transmission system for totally artificial hearts.The 2000 IEEE Asia-Pacific Conference on Circuits and Systems,2000,646~649
    [4] Gyu Bum Joun,Cho B.H.An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer.IEEE Transactions on Power Electronics,1998,13(6):1013~1022
    [5] http://baike.baidu.com/view/67084.htm
    [6] http://www. heartreplacement.com
    [7] http://news.yahoo.com/s/afp/20081027/hl_afp/healthhearttechnologyfranceeurope
    [8] Matsuki H,Matsuzaki T,Satoh T.Simulations of temperature rise on transcutaneous energy transmission by non-contact energy transmitting coils.IEEE Transactions on Magnetics,1993,29(6):3334~3336
    [9] M.Sun,M.Mickle,W.Liang,Q.Liu, R.J.Sclabassi.Data Communication between Brain Implants and Computer.IEEE Transactions on Neural Systems and Rehabilitation Engineering,2003,11(2):189~192
    [10] M.Sun,Q.Liu,W.Liang,et al.Application of the Reciprocity Theorem to Volume Conduction Based Data Communication Systems between Implantable Devices and Computers.Proceedings of the 25th Annual International Conference of he IEEE Engineering in Medicine and Biology Society,2003,(4):3352~3355
    [11] M.Sun,P.A.Roche,Jun Zhao,et al.Switching modulation method for wireless transmission of biological waveforms using a cellphone.In Proc 30th Northeastern Bioengineering Conference, Springfield,MA, 2004,17~18
    [12] P.A.Roche,R.J.Sclabassi,Jun Zhao,et al.Designing a Cell Phone Adaptor for Biological Waveform Transmission.In Proc 30th Northeastern Bioengineering Conference,Springfield,MA,2004,35~36
    [13] P.A.Roche , M.Sun , R.J.Sclabassi , Signal multiplexing and modulation for volume conduction communication.In Proc. IEEE International Conference on Acoustics,Speech, and Signal Processing, Philadelphia,PA,2005,157~160
    [14] M.Sun,B.L.Wessel,P.A.Roche,et al.Computer Simulation of Volume Conduction Based Data Communication Channel for Neuroprosthetic Devices.In Proc. IEEE EMBS Special Topic Conference on Neural Engineering,2005,426~429
    [15] N.Yao,H-N. Lee,M. Sun.Digital Data Communication through Volume Conduction Channel.Accepted, in IEEE International Conference on Engineering in Medicine and Biology Society,2006
    [16] M. Sun,G.A. Justin,P.A .Roche,et al.Passing data and supplying power to neural implants.IEEE Engineering in Medicine and Biology Society Magazine,2006,25(5):39~46
    [17] Wang G, Liu W,Sivaprakasam M,et al.A Dual Band Wireless Power and Data Telemetry for Retinal Prosthesis.Proceedings of the 28th Annual International Conference of he IEEE Engineering in Medicine and Biology Society,2006,4392~4395
    [18] Zhou M,Wang G,Sivaprakasam M.A.Transcutaneous Data Telemetry System Tolerant to Power Telemetry Interference.Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2006,5884~5887
    [19] Wang G. .Wireless power and data telemetry for retinal prosthesis[PHD].University of California Santa Cruz,2006
    [20]唐治德,孙才新.植入电子器件的体导电能量传递原理及方法研究:[博士学位论文].重庆:重庆大学,2007
    [21]武文君.植入式电子装置经皮感应充电系统设计:[硕士学位论文].天津:天津大学,2006
    [22] Aristeidis Karalis,J.D. Joannopoulos,Marin Soljacˇic.Efficient wireless non-radiative mid-range energy transfer.2007 Elsevier,Annals of Physics ,323(8):34~48
    [23] A.Kurs,A.Karalis,R.Moffatt,et al.Wireless power transfer via strongly coupled magnetic resonances.Science 2007,317(5):83~86
    [24] Elliott,G.A.J.,Boys.J.T.,et al.Magnetically coupled systems for power transfer to electric vehicles.Proceedings of 1995 International Conference on Power Electronics and Drive Systems,1995,(2):797~801
    [25]卓勇.生物体内置电装置的外部供电模式研究:[硕士学位论文].重庆:重庆大学,2007
    [26] Matsuki H,Yamakata Y,Chubachi N.Transcutaneous DC-DC converter for totally implantable artificial heart using synchronous rectifier.IEEE Transactions on Magnetics,1996,32(5):5118~5120
    [27] Nishimura T.H,Eguchi T,Inoue T.An improvement of a transcutaneous-energy transformer for a noninvasive rechargeable cardiac pacemaker battery.the 27th Annual International Conference of the IEEE Power Electronics Specialists Conference,1996, (1):316~321
    [28] H.Matsuki,M.Shiiki,K.Murakami, et al.Flexible transcutaneous transformer for artificial heart system.IEEE Transactions on Magnetics,1990,26(5):1548~1550
    [29] Watada M,Iwawaki K,Tamada T. The development of core-type Transcutaneous Energy Transmission System for artificial heart.Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.2005,3849~3852
    [30] Shiba K,Nukaya M,Tsuji T.Analysis of Current Density and Specific Absorption Rate in Biological Tissue Surrounding an Air-core Type of Transcutaneous Transformer for an Artificial Heart.Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.2006,5392~5395
    [31]樊华,郑小林,皮喜田.一种用于体内诊疗装置的无线能量传输方案.2004,23(3):168~170.
    [32]陶发.植入式生物遥测装置无线电能传输系统研究:[硕士学位论文].南京:南京航空航天大学,2005
    [33]高晓琳.人工心脏经皮传能系统变压器性能的研究:[硕士学位论文].天津:河北工业大学,2007
    [34]陈海燕,高晓琳,杨庆新.用于人工心脏的经皮能量系统耦合特性及补偿的研究.电工电能新技术,2008,27(2):59~62
    [35]陈马丁,范继承.体外感应供电神经肌肉刺激器的研制.第四军医大学学报,2001,22(18):1725~1726
    [36] Zierhofer,C. M.A class-E tuned power oscillator for inductive transmission of digital data and power.The 6th Mediterranean Electrotechnical Conference, 1991, (1):789~792
    [37] Yungtaek Jang,Milan M. Jovanovic.A new soft- switched contactless battery charger with robust local controllers.The 25th International Telecommunication Energy Conference,2003,(2):473~479
    [38]马娟.高频输出矩阵变换器在无接触式能量传递中的应用.电力电子,2007,9(3):29~32
    [39]李正中.无接触电能传输中最大功率点的控制的研究:[硕士学位论文].重庆:重庆大学,2007
    [40] D A G Pedder,AD Brown,J A Skimer.A contactless electrical energy transmission system.IEEE Transactions on Industrial Electronics,1999,46(4):23~30
    [41]韩腾,卓放,刘涛.可分离变压器实现的非接触电能传输系统研究.电力电子技术,2004,38(5):28~29
    [42]孙跃,王智慧,戴欣.非接触电能传输系统的频率稳定性研究.电工技术学报,2005,20(11):56~59
    [43]李建贵,杨庆新,王军华.应用于无接触电能传输系统可分离变压器的研究,变压器,2008,45(8):26~29
    [44] Albert Esser.Contactless charging and communication for electric vehicles.IEEE Industry Applications Magazine,1995,(1):4~11
    [45] Ayano H,Yamamoto K,Hino N,et al.Highly efficient contactless electrical energy transmission system.IEEE 28th Annual Conference of the Industrial Electronics Society,2002,(2):1364~1369
    [46] http://news.yahoo.com/s/afp/20081027/hl_afp/healthhearttechnologyfranceeurope
    [47] Hidekazu Miura,Shinsuke Arai,Yasuyuki Kakubari,et al.Improvement of the transcutaneous energy transmission system utilizing ferrite cored coils for artificial hearts.IEEE Transactions on Magnetics, 2006,42(10):3578~3580
    [48] Sokal N.O,Sokal A.D.Class E-A new class of high-efficiency tuned single-ended switching power amplifiers,Solid-State Circuits,1975,10(3):168~176
    [49] Masaya Watada,Kenji Iwawaki,Setsuo Takatani.The design of core-type Transcutaneous Energy Transmission Systems for artificial heart.The 30th Annual Conference of the IEEE Industrial Electronics Society,2004,(1):948~952
    [50] Nishimura T.H,Eguchi T,Inoue T.An improvement of a transcutaneous-energy transformer for a noninvasive rechargeable cardiac pacemaker battery,Power Electronics Specialists Conference,1996,(1):316~321
    [51] Moradewicz,Marian P,Kazmierkowski.Novel FPGA Based Control of Series Resonant Converter for Contactless Power Supply.The International Conference on“Computer as a Tool”,2007,1328~1335
    [52] Toshi Huo Nishimura.Characteristics of a novel energy transmission for a rechargeable cardiac pacemaker by using a resonant DC-DC converter.IEEE Industrial Electronics Conference,1993,(2): 875~880
    [53]邱关源.电路.第四版.高等教育出版社.北京:1999.85~90
    [54] [苏]卡兰塔罗夫,采伊特林.电感计算手册.北京:机械工业出版社,1992.36~57
    [55] Ansoft公司Maxwell v11电磁场计算软件帮助Help内容
    [56]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析.北京:电子工业出版社,2005.45~60
    [57]颜威利,杨庆新,汪友华.电气工程电磁场数值分析.天津:机械工业出版社,2005.80~95
    [58]梁丽萍,刘玉存,王建华.软磁铁氧体的发展与应用.山西化工,2007,27(2):31~33
    [59]延忠.铁基超微晶合金的磁性和应用.功能材料,1994,2(5):180~183
    [60]刘伟德,陈文智,支起铮.新型铁基纳米晶合金软磁性能的研究.金属功能材料,2003,10(4):20~23
    [61] Hidekazu Miura,Shinsuke Arai.Improvement of the Transcutaneous Energy Transmission System utilizing ferrite cored coils for artificial hearts.IEEE Transactions on Magnetics,2006,42(10):3578~3580
    [62] Tsai C,Chen B,Tsai C.Design of wireless transcutaneous energy transmission system for totally artificial hearts.The 2000 IEEE Asia-Pacific Conference on Circuits and Systems,2000,646~649
    [63]武瑛,严陆光,徐善纲,新型无接触电能传输系统的稳定性分析,中国电机工程学报,2005,24(5):63~66
    [64]武瑛.新型无接触供电系统的研究:[博士学位论文].北京:中科院电工所,2004
    [65]武瑛,严陆光,徐善纲.新型无接触能量传输系统.变压器,2003,40(6):1~4
    [66]武瑛,严陆光,徐善纲.新型无接触电能传输系统的稳定性分析.中国电机工程学报,2005,24(5):63~66
    [67] G. B. Joung,B. H. Cho.An Energy Transmission System for an Artificial Heart Using Leakage Inductance Compensation of Transcutaneous Transformer.IEEE Transactions on Power Electronics,1998,13(6):1013~1022
    [68] H. Matsuki.Flexible transcutaneous transformer for artificial heart system.IEEE Transactions on Magnetics,1990,26(5):1548~1550
    [69]张占松,蔡宣三.开关电源的原理与设计.北京:电子工业出版社,1987.65~73
    [70] P. M. Theodoridis,and S. V. Mollov.Distant Energy Transfer for Artificial Human Implants.IEEE Transactions on Biomedical Engineering,2005,52(11):1931~1938
    [71] J. Achterberg,E. A. Lomonova,J. de Boeij.Coil Array Structures Compared for Contactless Battery Charging Platform.IEEE Transactions on Magnetics, 2008,44(5):617~622
    [72] J. de Boeij,E. Lomonova,J. Duarte,A. Vandenput.Contactless Energy Transfer to a Moving Load Part I:Topology Synthesis and FEM simulation in Canada.IEEE ISIE,Montreal,Quebec,2006,745~750
    [73] J. de Boeij,E. Lomonova,J. Duarte,A. Vandenput.Contactless Energy Transfer to a Moving Load Part I:Simulation of Electrical and Mechanical Transient.in Canada,IEEE ISIE,Montreal,Quebec,2006,739~744.
    [74] J. de Boeij,E. Lomonova,J. Duarte,A. Vandenput.Contactless Energy Transfer to a Moving Load Part II:Simulation of Electrical and Mechanical Transient.in Canada,IEEE ISIE,Montreal,Quebec,2006,739~744.
    [75] K Il Woo,H. S. Park,Y. H. Cho,et al.Contactless Energy Transmission System for Linear Servo Motor. IEEE Transactions on Magnetics,2005,41(5):1596~1599
    [76]金建铭.电磁场有限元方法.西安:西安电子科技出版社,1998.63~70
    [77]孔祥谦.有限单元法在传热学中的应用.第二版,北京:科学出版社,1986.91~102
    [78] Antonios G.Kladas,Michael P.Papadopoulos,John A.Tegopoulos,et al.Leakage Flux and Force Calculation on Power Transformer Windings under Short-circuit:2D and 3D Models based on the Theory of Images and the Finite Element Method Compared to Measurements,IEEE Transactions on Magnetics, 1994,30(5):3487~3490
    [79] Johan Driesen,Ronnie Belmans,Kay Hameyer.The computation of the effects of harmonic currents on transformers using a coupled electromagnetic-thermal FEM approach,9th International Conference on Harmonics and Quality of power,2000,(2):720~725
    [80] R.S.Girgis.Calculation of Winding Losses in shell Form Transformers for Improved Accuracy and Reliability,IEEE PERD,1987,2(2):398~410
    [81] D.A.Koppikar,S,V ulkarni,J.Turowski,Fast 3-dimensional interactive Computation of stray field and losses in asymmetric transformers,IEEE Proc-Gener,Transm Distrib,2000,147( 4):197~201
    [82]王福康.干式变压器漏磁场及温度场的研究:[硕士学位论文].天津:河北工业大学,2007
    [83]庞小东.电力变压器绕组中的涡流损耗及其温度场研究:[硕士学位论文].天津:河北工业大学,2006
    [84]李新.电力变压器绕组中的涡流损耗及其温度场研究:[硕士学位论文].天津:河北工业大学,2005
    [85]张安红.电力变压器的损耗研究与优化设计:[硕士学位论文].湖南:湖南大学,2005
    [86]闫学勤,杜勇,梁岚珍.基于ANSYS的电力变压器铁芯磁场与漏磁场分布的仿真研究[J].新疆大学学报(自然科学报),2005,22(3):361~364
    [87]康雅华.电力变压器涡流损耗和温升的计算与分析:[硕士学位论文].沈阳:沈阳工学院,2004
    [88] H. Matsuki,T. Matsuzaki,T. Satoh.Simulations of Temperature Rise on Transcutaneous Energy Transmission by Non-contact Energy Transmitting Coils.IEEE Transactions on Magnetics, 1993,29(6):3334~3336
    [89] H. Matsuki,Y. Yamakata,N. Jinguji,et al.Energy Transferring System Reducing Temperature rise for implantable power consuming devices.in Netherland. 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,1996,185~186
    [90]颜寒,郭永基,林兆庄.树脂绝缘干式变压器内部温度场分布仿真研究.清华大学学报(自然科学报),1999,19(7) :1~4
    [91]陈世省,陈秀菊.树脂浇注干式变压器绕组的最热点位置的分析,变压器,2002,9(5):4~7
    [92]柳再本,骆金海.干式变压器温升计算方法.变压器,2007,5(6):14~17
    [93]张强,姚寿广,马哲树.干式变压器绕组温度场的数值计算与分析.华东船舶工业学院学报(自然科学版),2005,6 (7):14~17
    [94] Armando Guzman, Stanley Zocholl,et al.A Current-Based Solution for Transformer Differential Protection—PartII:Relay Description and Evaluatio.IEEE Transactions on Power Delivery,2002,17(4):886~894
    [95]宗洪良,金华烽.基于励磁阻抗变化的变压器励磁涌流判别方法.中国电机工程学报,2001,21(7):91~94
    [96] Armando Guzman,Stanley Zocholl.A Current-Based Solution for Transformer Differential Protection—PartII:Relay Description and Evaluation.IEEE Transactions on Power Delivery,17(4),2002:886~894
    [97] L.Jansak,F.Zizek,Z.Jelinek.Loss Analysis of a Model Transformer Winding.IEEE Transactions on Applied Superconductivity,2003,(13):3334~3336
    [98]刘玉仙,李文平.变压器磁势的轴向布置与其绕组的涡流损耗.变压器,1994,6(4):28~31
    [99]程志光,高生,李琳.电气工程涡流问题的分析与验证.北京:高等教育出版社,2001.68~92
    [100] Mohammed Elleuch , Michel Poloujadoff . Analytical Model of Iron Losses in Power Transformers.IEEE Trasnsactions on Magnetic , 2003,39 (4):398~410
    [101] Chipcon SmartRF CC1100,Single Chip Low Cost Power RF Transceiver.http://ww.ti.com
    [102] D.Pavlik,D.C.johnson.Calculation and Reduction of Stray and Eddy Losser in Core-Form Transformers Using a Highly Accurate Finite Elemnet Modelling Technique.IEEE Transactions on Power Delivery,1993,8(1):456~459
    [103]邓专,陈维,王春麟.射频收发芯片CC1100及其应用.机械工程与自动化,2007,12(6):168~169
    [104] DS18B20 Programmable Resolution 1-Wire Digital Thermometer.http://ww.maxim-ic.com
    [105]潘旭兵,林中.基于CC1100的无线手持终端的设计.电子技术应用网,2008.07
    [106]李文仲,段朝云.C8051F系列单片机与短距离无线数据通信.北京:北京航空航天大学,2007
    [107] BQ2057,Single Cell Li-Ion Gas Gauge IC for Portable Applications.http://ww.ti.com
    [108]祝丽花.人工心脏经皮传能系统中变压器耦合性能和信息传输的实验研究:[硕士学位论文].天津:河北工业大学,2010
    [109]周煜,于歆杰,程锦闽,等.用于心脏起搏器的经皮能量传输系统.电工技术学报.2010,25(3):48~53
    [110]曹玉珍,武文君,范增飞.植入式电子装置经皮感应充电方案.电子测量技术,2006,29(4):19~20
    [111]周煜,于歆杰,李臻.无线经皮能量传输系统的试验研究和分析.电工技术学报.2010,25(7):14~18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700