用户名: 密码: 验证码:
昼夜不同增温对粳稻产量和品质的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪地球表面气温已经升高了0.74℃,IPCC预测21世纪末全球平均地表温度仍将上升1.8-4.0℃,模型预测到21世纪末我国平均气温可能升高2.2-4.2℃。目前,就陆地生态系统对增温响应的试验研究主要集中在自然生态系统,关于农田生态系统对昼夜不同增温的响应及其机制方面的研究很少。在研究手段上也主要是采用模型预测分析和对历史数据的分析,相关试验研究主要是在温室或开项箱中进行,很难反映作物的实际响应。水稻作为我国第一大粮食作物,约占粮食总产量的40%。研究全球变暖背景下水稻产量及品质对昼夜不同增温的响应特征及其机制,对增强人类有关全球气候变化与陆地生态系统关系的认识,降低气候变化下作物生产力预测的不确定性以及确保未来我国粮食安全具有重要的意义。为此,笔者参考国际上相关的增温系统,于2006-2008年在江苏南京应用农田开放式主动增温系统(FATI:Free Air Temperature Increase),系统研究昼夜不同增温对江淮稻区水稻生育期、地上生物量积累、产量及其构成、籽粒充实、植株光合特性、稻米品质和籽粒碳氮同化关键酶等的影响,主要结论如下:
     开放式主动增温系统可以形成2 m×2 m均匀且稳定的增温范围,可使水稻全生育期冠层日均温升高幅度小于2.0℃,且不会影响田间日平均温度的变化趋势。该稻田开放式增温系统符合未来气候变暖的变化特征,能满足江淮稻区水稻系统对未来气候变暖响应与适应的试验要求。
     3种增温处理对水稻的地上部生物量和产量均有降低的趋势,且全天增温、白天增温和夜间增温分别使生物量降低9.1%、10-3%和3.3%;产量降低0.9%、6.4%和6.1%。产量降低主要归因于穗粒数和粒重的下降。增温处理也降低了水稻的成穗率和干物质转运率。同时,3种增温处理明显缩短水稻从移栽到始穗的日期而不改变整个灌浆期。
     全天、白天和夜间增温处理使2007年稻米的整精米率分别提高14.2%、3.6%和2.2%,而2008年显著下降,分别降低8.3%、5.7%、5.5%;两年的垩白率和垩白度均显著增加;总淀粉含量和直链淀粉含量均下降;2007年籽粒中支/直淀粉比例下降,而2008年籽粒中支/直淀粉比例显著提高,全天、白天和夜间增温处理分别提高4.6%、3.6%和4.0%。增温处理下稻米的峰值黏度、热浆黏度、崩解值和糊化温度呈上升趋势,最终黏度、消解值和回复值呈下降趋势。2007年增温处理提高了籽粒的蛋白质含量,而2008年籽粒中蛋白质含量降低。
     尽管增温处理增加了水稻叶片的光合特性,比如绿叶干重所占比率和叶绿素光合色素,但对叶片的光合速率没有显著影响。同时,增温处理促进了叶片的夜间呼吸速率,白天和夜间增温分别增加了6.4%和54.5%。3种增温处理下,实际量子产量ΦPSⅡ和PSⅡ最大量子效率Fv/Fm呈下降的趋势,但初始荧光F。有增加的趋势。
     昼夜不同增温处理导致强势粒的最终粒重、千粒重、最大速率时间和实灌时间均下降。此外,所有增温处理的水稻强势粒SS活性在灌浆前期均低于常规对照,灌浆后期相反。3种增温处理的水稻强势粒ADPG-PPAse活性在灌浆前期均低于常规对照,而弱势粒的酶活性在灌浆前中期均低于常规对照。所有增温处理均提高了水稻强势粒和弱势粒SSS活性,但对水稻强势粒和弱势粒SBE活性的影响不明显。直链淀粉含量可能与SS和ADPG-PPase活性有关,且主要受这两个酶灌浆前期活性大小的影响,而受SSS活性的影响较小;而支链淀粉含量可能受SBE活性的影响较大。
     3种增温处理均降低了灌浆前期籽粒的GS、GOGAT活性,灌浆中后期响应不一致。蛋白质的合成与灌浆前期GS和GOGAT活性关系密切。
     增温处理均提高了水稻叶片的SOD活性,全天、白天和夜间增温处理平均分别提高6.9%、5.4%和19.1%,差异均未达显著水平。夜间增温增加了叶片POD的活性,全天和白天增温增加了水稻灌浆初期和后期的POD活性,而灌浆中期则降低;全天和白天增温处理均提高了水稻叶片的CAT活性,而夜间增温使灌浆前期叶片的CAT活性上升,灌浆后期下降。3种增温处理均降低了叶片的MDA含量,全天、白天和夜间增温处理平均分别降低12.7%、15.2%和9.1%,但差异均不显著。
Global average surface air temperature has increased about 0.74℃since 100 years ago, and will still increase about 1.8-4.0℃by the end of the 21st century (IPCC), meanwhile, according to the model predicted that average air temperature might will rise about 2.2-4.2℃by the end of the 21 century in China. At present, an experimental study on the responses of terrestrial ecosystems to warming mostly focus on the natural ecosystems, however, there are few studies on the responses and mechanisms of farmland ecosystems to different diurnal warming regimes. Since most previous researches on warming effects were based on crop modeling and historical data analyses, correlated with this experiment studies have been performed under controlled conditions, such as close greenhouses and open-top chambers with air condition facilities, but they are difficult to reflect crop actural responses at crop system scale in situ. Rice is the most important cereal crop of China, produced 40% of total grain yield. A study on the response characteristics and mechanisms and of yield and quality of rice to the different diurnal warming regimes under climate warming, and it plays a key role for people to enhance the understanding of relationship between global climate change and terrestrial ecosystems, and to reduce the uncertainties of modeling predicted for crop productivity and to ensure food security under climate change in future. Therefore, based on existing in field warming facilities in the world, we applied an experimental warming facility with three warming scenarios (AW:all-day warming; DW: daytime warming; NW:nighttime warming) using Free Air Temperature Increase (FATI) technique in 2006-2008 in Nanjing city, Jiangsu province, China. Our objectives were to (1) assess the practicability of the FATI system and effects of warming on rice growth, (2) investigate the effects of the different diurnal warming regimes on growth duration, aboveground biomass accumulation, yield and its component, grain filling, photosynthesis properties of rice plant, rice quality, the activities of carbon-nitrogen assimilation related key enzymes and antioxidant enzymes and lipid peroxidation in jianghuai region. The main conclusions are as follows:
     The free air temperature increased system formed 2 m×2 m of evenly and reliably warming area both at daytime and at nighttime. The daily mean temperature in the crop canopy of the different warming regimes about less than 2.0℃, and the diurnal trends of mean temperature change in the crop canopy during the whole growth duration under warming plots were all similar to those under control. Our field warming system under FATI facility can accord with the trends of future climate warming and is suitable to study the actual responses and adaptations of rice productivity to climate warming at system-level in situ in jianghuai region.
     Across the three-year experimental period, field warming tended to reduce the aboveground biomass by average 9.1%,10.3% and 3.3%, and the grain yield by 0.9%, 6.4% and 6.1% in the AW, DW, and NW plots, respectively. The decreasing trend of the grain yield was mainly attributed to the warming-led negative impacts on the filled grain number and the grain weight. Compared to the un-warmed, warming tended to decrease the panicle rate and the dry matter translocation rate (DMT rate). Meanwhile, field warming led to an obvious shortness of the initial heading date, while grain filling duration almost kept unchanged.
     The AW, DW and MW increased head rice rate by 14.2%,3.6% and 2.2% in 2007 and decreased significantly by 8.3%,5.7% and 5.5% in 2008, respectively. All the treatments increased significantly chalky grain rate and chalkiness of rice grain, and decreased the starch content and amylose content of rice grain during the two years. Field warming led to the reduction the ratio of amylopectin to amylose in 2007, while the increase significantly it by 4.6%,3.6% and 4.0% in the AW, DW and NW plots in 2008, respectively. There were increasing trends of peak viscosity, hot viscosity, break down and pasting temperature, and decreasing trends of final viscosity, setback and consistency in rice grain under the warmed plots. The content of grain protein was increased in 2007, while it was decreased in 2008 by warming treatments.
     Although warming treatments enhanced rice photosynthetic parameters, such as green leaves biomass rate and photosynthetic pigment of flag leaf, there were no impacts on leaf photosynthetic rate. Furthermore, warming stimulated leaf respiration rate at nighttime existed in the DW and NW plots which were 6.4% and 54.5% higher than those in the control plots, respectively. There were decreasing trends of photosynthetic system II (PS II) actual photochemical efficiency (ΦPSⅡ) and maximum photochemical efficiency (Fv/Fm), while increasing trends of leaf original fluorescence (Fo).
     Warming-induced a reduction of the maximum weight of a kernel,1000-grain weight, the time reaching the maximum grain rate and the time of grain filling reaching 99% of superior grain. Moreover, the activity of SS in superior grain decreased under the warmed plots during the early phase of rice grain filling, while had certain differences during the late phase of rice grain filling. The activity of ADPG-PPase in superior grain reduced under the warmed plots during the early phase of rice grain filling, while the activity of ADPG-PPase in inferior grain decreased under the warming plots during the early and middle phases of rice grain filling. Warming treatments enhanced the activities of SSS in superior and inferior grains, while had no significant effect on the activities of SBE in superior and inferior grains during the whole grain filling. The impact of SS and ADPG-PPase activity were greater on amylose content and that of SBE on amylopectin content in rice during the early phase of rice grain filling.
     The activities of GS and GOGAT in grain decreased under the warmed plots during the early phase of rice grain filling, while had certain differences during the late phase of rice grain filling. The protein synthesis was closely related to the activities of GS and GOGAT during the early phase of rice grain filling.
     The activity of superoxide dismatase (SOD) increased under the warmed plots, and AW, DW and NW enhanced the activity of SOD by 6.9%,5.4% and 19.1% on average during the whole grain filling. The activity of peroxidase (POD) increased in NW plot, while the activity of POD increased under the AW and DW plots during the early and late phases of rice grain filling, and it reduced during the middle phase of rice grain filling. The activity of catelase (CAT) increased under the AW and DW plots, while the activity of CAT elevated in NW plot during the early phase of rice grain filling, and it decreased during the late phase of rice grain filling. Warming treatments decreased the content of malondialdehyde (MDA), which were 12.7%,15.2% and 9.1% lower on average in the AW, DW and NW plots than the control during the whole grain filling, respectively.
引文
[1]IPCC. Climate Change 2007:Synthesis Report:Summary for Policymakers. [2010-1-29]. http://www.ipcc.ch.
    [2]Karl T R, Jones P D, Knight R W, et al. A new perspective on recent global warming:asymmetric trends of daily maximum and minimum temperature. Bulletin of the American Meteorological Society,1993,74(6):1007-1023.
    [3]Jones, P D. Maximum and minimum temperature trends in Ireland, Italy, Thailand, Turkey and Bangladesh. Atmospheric Research,1995,37:67-78.
    [4]Harvey L D D. Warm days, hot nights. Nature,1995,377:15-16.
    [5]Easterling D R, Horton B, Jones P D, et al. Maximum and minimum temperature trends for globe. Science,1997,277:364-367.
    [6]Harte J, Torn M S, Chang F R, et al. Global warming and soil microclimate:results from a meadow-warming experiment. Ecological Applications,1995,5:132-150.
    [7]Nijs I, Kockelbergh F, Teughels H, et al. Free Air Temperature Increase (FATI):a new tool to study global warming effects on plants in the field. Plant Cell and Environment,1996,19:495-502.
    [8]Wan S, Luo Y, Wallace L L. Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change Biology,2002,8:754-768.
    [9]Turnbull M H, Murthy R, Griffin K L. The relation impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides. Plant and Cell Environment,2002,25:1729-1737.
    [10]Lobell D B, Asner G P. Climate and management contributions to recent trends in US agricultural yields. Science,2003,29:1032-1032.
    [11]牛书丽,韩兴国,马克平,等.全球变暖与陆地生态系统研究中的野外增温装置.植物生态学报,2007,31(2):262-271.
    [12]戴云云,丁艳锋,刘正辉,等.花后水稻穗部夜间远红外增温处理对稻米品质的影响.中国水稻科学,2009,23(4):414-420.
    [13]Cheng W, Sakai H, Yagi K, et al. Interactions of elevated [CO2] and night temperature on rice growth and yield. Agricultural and Forest Meteorology,2009,149:51-58.
    [14]Kanno K, Mae T, Makino A. High night temperature stimulates photosynthesis, biomass production and growth during the vegetative stage of rice plants. Soil Science and Plant Nutrition,2009,55: 124-131.
    [15]刘天明,李翠菊.全球变暖对我国农田生态系统的影响初探.资源环境与发展,2008,4:12-14.
    [16]Tan G, Shibasaki R. Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecological Modelling,2003,168(3):357-370.
    [17]Peng S P, Huang J L, Sheehy J E, et al. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(27):9971-9975.
    [18]Sheehy J E, Mitchell P L, Ferrer A B. Decline in rice grain yields with temperature:Models and correlations can give different estimates. Field Crops Research,2006,98:151-156.
    [19]Krishnan P, Swain D K, Chandra Bhaskar B, et al. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems and Environment,2007,122:233-242.
    [20]熊伟,居辉,许吟隆,等.气候变化对中国农业温度阈值影响研究及其不确定性分析.地球科学进展,2006,21(1):70-76.
    [21]Lobell D B, Burke M B, Tebaldi C, et al. Prioritizing climate change adaptation needs for food security in 2030. Science,2008,319:607-610.
    [22]Lobell D B. Changes in diurnal temperature range and national cereal yields. Agricultural and Forest Meteorology,2007,145:229-238.
    [23]Richard J N, Luo Y Q. Evaluating ecosystem responses torising atmospheric CO2 and global warming in a multifactor world. New Phytologist,2004,162:281-293.
    [24]Bardgett, R D, Bowman, W D, Kaufmann, R., et al. A temporal approach to linking aboveground and belowground ecology. Trends Ecology and Evolution,2005,20(11):634-640.
    [25]曾小平,赵平,孙谷畴.气候变暖对陆生植物的影响.应用生态学报,2006,17(12):2445-2450.
    [26]李家洋,葛全胜.全球变化与人类活动的相互作用,我国下阶段全球变化研究工作的重点.地球科学进展,2005,20(4):371-377.
    [27]Gaffen D J, Santer B D, Boyle, J S, et al. Multidecadal changes in the vertical temperature structure of the tropical troposphere. Science,2000,287:1242-1245.
    [28]Santer B D, Wigley T M L, Gaffen D J, et al. Interpreting differential temperature trends at the surface and in the lower troposphere. Science,2000,287:1227-1232.
    [29]Mann M E, Bradley R S, Hughes M K. Global-scale temperature patterns and climate forcing over the past six centuries. Nature,1998,392:779-787.
    [30]秦大河.气候变化与干旱.科技导报,2009,11:3-3.
    [31]任国玉,郭军,徐铭志,等.近50年中国地面气候变化基本特征.气象学报,2005,63(6):693-956.
    [32]Salinger M J. Southeast Pacific temperature:trends in maximum and minimum temperatures. Atmospheric Research,1995,37:87-100.
    [33]Dhakhwa G B, Campbell C L. Potential effects of different day-night warming in global climate change on crop production. Climate Change,1998,40:647-667.
    [34]Will R. Effect of different daytime and night-time temperature regimes on the foliar respiration of Pinus taeda:predicting the effect of variable temperature on acclimation. Journal of Experimental Botany,2000,51(351):1733-1739.
    [35]闫敏华,陈泮勤,邓伟,等.三江平原气候变暖的进一步认识:最高和最低气温的变化.生态环境,2005,14(2):151-156.
    [36]Ziska L H, Namuco O, Moya T, et al. Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature. Agronomy Journal,1997,89:45-53.
    [37]Jagadish S V K, Craufurd P Q, Wheeler T R. High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany,2007,58:1627-1635.
    [38]Dhakhwa G B, Campbell C L, Leduc S K, et al. Maize growth:Assessing the effects of global warming and CO2 fertilization with crop models. Agricultural and Forest Meteorology,1997,87(4): 251-270.
    [39]杨修,孙芳,林而达,等.我国水稻对气候变化的敏感性和脆弱性.自然灾害学报,2004,13(5):85-89.
    [40]Parry M L, Swaminathan M S. Effects of climate change on food production. Cambridge: Cambridge University Press,1992.
    [41]Terjung W H. Actual and potential yield for rainfed and irrigated maize in China. International Journal of Biometeorology,1989,28:115-135.
    [42]王馥棠.近十年来我国气候变暖影响研究的若干进展.应用气象学报,2002,13(6):755-766.
    [43]张建平,赵艳霞,王春乙,等.气候变化对我国南方双季稻发育和产量的影响.气候变化研究进展,2005,1(4):151-156.
    [44]Tao F, Hayashi Y, Zhang Z, et al. Global warming, rice production, and water use in China: Developing a probabilistic assessment. Agricultural and Forest Meteorology,2008,148:94-110.
    [45]江敏,金之庆,石春林,等.气候变化对福建省水稻生产的阶段性影响.中国农学通报,2009,25(10):220-227.
    [46]石春林,金之庆,葛道阔,等.气候变化对长江中下游平原粮食生产的阶段性影响和适应性对策.江苏农业学报,2001,17(1):1-6.
    [47]裘国旺,王馥棠.气候变化对我国江南双季稻生产可能影响的数值模拟研究.应用气象学报,1998,9(2):151-159.
    [48]姚凤梅,张佳华,孙白妮,等.气候变化对中国南方稻区水稻产量影响的模拟和分析.气候与环境研究,2007,12(5):659-666.
    [49]居辉,熊伟,许吟隆,等.气候变化对我国小麦产量的影响.作物学报,2005,31(10):1340-1343.
    [50]张宇,王馥棠.气候变暖对我国水稻生产可能影响的数值模拟试验研究.应用气象学报,1995,6(增刊):19-25.
    [51]郑建初,张彬,陈留根,等.抽穗期高温对水稻产量构成要素和稻米品质的影响及其基因型差异.江苏农业学报,2005,21(4):249-254.
    [52]Morison J I L, Lawlor D W. Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell and Environment,1999,22:659-682.
    [53]Lang G. Global warming and German agriculture:Impact estimations using a restricted profit function. Environmental and Resource Economics,2001,19:97-112.
    [54]Beier C, Emmett B, Gundersen P, et al. Novel approaches to study climate change effects on terrestrial ecosystems in the filed:Drought and passive nighttime warming. Ecosystems,2004,7: 583-597.
    [55]Batts G R, Morison J I L, Ellis R H, et al. Effects of CO2 and temperature on growth and yield of crops of winter wheat over four seasons. European Journal of Agronomy,1997,7:43-52.
    [56]Olszyk D M, Johnson M G, Tingey D T, et al. Whole-seedling biomass allocation, leaf area, and tissue chemistry for Douglas-fir exposed to elevated CO2 and temperature for 4 years. Canadian Journal of Forest Research,2003,33:269-278.
    [57]Richardson S J, Hartley S E, Press M C. Climate warming experiments:are tents a potential barrier to interpretation? Ecological Entomology,2000,25:367-370.
    [58]Stenstrom M, Gugerli F, Henry G H R. Response of Saxifraga oppositifolia L. to simulated climate change at three contrasting latitudes. Global Change Biology,1997,3(Supplement 1):44-54.
    [59]Klein J A, Harte J, Zhao X Q. Dynamic and complex microclimate responses to warming and grazing manipulations. Global Change Biology,2005,11:1440-1451.
    [60]Chapin P S III, Shaver G R. Individualistic grow response of tundra plant species to environmental manipulations in the field. Ecology,1985,66:564-576.
    [61]Havstrom M, Callaghan T V, Jonasson S. Differential growth responses of Cassiope tetragona, an arctic dwarf-shrub, to environmental perturbations among three contrasting high- and subarctic sites. Oikos,1993,66:389-402.
    [62]Norby R J, Edwards N T, Riggs J S, et al. Temperature-controlled open-top chambers for global change research. Global Change Biology,1997,3:259-267.
    [63]Oechel W C, Vourlitis G L, Hastings S J, et al. The effects of water table manipulation and elevated temperature on the net CO2 flux of wet sedge tundra ecosystems. Global Change Biology,1998,4: 77-90.
    [64]Hollister R D, Webber P J. Biotic validation of small open-top chambers in a tundra ecosystem. Global Change Biology,2000,6:835-842.
    [65]Walker M D, Wahren C H, Hollister R D, et al. Plant community response to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America,2006,103:1342-1346.
    [66]Marion G M, Henry G H R, Freckman D W, et al. Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology,1997,3(Supplement 1):20-32.
    [67]Shaver G R, Johnson L C, Cades D H, et al. Biomass accumulation and CO2 flux in three Alaskan wet sedge tundra:Response to nutrients, temperature, and light. Ecological Monographs,1998,68: 75-99.
    [68]Jonasson S, Shaver G R. Within-stand nutrient cycling in arctic and boreal herbaceous and forested wetlands. Ecology,1999,80:2139-2150.
    [69]Rykbost K A, Boersma L, Mack H J, et al. Yield response to soil warming:agronomic crops. Agronomy Journal,1975,67:733-738.
    [70]Van Cleve K, Dyrness C T, Viereck L A, et al. Tiaga ecosystems in interior Alaska. BioScience, 1983,33:39-44.
    [71]Van Cleve K, Oechel W C, Hom J L. Response of black spruce (Piceamariana) ecosystem to soil temperature modification in interior Alaska. Canadian Journal of Forest Research,1990,20(9): 1530-1535.
    [72]Peterjohn W T, Melillo J M, Bowles F P, et al. Soil warming and trace gas fluxes:experimental design and preliminary flux results. Oecologia,1993,93:18-24.
    [73]Peterjohn W T, Melillo J M, Steudler P A, et al. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecological Applications,1994,4:617-625.
    [74]NSFESP (National Science Foundation, Ecosystem Studies Program). Soil warming experiments in global change research, Woods Hole, MA,1991, September 27 and 28.
    [75]IPCC (2001). Climate change 2001:the scientific basis:summary for policy makers. IPCC WGI Third Assessment Report. Shanghai Draft,21 January 2001.
    [76]Zeiher C A, Brown P W, Silvertooth J C, et al. The effect of night temperature on cotton reproductive development. In Cotton. Ed. J. Silvertooth. College of Agriculture Report, the University of Arizona, Tucson,1994, pp 89-96.
    [77]Luxmoore R J, Hanson P J, Beauchamp J J, et al. Passive nighttime warming facility for forest ecosystems research. Tree Physiology,1998,18:615-623.
    [78]Beier C, Emmett B, Gundersen P, et al. Novel approaches to study climate change effects on terrestrial ecosystems in the field:drought and passive nighttime warming. Ecosystems,2004,7: 583-597.
    [79]Emmett B A,Beier C, Estiarte M, et al. The response of soil processes to climate change:results from manipulation studies of shrub lands across an environmental gradient. Ecosystems,2004,7: 625-637.
    [80]Shaver G R, Canadell J, Chapin III F S, et al. Global warming and terrestrial ecosystems:a conceptual framework for analysis. Bioscience,2000,50:871-882.
    [81]Bridgham S D, Pastor J, Updegraff K, et al. Paper presented at the Ecological Society of America Annual Meeting. Snowbird, Utah,1995, July 30 to August 3.
    [82]Luo Y, Wan S, Hui D, et al. Acclimatization of soil respiration to warming in tallgrass prairie. Nature,2001,413:622-625.
    [83]Shaw M R, Zavaleta E S, Chiariello N R, et al. Grassland responses to global environment changes suppressed by elevated CO2. Science,2002,298:1987-1990.
    [84]Wan S, Yuan T, Bowdish S, et al. Response of an allergic species, Ambrosia psilostachya (Asteraceae), to experimental warming and clipping:implications for public health. American Journal of Botany,2002,89:1843-1846.
    [85]Kimball B A. Theory and performance of an infrared heater for warming ecosystems. Global Change Biology,2005,11:2041-2056.
    [86]Laura L, Josep P, Albert T, et al. Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrub species along a north-south European gradient. Ecosystems,2004,7:613-624.
    [87]Kimball, B A, Conley, M M. Infrared heater arrays for warming field plots scaled up to 5-m diameter. Agric For, Meteorol,2009,149:721-724.
    [88]Norby R J, Luo Y. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-world. New Phytologist,2004,162:281-293.
    [89]胡健,杨连新,周娟,等.开放式空气C02浓度增高(FACE)对水稻灌浆动态的影响.中国农业科学,2007,40(11):2443-2451.
    [90]吴娜,刘吉利,徐洪海,等.花后水分亏缺对水稻回交后代干物质积累与分配及产量性状的影响.中国农学通报,2006,22(6):182-185.
    [91]方修琦,王媛,徐锬,等.近20年气候变暖对黑龙江省水稻增产的贡献.地理学报,2004,59(6):820-828.
    [92]Mohammed A R, Tarpley L. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology,2009,149:999-1008.
    [93]Mohammed A R, Tarpley L. Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Science,2009,49:313-322.
    [94]魏金连,潘晓华.夜间温度升高对早稻生长发育及产量的影响.江西农业大学学报,2008,30(3):427-432.
    [95]Ziska L H, Manalo P A. Increasing night temperature can reduce seed set and potential yield of tropical rice. Australian Journal of Plant Physiology,1996,23:791-794.
    [96]Cheng S H, Zhuang J Y, Fan Y Y, et al. Progress in research and development on hybrid rice:a super-domesticate in China. Annals of Botany,2007,100:959-966.
    [97]Zhang Q. Strategies for developing green super rice. Proceedings of the National Academy of Sciences of the United States of America,2007,104:16402-16409.
    [98]Yang J, Zhang J. Grain-filling problem in'super'rice. Journal of Experimental Botany,2010,61: 1-5.
    [99]Ishimaru T, Hirose T, Matsuda T, et al. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.): comparison of caryopses located at different positions in a panicle. Plant Cell Physiology,2005,46: 620-628.
    [100]孟亚利,周志国.结实期温度与稻米品质的关系.中国水稻科学,1997,11(1):51-54.
    [101]孙义伟.水稻成熟期气温对稻米品质的影响.水稻文摘,1993,2(2):6-8.
    [102]Hak Y. Grain quality characteristic for brow in rice. Korean Journal of Crop Science,1994,39(1): 38-44.
    [103]杨联松,孙明,张培江,等.温度、光照对杂交中粳中优121稻米品质的影响.杂交水稻,1998,13(6):23-28.
    [104]张立成,王忠华.气象生态因子对稻米品质形成的影响.安徽农学通报,2006,12(13):100-103.
    [105]宋忠华,张艳贵,陈魁东.灌浆期温度对超级稻整精米率和垩白大小的影响.种子,2009,28(9):66-68.
    [106]戴云云,丁艳锋,刘正辉,等.花后水稻穗部夜间远红外增温处理对稻米品质的影响.中国水稻科学,2009,23(4):414-420.
    [107]李林,沙国栋,陆景淮.水稻灌浆期温光因子对稻米品质的影响.中国农业气象,1989,10(3):33-38.
    [108]朱碧岩,程方民,吴永常.结实期温度对稻米粒重和整精米率形成动态的影响.西北农业学报,1996,5(4):31-35.
    [109]徐富贤,郑家奎,朱永川,等.灌浆期气温对籼型杂交中稻稻米整精米率的影响.西南农业学报,2003,16(4):56-59.
    [110]程方民,朱碧岩.气象生态因子对稻米品质影响的研究进展.中国农业气象,1998,19(5):39-45.
    [111]高如嵩,张嵩午.稻米品质气候生态基础研究.西安:陕西科学技术出版社,1994.
    [112]Yawinder S D. Physichemical milling and cooking quality of rice as affected by sowing and transplanting dates. Journal of the Science of food and Agriculture,1986,37:881-887.
    [113]周玉.气象条件对水稻灌浆及米质的影响.湖南农业科学,1988,5:24-26.
    [114]程方民,张嵩午,吴永常.灌浆结实期温度对稻米垩白形成的影响.西北农业学报,1996,5(2):31-34.
    [115]朱碧岩,程方民.稻米外观品质形成动态变化规律及结实期温度的影响.华南师范大学学报,2000,3:75-80.
    [116]张国发,王绍华,尤娟,等.结实期不同时段高温对稻米品质的影响.作物学报,2006,32(2):283-287.
    [117]李欣,顾铭洪,潘学彪.稻米品质研究:Ⅱ.灌浆期间环境条件对稻米品质的影响.江苏农学院学报,1989,10(1):7-12.
    [118]吕文彦,邵国军,曹萍,等.灌浆结实期日均温度对稻米品质之影响.辽宁农业科学,1998,4:1-6.
    [119]伏军.稻米垩白的发生机理及其改良.湖南农业科学,1987,2:15-18.
    [120]沈波,陈能,李太贵,等.温度对早籼稻米垩白发生与胚乳物质形成的影响.中国水稻科学, 1997,11(3):183-186.
    [121]滕中华,智丽,宗学风,等.高温胁迫对水稻灌浆结实期叶绿素荧光、抗活性氧活力和稻米品质的影响.作物学报,2008,34(9):1662-1666.
    [122]Takeda. Effect of temperature on amylose content in hokkaido rice. Nihon Eutelegenesis Magazine.1988,38 (2):357-362.
    [123]Normita D C, Kumar I, Kaushik R P, et al. Effect of temperature during grain development on stability of cooking quality components in rice. Japanese Journal of Breeding,1989,39(3): 299-306.
    [124]赵式英.灌浆期气温对稻米食用品质的影响.浙江农业科学,1983,4:178-181.
    [125]程方民,蒋德安,吴平,等.早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征.作物学报,2001,27(2):201-206.
    [126]程方民,钟连进,孙宗修.灌浆结实期温度对早籼水稻籽粒淀粉合成代谢的影响.中国农业科学,2003,36(5):492-501.
    [127]金正勋,杨静,钱春荣,等.灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响.中国水稻科学,2005,19(4):377-380.
    [128]王丰,程方民,钟连进,等.早籼稻米RVA谱特性的品种间差异及其温度效应特征.中国水稻科学,2003,17(4):328-332.
    [129]Shugo C, Heiich K, Yuko S. Effect of temperature at ripening period on the eating quality of rice: Effect of temperature maintained in constant levels during the entire ripening period. Japanese Journal of Crop Science,1979,48:475-482.
    [130]Toshio T A. Relation between mean air temperature during ripening period of rice and amylographic characteristics or cooking quality. Japanese Journal of Crop Science,1999,68(1): 45-49.
    [131]张国发,王绍华,尤娟,等.结实期相对高温对稻米淀粉粘滞性谱及镁、钾含量的影响.应用生态学报,2008,19(9):1959-1964.
    [132]Resurrecion A P. Effect of temperature during ripening on grain quality of rice. Soil Science and Plant Nutrition,1977,23(1):109-112.
    [133]张磊,吴冬云,朱碧岩,等.灌浆期不同温光对水稻叶、籽粒可溶性蛋白质及可溶性糖动态变化的影响.华南师范大学学报(自然科学版),2002,(2):98-101.
    [134]黄英金,漆映雪,刘宜柏,等.灌浆成熟期气候因素对早籼稻米蛋白质及其4种组分含量的影响.中国农业气象,2002,23(2):9-12,31.
    [135]周广洽,徐孟亮,谭周,等.温光对稻米蛋白质及氨基酸含量的影响.生态学报,1997,17(5):537-542.
    [136]陶红娟.灌浆结实期高温对水稻产量和品质的影响及其生理机.硕士毕业论文.扬州大学.2007.
    [137]Hirel B, Bertin P, Quillere I, et al. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiology,2001,125:1258-1270.
    [138]Martin A, Lee J, Kichey T, et al. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell,2006,18(11):3252-3274.
    [139]梁成刚,陈利平,汪燕,等.高温对水稻灌浆期籽粒氮代谢关键酶活性及蛋白质含量的影响.中国水稻科学,2010,24(4):398-402.
    [140]马启林,李阳生,田小海,等.高温胁迫对水稻贮藏蛋白质的组成和积累形态的影响.中国农业科学,2009,42(2):714-718.
    [141]董明辉,陈培峰,乔中英,等.水稻不同粒位籽粒米质对花后不同时段温度胁迫的响应.作物学报,2011,37(3):506-513.
    [142]陈晓亚,汤章城.植物生理与分子生物学(第三版).北京:高等教育出版社,2007,138-145.
    [143]Venkateswarlu B, Visperas R M. Source-sink relationships in crop plants. International Rice Research Paper Series. Manila:IRRI,1987,125:1-19.
    [144]王建林,徐正进,马殿荣.北方杂交稻与常规稻籽粒灌浆特性的比较.中国水稻科学,2004,18(5):425-430.
    [145]杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究.中国农业科学,2006,39(7):1336-1345.
    [146]王小宁,申双和,王志明,等.白天和夜间增温对水稻光合作用的影响.江苏农业学报,2008,24(3):237-240.
    [147]欧志英,林桂珠,彭长连.超高产杂交水稻培矮64S/E32和两优培九剑叶对高温的响应.中国水稻科学,2005,19(3):249-254.
    [148]张桂莲,陈立云,张顺堂,等.抽穗开花期高温对水稻剑叶理化特性的影响.中国农业科学2007,40(7):1345-1352.
    [149]郭培国,李荣华.夜间高温胁迫对水稻叶片光合机理的影响.植物学报,2000,42(7):673-678.
    [150]黄英金,罗永锋,黄兴作,等.水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系.中国水稻科学,1999,13(4):205-210.
    [151]Oh-e I, Saitoh K, Kuroda T. Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Production Science,2007,10:412-422.
    [152]Zhang S R. A discussion on chlorophyll fluorescence kinetic parameters and their significance. Chinese Bulletin of Botany,1999,16(4):444-448.
    [153]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用.浙江农业 学报,2006,18(1):51-55.
    [154]赵丽英,邓西平,山仑.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究.中国生态农业学报,2007,15(1):63-66.
    [155]汪炳良,徐敏,史庆华,等.高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧光参数的影响.中国农业科学,2004,37(8):1245-1250.
    [156]宋莉英,孙兰兰,张强,等.高温对入侵种三裂叶蟛蜞菊叶片PSⅡ功能和光能分配的影响.植物生理学通报,2009,45(5):464-468.
    [157]汤春芳,刘云国,曾光明,等.镉胁迫对萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的影响.植物生理与分子生物学学报,2004,30:469-474.
    [158]田小磊,吴晓岚,李云,等.盐胁迫条件下γ-氨基丁酸对玉米幼苗SOD、POD、及CAT活性的影响.实验生物学报,2005,38(1):75-79.
    [159]Bailly C, Benamar A, Corbineau F. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiologia Plantarum,1996,97(1):104-110.
    [160]Noctor G, Foyer C H. Ascorbate and glutathione:keeping active oxygen under control. Annul Review of Plant Physiology and Plant Molecular Biology,1998,49:249-279.
    [161]Quartacci M F, Navarilzzo F. Water stress and free radical mediated changes in sunflower seedling. Plant Physiology,1991,139(5):621-625.
    [162]肖美秀,林文雄,陈冬梅,等.镉胁迫对耐性不同的水稻幼苗膜脂过氧化和保护酶活性的影响.中国生态农业学报,2006,14(4):257-259.
    [163]吴国胜,曾婉虹,王永健,等.细胞膜热稳定性及保护酶和大白菜耐热性的关系.园艺学报,1995,22(4):353-358.
    [164]马德华,庞金安,李淑菊,等.温度逆境锻炼对高温下黄瓜幼苗生理的影响.园艺学报,1998,25(4):350-355.
    [165]刘萍,郭文善,浦汉春,等.灌浆期高温对小麦剑叶抗氧化酶及膜脂过氧化的影响.中国农业科学,2005,38(12):2403-2407.
    [166]刘媛媛,滕中华,王三根,等.高温胁迫对水稻可溶性糖及膜保护酶的影响研究.西南大学学报(自然科学版),2008,30(2):59-63.
    [167]Schoff F, Prandl R, Reindl A. Regulation of the heat shock response. Plant Physiology,1998, 117(4):1135-1141.
    [168]马德华,庞金安,霍振荣,等.高温对黄瓜幼苗膜脂过氧化作用的影响.西北植物学报,2000,20(1):141-144.
    [169]李敏,王维华,王然,等.高温胁迫对菠菜叶片保护酶活性和膜透性的影响.园艺学报,2004, 31(1):99-100.
    [170]Chaoui A, Mazhoudi S, Ghorbal M H. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean. Plant Science,1997,127:139-147.
    [171]曹慧,兰彦平,刘会超等.水分胁迫下短枝型苹果幼树活性氧代谢失调对光合作用的影响.内蒙古农业大学学报,2000,21(3):22-25.
    [172]曹云英,段骅,杨立年,等.减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因.作物学报,2008,34(12):2134-2142.
    [173]郭天财,王晨阳,朱云集,等.后期高温对冬小麦根系及地上部衰老的影响.作物学报,1998,24:957-962.
    [174]刘萍,郭文善,浦汉春,等.灌浆期高温对小麦剑叶抗氧化酶及膜脂过氧化的影响.中国农业科学,2005,38(12):2403-2407.
    [175]郑飞,何钟佩.高温胁迫对冬小麦灌浆期物质运输与分配的影响.中国农业大学学报,1999,4:73-76.
    [1]张强,邓振镛,赵映东,等.全球气候变化对我国西北地区农业的影响.生态学报,2008,28(3):1210-1218.
    [2]杨从党.不同生态区温度差异与水稻产量因子的关系.云南农业科技,2003(增刊):41-44.
    [3]Easterling D R, Horton B, Jones P D, et al. Maximum and minimum temperature trends for globe. Science,1997,277:364-367.
    [4]IPCC. Climate Change 2007:Synthesis Report:Summary for Policymakers. [2011-1-29]. http://www.ipcc.ch.
    [5]秦大河.气候变化与干旱.科技导报,2009,11:3-3.
    [6]居辉,熊伟,许吟隆,等.气候变化对我国小麦产量的影响.作物学报,2005,31(10):1340-1343.
    [7]Lobell D B, Asner G P. Climate and management contributions to recent trends in US agricultural yields. Science,2003,29:1032-1032.
    [8]戴云云,丁艳锋,刘正辉,等.花后水稻穗部夜间远红外增温处理对稻米品质的影响.中国水稻科学,2009,23(4):414-420.
    [9]Parry M L, Swaminathan M S. Effects of Climate Change on Food Production. Cambridge: Cambridge University Press,1992.
    [10]杨修,孙芳,林而达,等.我国水稻对气候变化的敏感性和脆弱性.自然灾害学报,2004,13(5):85-89.
    [11]Cheng W, Sakai H, Yagi K, et al. Interactions of elevated [CO2] and night temperature on rice growth and yield. Agricultural and Forest Meteorology,2009,149:51-58.
    [12]Tan G, Shibasaki R. Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecological Modelling,2003,168(3):357-370.
    [13]Peng S P, Huang J L, Sheehy J E, et al. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(27):9971-9975.
    [14]Sheehy J E, Mitchell P L, Ferrer A B. Decline in rice grain yields with temperature:Models and correlations can give different estimates. Field Crops Research,2006,98:151-156.
    [15]Krishnan P, Swain D K, Chandra Bhaskar B, et al. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems and Environment,2007,122:233-242.
    [16]Lobell D B, Burke M B, Tebaldi C, et al. Prioritizing climate change adaptation needs for food security in 2030. Science,2008,319:607-610.
    [17]Lobell D B. Changes in diurnal temperature range and national cereal yields. Agricultural and Forest Meteorology,2007,145:229-238.
    [18]Nijs I, Kockelbergh F, Teughels H, et al. Free Air Temperature Increase (FATI):a new tool to study global warming effects on plants in the field. Plant Cell and Environment,1996,19:495-502.
    [19]Peterjohn W T, Melillo J M, Bowles F P, et al. Soil warming and trace gas fluxes:experimental design and preliminary flux results. Oecologia,1993,93:18-24.
    [20]Beier C, Emmett B, Gundersen P, et al. Novel approaches to study climate change effects on terrestrial ecosystems in the field:drought and passive nighttime warming. Ecosystems,2004,7: 583-597.
    [21]Laura L, Josep P, Albert T, et al. Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrub species along a north-south European gradient. Ecosystems,2004,7:613-624.
    [22]Klein J A, Harte J, Zhao X Q. Dynamic and complex microclimate responses to warming and grazing manipulations. Global Change Biology,2005,11:1440-1451.
    [23]Kimball B A, Conley M M, Wang S P, et al. Infrared heater arrays for warming ecosystem field plots. Global Change Biology,2008,14:309-320.
    [24]牛书丽,韩兴国,马克平,等.全球变暖与陆地生态系统研究中的野外增温装置.植物生态学报,2007,31(2):262-271.
    [25]Harte J, Torn M S, Chang F R, et al. Global warming and soil microclimate:results from a meadow-warming experiment. Ecological Applications,1995,5:132-150.
    [26]Wan S, Luo Y, Wallace L L. Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change Biology,2002,8:754-768.
    [27]Turnbull M H, Murthy R, Griffin K L. The relation impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides. Plant and Cell Environment,2002,25:1729-1737.
    [28]董文军,邓艾兴,张彬,田云录,陈金,杨飞,张卫建.开放式昼夜不同增温对单季稻影响的试验研究.生态学报,2011,31(8):2169-2177.
    [29]胡健,杨连新,周娟,等.开放式空气CO2浓度增高(FACE)对水稻灌浆动态的影响.中国农业科学,2007,40(11):2443-2451.
    [30]Bridgham S D, Pastor J, Updegraff K, et al. Ecosystem control over temperatures and energy flux in northern peatlands. Ecological Applications,1999,9:1345-1358.
    [31]Noormets A, Chen J, Bridgham S D, et al. The effects of infrared loading and water table on soil energy fluxes in northern peatlands. Ecosystems,2004,7:573-582.
    [32]Shaw M R, Zavaleta E S, Chiariello N R, et al. Grassland responses to global environment changes suppressed by elevated CO2. Science,2002,298:1987-1990.
    [1]IPCC. Climate Change 2007:Synthesis Report:Summary for Policymakers. [2011-1-29]. http://www.ipcc.ch.
    [2]秦大河.气候变化与干旱.科技导报,2009,11:3-3.
    [3]Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science,2010,327:818-822.
    [4]Lele U. Food security for a billion poor. Science,2010,326:1554.
    [5]Tan G, Shibasaki R. Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecological Modelling,2003,168:357-370.
    [6]Lin E, Xiong W, Ju H, et al. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philosophical Transactions of the Royal Society B:Biological Sciences, 2005,360:2149-2154.
    [7]Sheehy J E, Mitchell P L, Ferrer A B. Decline in rice grain yields with temperature:Models and correlations can give different estimates. Field crops Research,2006,98:151-156.
    [8]Peng S P, Huang J L, Sheehy J E, et al. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America,2004,101:9971-9975.
    [9]You L, Rosegrant M W, Wood S, et al. Impact of growing season temperature on wheat productivity in China. Agricultural and Forest Meteorology,2009,149:1009-1014.
    [10]Tubiello F N, Soussana J F, Howden S M. Crop and pasture response to climate change. Proceedings of the National Academy of Sciences of the United States of America,2007,104: 19686-19690.
    [11]Kim H Y, Lieffering M, Kobayashi K, et al. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply:a free air CO2 enrichment (FACE) experiment. Global Change Biology,2003,9:826-837.
    [12]Krishnan P, Swain D K, Bhaskar B C, et al. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems and Environment,2007,122:233-242.
    [13]Kimball B A, Idso S B. Increasing atmospheric CO2:effects on crop yield, water use and climate. Agricultural Water Management,1983,7:55-72.
    [14]Ladha J K, Dawe D, Pathak H, et al. How extensive are yield declines in long-term rice-wheat experiments in Asia? Field Crops Research,2003,81:159-180.
    [15]Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands. Science, 2010,327:1008-1010.
    [16]张宇,王馥棠.气候变暖对我国水稻生产可能影响的数值模拟试验研究.应用气象学报,1995,6(增刊):19-25.
    [17]张建平,赵艳霞,王春已,何勇.气候变化对我国南方双季稻发育和产量的影响.气候变化研究进展,2005,1(4):151-156.
    [18]石春林,金之庆,葛道阔,苏高利.气候变化对长江中下游平原粮食生产的阶段性影响和适应性对策.江苏农业学报,2001,17(1):1-6.
    [19]Mohammed A R, Tarpley L. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology,2009,149: 999-1008.
    [20]Mohammed A R, Tarpley L. Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Science,2009,49:313-322.
    [21]魏金连,潘晓华.夜间温度升高对早稻生长发育及产量的影响.江西农业大学学报,2008,30(3):427-432.
    [22]Porter J R, Gawith M. Temperatures and the growth and development of wheat:a review. European Journal of Agronomy,1999,10:23-36.
    [23]Schlenker, W, Roberts, M J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proceedings of the National Academy of Sciences of the United States of America,2009,106:15594-15598.
    [24]Lobell, D B. Changes in diurnal temperature range and national cereal yields. Agricultural and Forest Meteorology,2007,145,229-238.
    [25]刘颖杰,林而达.气候变暖对中国不同地区农业的影响.气候变化研究进展,2007,3(4):229-233.
    [26]Porter J R, Gawith M. Temperatures and the growth and development of wheat:a review. European Journal of Agronomy,1999,10:23-36.
    [27]Sadras V O, Monzon J P. Modelled wheat phenology captures rising temperature trends:Shortened time to flowering and maturity in Australia and Argentina. Field Crops Research,2006,99: 136-146.
    [28]Wang H L, Gan Y T, Wang R Y, et al. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agricultural and Forest Meteorology,2008,148: 1242-1251.
    [29]张建平,赵艳霞,王春已,等.气候变化对我国南方双季稻发育和产量的影响.气候变化研究进展,2005,1(4):151-156.
    [30]宁金花,申双和.气候变化对中国农业的影响.现代农业科技,2009,12:251-255.
    [31]葛道阔,金之庆,石春林,等.气候变化对中国南方水稻生产的阶段性影响及适应性对策.江苏农业学报,2002,18(1):1-8.
    [32]Slafer G A, Rawson H M. Rates and cardinal temperatures for processes of development in wheat: effects of temperature and thermal amplitude. Australian Journal of Plant Physiology,1995,22: 913-926.
    [33]Ntanos, D A, Koutroubas, S D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Research.2002,74:93-101.
    [34]Semenov M A, Porter J R. Climatic variability and the modeling of crop yields. Agricultural and Forest Meteorology,1995,73:265-283.
    [35]Cao W, Moss D N. Modelling phasic development in wheat:a conceptual integration of physiological components. Journal of Agricultural Science,1997,129:163-172.
    [36]Tao F, Yokozawa M, Xu Y, et al. Climate changes and trends in phenology and yields of field crops in China 1981-2000. Agricultural and Forest Meteorology,2006,138:82-92.
    [37]郑建初,张彬,陈留根,等.抽穗期高温对水稻产量构成要素和稻米品质的影响及其基因型差异.江苏农业学报,2005,21(4):249-254.
    [38]张彬,芮雯奕,郑建初,等.水稻开花期花粉活力和结实率对高温的响应特征.作物学报,2007,33(7):1177-1181.
    [39]张彬,郑建初,黄山,等.抽穗期不同灌水深度下水稻群体与大气的温度差异.应用生态学报,2008,19(1):87-92.
    [40]Cheng S H, Zhuang J Y, Fan Y Y, et al. Progress in research and development on hybrid rice:a super-domesticate in China. Annals of Botany,2007,100:959-966.
    [41]Zhang Q. Strategies for developing green super rice. Proceedings of the National Academy of Sciences of the United States of America,2007,104:16402-16409.
    [42]Yang J, Zhang J. Grain-filling problem in 'super' rice. Journal of Experimental Botany,2010,61: 1-5.
    [43]Ishimaru T, Hirose T, Matsuda T, et al. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.): comparison of caryopses located at different positions in a panicle. Plant Cell Physiology,2005, 46:620-628.
    [44]张彬,郑建初,杨飞,等.施肥水平对抽穗期水稻穗部温度的影响及其原因分析.中国水稻科学,2007,21(2):191-196.
    [1]孟亚利,周志国.结实期温度与稻米品质的关系.中国水稻科学,1997,11(1):51.54.
    [2]吕文彦,邵国军,曹萍,等.灌浆结实期日均温度对稻米品质之影响.辽宁农业科学,1998,4:1-6.
    [3]杨联松,孙明,张培江,等.温度、光照对杂交中粳80优121稻米品质的影响.杂交水稻,1998,13(6):23-28.
    [4]程方民,钟连进.不同气候生态条件下稻米品质性状的变异及主要影响因子分析.中国水稻科学,2001,15(3):187-191.
    [5]滕中华,智丽,宗学凤,等.高温胁迫对水稻灌浆结实期叶绿素荧光、抗活性氧活力和稻米品质的影响.作物学报,2008,34(9):1662-1666.
    [6]黄英金,漆映雪,刘宜柏,等.灌浆成熟期气候因素对早籼稻米蛋白质及其4种组分含量的影响.中国农业气象,2002,23(2):9-12,31.
    [7]石春林,金之庆,葛道阔,等.气候变化对长江中下游平原粮食生产的阶段性影响和适应性对策.江苏农业学报,2001,17(1):1-6.
    [8]程方民,钟连进,孙宗修.灌浆结实期温度对早籼水稻籽粒淀粉合成代谢的影响.中国农业科学,2003,36(5):492-501.
    [9]国家质量技术监督局.中华人民共和国国家标准,优质稻谷,GB/T17891-1999,1999.
    [10]中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南.北京:科学出版社,1999.
    [11]中华人民共和国农业部部颁标准.米质测定方法.NY147-88,北京:中国标准出版社,1988:4-6.
    [12]American Association of Cereal Chemists (AACC). Methods 61-02 for RVA.9th edn. St. Paul, MN: AACC,1995.
    [13]王丰,程方民,钟连进,等.早籼稻米RVA谱特性的品种间差异及其温度效应特征.中国水稻科学,2003,17(4):328-332.
    [14]Hak Y. Grain quality characteristic for brow in rice. Korean Journal of Crop Science,1994,39(1): 38-44.
    [15]戴云云,丁艳锋,刘正辉,等.花后水稻穗部夜间远红外增温处理对稻米品质的影响.中国水稻科学,2009,23(4):414-420.
    [16]李林,沙国栋,陆景淮.水稻灌浆期温光因子对稻米品质的影响.中国农业气象,1989,10(3):33-38.
    [17]沈波,陈能,李太贵,等.温度对早籼稻米垩白发生与胚乳物质形成的影响.中国水稻科学,1997,11(3):183-186.
    [18]程方民,蒋德安,吴平,等.早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征.作物学报,2001,27(2):201-206.
    [19]李欣,顾铭洪,潘学彪.稻米品质研究:Ⅱ.灌浆期间环境条件对稻米品质的影响.江苏农学院学报,1989,10(1):7-12.
    [20]Takeda K, Sasaki T. Temperature response of amylose content in rice varieties of Hokkaido. Japanese Journal of Breeding,1988,38(3):357-362.
    [21]Gomez K A. Effect of environment on protein and amylose content of rice. In:Proceedings of the Workshop of Chemical Aspects of Rice Grain Quality. Philippines:International Rice Research Institute,1979. pp 59-65.
    [22]Normita D C, Kumar I, Kaushik R P, et al. Effect of temperature during grain development on stability of cooking quality components in rice. Japanese Journal of Breeding,1989,39(3): 299-306.
    [23]周德翼,张嵩午,高如嵩,等.稻米直链淀粉含量与结实期温度间的关系研究.西北农业大学学报,1994,22(2):1-5.
    [24]Shugo C, Heiich K, Yuko S. Effect of temperature at ripening period on the eating quality of rice: Effect of temperature maintained in constant levels during the entire ripening period. Japanese Journal of Crop Science,1979,48:475-482.
    [25]Toshio T A. Relation between mean air temperature during ripening period of rice and amylographic characteristics or cooking quality. Japanese Journal of Crop Science,1999,68(1): 45-49.
    [26]张国发,王绍华,尤娟,等.结实期相对高温对稻米淀粉粘滞性谱及镁、钾含量的影响.应用生态学报,2008,19(9):1959-1964.
    [27]金正勋,杨静,钱春荣,等.灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响.中国水稻科学,2005,19(4):377-380.
    [28]周广洽,徐孟亮,谭周,等.温光对稻米蛋白质及氨基酸含量的影响.生态学报,1997,17(5):537-542.
    [29]陶红娟.灌浆结实期高温对水稻产量和品质的影响及其生理机.硕士毕业论文.扬州大学.2007.
    [1]IPCC. Climate Change 2007:Synthesis Report:Summary for Policymakers. [2011-1-29]. http://www.ipcc.ch.
    [2]Harvey L D D. Warm days, hot nights. Nature,1995,377:15-16.
    [3]Easterling D R, Horton B, Jones P D, et al. Maximum and minimum temperature trends for globe. Science,1997,277:364-367.
    [4]NDRC中国应对气候变化国家方案,国家发展和改革委员会,中国,2007.
    [5]夏冰,阳树英,刘清波.生态因子对水稻叶片光合生理功能的影响综述.作物研究,2008,(2):140-142.
    [6]王小宁,申双和,王志明,等.白天和夜间增温对水稻光合作用的影响.江苏农业学报,2008,24(3):237-240.
    [7]黄英金,罗永锋,黄兴作,等.水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系.中国水稻科学,1999,13(4):205.210.
    [8]郭培国,李荣华.夜间高温胁迫对水稻叶片光合机理的影响.植物学报,2000,42(7):673-678.
    [9]欧志英,林桂珠,彭长连.超高产杂交水稻培矮64S/E32和两优培九剑叶对高温的响应.中国水稻科学,2005,19(3):249-254.
    [10]Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Bata vulgaris. Plant Physiology,1949,24:1-15.
    [11]Govidjee. A role for a light-harvesting antenna complex of photosystem Ⅱ in photo protection. The Plant Cell,2002,14:1663-1667.
    [12]张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444-448.
    [13]牟会荣,姜东,戴廷波,等.遮荫对小麦旗叶光合及叶绿素荧光特性的影响.中国农业科学,2008,41(2):599-606.
    [14]Venkateswarlu B, Visperas R M. Source-sink relationships in crop plants. International Rice Research Paper Series. Manila:IRRI,1987,125:1-19.
    [15]王建林,徐正进,马殿荣.北方杂交稻与常规稻籽粒灌浆特性的比较.中国水稻科学,2004,18(5):425-430.
    [16]杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究.中国农业科学,2006,39(7):1336-1345.
    [17]Bonnett G D, Incoll L D. The potential pre-anthesis and post-anthesis contributions of stem internodes to grain yield in crops of winter barley. Annals of Botany,1992,69:219-225.
    [18]Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Research,2002,74:93-101.
    [19]Mohammed A R, Tarpley L. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology,2009,149:999-1008.
    [20]Oh-e I, Saitoh K, Kuroda T. Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Production Science,2007,10:412-422.
    [21]Turnbull M H, Murthy R, Griffin K L. The relative impacts of daytime and night-time warming on photosynthetic capacity in populus deltoids. Plant Cell and Environment,2002,25:1729-1737.
    [22]陈晓亚,汤章城.植物生理与分子生物学(第三版).北京:高等教育出版社,2007,138-145.
    [23]Zhang S R. A discussion on chlorophyll fluorescence kinetic parameters and their significance. Chinese Bulletin of Botany,1999,16(4):444-448.
    [24]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用.浙江农业学报,2006,18(1):51-55.
    [25]赵丽英,邓西平,山仑.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究.中国生态农业学报,2007,15(1):63-66.
    [1]Harvey L D D. Warm days, hot nights. Nature,1995,377:15-16.
    [2]Karl T R, Jones P D, Knight R W, et al. A new perspective on recent global warming:Asymmetric trends of daily maximum and minimum temperature. Bulletin of the American Meteorological Society,1993,74:1007-1023.
    [3]王菱,谢贤群,苏文,等.中国北方地区50年来最高和最低气温的变化及其影响.自然资源学报,2004,19(3):337-343.
    [4]丁四兵,朱碧岩,吴冬云,等.温光对水稻抽穗后剑叶衰老和籽粒灌浆的影响.华南师范大学学报(自然科学版),2004,1:117-121,128.
    [5]朱庆森,曹显祖,骆亦其.水稻籽粒灌浆的生长分析.作物学报,1988,14(3):182-193.
    [6]杨建昌,苏宝林,王志琴,等.亚种间杂交稻籽粒灌浆特性及其生理的研究.中国农业科学,1998,31(1):7-14.
    [7]孟亚利,周志国.结实期温度与稻米品质的关系.中国水稻科学,1997,11(1):51-54.
    [8]吕文彦,邵国军,曹萍,等.灌浆结实期日均温度对稻米品质之影响.辽宁农业科学,1998,(4):1-6.
    [9]Carlson S J, Chourey P S. Evidence for plasma membrane- associated forms of sucrose synthase in maize. Molecular and General Genetics,1996,252:303-310.
    [10]滕中华,智丽,宗学凤,等.高温胁迫对水稻灌浆结实期叶绿素荧光、抗活性氧活力和稻米品质的影响.作物学报,2008,34(9):1662-1666.
    [11]程方民,蒋德安,吴平,等.早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征.作物学报,2001,27(2):201-206.
    [12]程方民,钟连进,孙宗修.灌浆结实期温度对早籼水稻籽粒淀粉合成代谢的影响.中国农业科学,2003,36(5):492-501.
    [13]石春林,金之庆,葛道阔,等.气候变化对长江中下游平原粮食生产的阶段性影响和适应性对策.江苏农业学报,2001,17(1):1-6.
    [14]唐湘如,余铁桥.灌浆成熟期温度对稻米品质及有关生理生化特性的影响.湖南农学院学报,1991,17(1):1-8.
    [15]汤圣祥,江云珠,李双盛,等.早籼胚乳淀粉体的扫描电镜观察.作物学报,1999,25(2):269-272.
    [16]中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南.北京:科学出版社1999.
    [17]中华人民共和国农业部部颁标准.米质测定方法.NY147-88,北京:中国标准出版社,1988.pp4-6.
    [18]赵全志,殷春渊,宁慧峰,等.氮素调控对水稻子粒相对充实度的影响及子粒相对充实度与产量形成和品质的关系.河南农业大学学报,2007,41(2):128-133.
    [19]Nakamura Y, Yuki K, Park S Y. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiology,1989,30(6):833-839.
    [20]顾世梁,朱庆森,杨建昌,等.不同水稻材料籽粒灌浆特性的分析.作物学报,2001,27(1):7-14.
    [21]张强,李自超,傅秀林,等.不同株穗型水稻超高产品种叶绿素含量变化规律及籽粒灌浆动态研究.作物学报,2005,31(9):1198-1206.
    [22]万骏南,吴建富,邓强辉,等.水稻籽粒灌浆的研究进展.安徽农业科学,2007,35(27):8424-8426,8429.
    [23]Murata T, Sugiyama T, Minamikawa T, et al. Enzymic mechanism of starch synthesis in ripening rice grains:III. Mechanism of the sucrose-starch conversion. Archives of Biochemistry and Biophysics.1966,113(1):34-44.
    [24]杨建昌,彭少兵,顾世梁,等.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化.作物学报,2001,27(2):157-164.
    [25]李欣,顾铭洪,潘学彪.稻米品质研究:Ⅱ.灌浆期间环境条件对稻米品质的影响.江苏农学院学报,1989,10(1):7-12.
    [26]Takeda K, Sasaki T. Temperature response of amylose content in rice varieties of Hokkaido. Japanese Journal of Breeding,1988,38(3):357-362.
    [27]Gomez K A. Effect of environment on protein and amylose content of rice. In:Proceedings of the Workshop of Chemical Aspects of Rice Grain Quality. Philippines:International Rice Research Institute,1979. pp 59-65.
    [28]Normita D C, Kumar I, Kaushik R P, et al. Effect of temperature during grain development on stability of cooking quality components in rice. Japanese Journal of Breeding,1989,39(3): 299-306.
    [29]周德翼,张嵩午,高如嵩,等.稻米直链淀粉含量与结实期温度间的关系研究.西北农业大学学报,1994,22(2):1-5.
    [30]金正勋,杨静,钱春荣,等.灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响.中国水稻科学,2005,19(4):377-380.
    [31]李天,刘奇华,大杉立,等.灌浆结实期高温对水稻籽粒蔗糖及降解酶活性的影响.中国水稻科学,2006,20(6):626-630.
    [1]国务院新闻办公室.中国应对气候变化的政策与行动(白皮书).北京:国务院新闻办公室,2008.
    [2]秦大河.气候变化与干旱.科技导报,2009,11:3-3.
    [3]周锭,豆沿斌.全球气候变化对水稻生产的影响.广西农学报,2009,24(3):51-53.
    [4]谢立勇,马占云,韩雪,等.CO2浓度与温度增高对水稻品质的影响.东北农业大学学报,2009,40(3):1-6.
    [5]梁成刚,陈利平,汪燕,等.高温对水稻灌浆期籽粒氮代谢关键酶活性及蛋白质含量的影响.中国水稻科学,2010,24(4):398-402.
    [6]林茂锋.金早系列水稻品种稻米品质的气象条件.福建农业大学学报,1994,23(3):368-371.
    [7]程方民,刘正辉,张嵩午.稻米品质温光潜势的估算及其在我国的地域分布.生态学报,2002,22(5):636-642.
    [8]Hirel B, Bertin P, Quillere I, et al. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiology,2001,125:1258-1270.
    [9]Martin A, Lee J, Kichey T, et al. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell,2006,18(11):3252-3274.
    [10]黄英金,漆映雪,刘宜柏,等.灌浆成熟期气候因素对早籼稻米蛋白质及其4种组分含量的影响.中国农业气象,2002,23(2):9-12,31.
    [11]陶红娟.灌浆结实期高温对水稻产量和品质的影响及其生理机制.硕士毕业论文.扬州大学,2007.
    [12]石春林,金之庆,葛道阔,等.气候变化对长江中下游平原粮食生产的阶段性影响和适应性对策.江苏农业学报,2001,17(1):1-6.
    [13]周广洽,徐孟亮,谭周,等.温光对稻米蛋白质及氨基酸含量的影响.生态学报,1997,17(5):537-542.
    [14]马启林,李阳生,田小海,等.高温胁迫对水稻贮藏蛋白质的组成和积累形态的影响.中国农业科学,2009,42(2):714-718.
    [15]国家质量技术监督局.中华人民共和国国家标准,优质稻谷.GB/T17891-1999,1999.
    [16]赵全志,殷春渊,宁慧峰,等.氮素调控对水稻子粒相对充实度的影响及子粒相对充实度与产量形成和品质的关系.河南农业大学学报,2007,41(2):128-133.
    [17]马新明,李琳,赵鹏,等.土壤水分对强筋小麦‘豫麦34’氮素同化酶活性和籽粒品质的影响.植物生态学报,2005,29(1):48-53.
    [18]戴云云,丁艳锋,刘正辉,等.花后水稻穗部夜间远红外增温处理对稻米品质的影响.中国水稻科学,2009,23(4):414-420.
    [19]孟亚利,周志国.结实期温度与稻米品质的关系.中国水稻科学,1997,11(1):51-54.
    [20]Yasunori N, Kazuhiro Y, Shin-Young P, et al. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiology,1989,30:833-839.
    [1]Bailly C, Benamar A, Corbineau F. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiologia Plantarum,1996,97(1):104-110.
    [2]Schoff F, Prandl R, Reindl A. Regulation of the heat shock response. Plant Physiology,1998,117(4): 1135-1141.
    [3]马德华,庞金安,霍振荣,等.高温对黄瓜幼苗膜脂过氧化作用的影响.西北植物学报,2000,20(1):141-144.
    [4]李敏,王维华,王然,等.高温胁迫对菠菜叶片保护酶活性和膜透性的影响.园艺学报,2004,31(1):99-100.
    [5]汪炳良,徐敏,史庆华,等.高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧光参数的影响.中国农业科学,2004,37(8):1245-1250.
    [6]曹云英,段骅,杨立年,等.减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因.作物学报,2008,34(12):2134-2142.
    [7]Aronson E L, McNulty S G. Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology,2009,149:1791-1799.
    [8]Mohammed A R, Tarpley L. Instrumentation enabling study of plant physiological response to elevated night temperature. Plant Methods,2009,5:7.
    [9]Dhindsa R S, Matowe W. Drought tolerance in two mosses:correlated with enzymatic defence against lipid peroxidation. Journal of Experimental Botany.1981,32(126):79-91.
    [10]刘鸿先,曾韶西,王以柔,等.低温对不同耐寒力的黄瓜{Cucumic sativus)幼苗子叶各细胞器中超氧物歧化酶(SOD)的影响.植物生理学报,1985,11(1):48-57.
    [11]曾韶西,王以柔,刘鸿先.低温光照下与黄瓜子叶叶绿素降低有关的酶促反应.植物生理学报,1991,17(2):177-182.
    [12]Hodges D M, Andrews C J, Johnson D A, et al. Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize line. Journal of Experimental Botany,1997,48(5):1105-1113.
    [13]陈雄,王宗灵,任红旭,等.海拔高度对大车前叶和根中抗氧化系统的影响.植物学报,1999,41(8):846-850.
    [14]梁建萍,刘咏梅,牛远,等.高温和CO2浓度倍增对华北落叶松幼苗抗氧化酶及脂质过氧化的影响.中国生态农业学报,2007,15(3):100-103.
    [15]Noctor G, Foyer C H. Ascorbate and glutathione:keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:249-279.
    [16]Quartacci M F, Navarilzzo F. Water stress and free radical mediated changes in sunflower seedling. Plant Physiology,1991,139(5):621-625.
    [17]肖美秀,林文雄,陈冬梅,等.镉胁迫对耐性不同的水稻幼苗膜脂过氧化和保护酶活性的影响.中国生态农业学报,2006,14(4):257-259.
    [18]吴国胜,曾婉虹,王永健,等.细胞膜热稳定性及保护酶和大白菜耐热性的关系.园艺学报,1995,22(4):353-358.
    [19]马德华,庞金安,李淑菊,等.温度逆境锻炼对高温下黄瓜幼苗生理的影响.园艺学报,1998,25(4):350-355.
    [20]刘萍,郭文善,浦汉春,等.灌浆期高温对小麦剑叶抗氧化酶及膜脂过氧化的影响.中国农业科学,2005,38(12):2403-2407.
    [21]刘嫒媛,滕中华,王三根,等.高温胁迫对水稻可溶性糖及膜保护酶的影响研究.西南大学学报(自然科学版),2008,30(2):59-63.
    [22]Chaoui A, Mazhoudi S, Ghorbal M H. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean. Plant Science,1997,127:139-147.
    [23]曹慧,兰彦平,刘会超等.水分胁迫下短枝型苹果幼树活性氧代谢失调对光合作用的影响.内蒙古农业大学学报,2000,21(3):22-25.
    [1]Mann M E, Bradley R S, Hughes M K. Global-scale temperature patterns and climate forcing over the past six centuries. Nature,1998,392:779-787.
    [2]Gaffen D J, Santer B D, Boyle, J S, et al. Multidecadal changes in the vertical temperature structure of the tropical troposphere. Science,2000,287:1242-1245.
    [3]秦大河,丁一汇,苏纪兰,等.中国气候与环境演变评估(Ⅰ):中国气候与环境变化及未来趋势.气候变化研究进展,2005,1(1):4-9.
    [4]Nijs I, Kockelbergh F, Teughels H, et al. Free Air Temperature Increase (FATI):a new tool to study global warming effects on plants in the field. Plant Cell and Environment,1996,19:495-502.
    [5]Wan S, Luo Y, Wallace L L. Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change Biology,2002,8:754-768.
    [6]牛书丽,韩兴国,马克平,等.全球变暖与陆地生态系统研究中的野外增温装置.植物生态学报,2007,31(2):262-271.
    [7]Kanno K, Mae T, Makino A. High night temperature stimulates photosynthesis, biomass production and growth during the vegetative stage of rice plants. Soil Science and Plant Nutrition,2009,55: 124-131.
    [8]Kimball, B A, Conley, M M. Infrared heater arrays for warming field plots scaled up to 5-m diameter. Agricultural and Forest Meteorology,2009,149:721-724.
    [9]Richardson S J, Hartley S E, Press M C. Climate warming experiments:are tents a potential barrier to interpretation? Ecological Entomology,2000,25:367-370.
    [10]Stenstrom M, Gugerli F, Henry G H R. Response of Saxifraga oppositifolia L. to simulated climate change at three contrasting latitudes. Global Change Biology,1997,3(Supplement 1):44-54.
    [11]Klein J A, Harte J, Zhao X Q. Dynamic and complex microclimate responses to warming and grazing manipulations. Global Change Biology,2005,11:1440-1451.
    [12]Marion G M, Henry G H R, Freckman D W, et al. Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology,1997,3(Supplement 1):20-32.
    [13]Shaver G R, Johnson L C, Cades D H, et al. Biomass accumulation and CO2 flux in three Alaskan wet sedge tundra:Response to nutrients, temperature, and light. Ecological Monographs,1998,68: 75-99.
    [14]Jonasson S, Shaver G R. Within-stand nutrient cycling in arctic and boreal herbaceous and forested wetlands. Ecology,1999,80:2139-2150.
    [15]Van Cleve K, Dyrness C T, Viereck L A, et al. Tiaga ecosystems in interior Alaska. BioScience, 1983,33:39-44.
    [16]Van Cleve K, Oechel W C, Hom J L. Response of black spruce (Piceamariana) ecosystem to soil temperature modification in interior Alaska. Canadian Journal of Forest Research,1990,20(9): 1530-1535.
    [17]Peterjohn W T, Melillo J M, Bowles F P, et al. Soil warming and trace gas fluxes:experimental design and preliminary flux results. Oecologia,1993,93:18-24.
    [18]Peterjohn W T, Melillo J M, Steudler P A, et al. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecological Applications,1994,4:617-625.
    [19]NSFESP (National Science Foundation, Ecosystem Studies Program). Soil warming experiments in global change research, Woods Hole, MA,1991, September 27 and 28.
    [20]Zeiher C A, Brown P W, Silvertooth J C, et al. The effect of night temperature on cotton reproductive development. In Cotton. Ed. J. Silvertooth. College of Agriculture Report, the University of Arizona, Tucson,1994, pp 89-96.
    [21]Luxmoore R J, Hanson P J, Beauchamp J J, et al. Passive nighttime warming facility for forest ecosystems research. Tree Physiology,1998,18:615-623.
    [22]Beier C, Emmett B, Gundersen P, et al. Novel approaches to study climate change effects on terrestrial ecosystems in the field:drought and passive nighttime warming. Ecosystems,2004,7: 583-597.
    [23]Emmett B A, Beier C, Estiarte M, et al. The response of soil processes to climate change:results from manipulation studies of shrub lands across an environmental gradient. Ecosystems,2004,7: 625-637.
    [24]Harte J, Torn M S, Chang F R, et al. Global warming and soil microclimate:results from a meadow-warming experiment. Ecological Applications,1995,5:132-150.
    [25]Bridgham S D, Pastor J, Updegraff K, et al. Paper presented at the Ecological Society of America Annual Meeting. Snowbird, Utah,1995, July 30 to August 3.
    [26]Luo Y, Wan S, Hui D, et al. Acclimatization of soil respiration to warming in tallgrass prairie. Nature,2001,413:622-625.
    [27]Shaw M R, Zavaleta E S, Chiariello N R, et al. Grassland responses to global environment changes suppressed by elevated CO2. Science,2002,298:1987-1990.
    [28]Wan S, Yuan T, Bowdish S, et al. Response of an allergic species, Ambrosia psilostachya (Asteraceae), to experimental warming and clipping:implications for public health. American Journal of Botany,2002,89:1843-1846.
    [29]Bridgham S D, Pastor J, Updegraff K, et al. Ecosystem control over temperatures and energy flux in northern peatlands. Ecological Applications,1999,9:1345-1358.
    [30]Noormets A, Chen J, Bridgham S D, et al. The effects of infrared loading and water table on soil energy fluxes in northern peatlands. Ecosystems,2004,7:573-582.
    [31]IPCC. Climate Change 2007:Synthesis Report:Summary for Policymakers. [2011-1-29]. http://www.ipcc.ch.
    [32]秦大河.气候变化与干旱.科技导报,2009,11:3-3.
    [33]居辉,熊伟,许吟隆,等.气候变化对我国小麦产量的影响.作物学报,2005,31(10):1340-1343.
    [34]Lobell D B, Asner G P. Climate and management contributions to recent trends in US agricultural yields. Science,2003,29:1032-1032.
    [35]戴云云,丁艳锋,刘正辉,等.花后水稻穗部夜间远红外增温处理对稻米品质的影响.中国水稻科学,2009,23(4):414-420.
    [36]Turnbull M H, Murthy R, Griffin K L. The relation impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides. Plant and Cell Environment,2002,25:1729-1737.
    [37]Cheng W, Sakai H, Yagi K, et al. Interactions of elevated [CO2] and night temperature on rice growth and yield. Agricultural and Forest Meteorology,2009,149:51-58.
    [38]Peng S P, Huang J L, Sheehy J E, et al. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(27):9971-9975.
    [39]Sheehy J E, Mitchell P L, Ferrer A B. Decline in rice grain yields with temperature:Models and correlations can give different estimates. Field Crops Research,2006,98:151-156.
    [40]Krishnan P, Swain D K, Chandra Bhaskar B, et al. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems and Environment,2007,122:233-242.
    [41]张宇,王馥棠.气候变暖对我国水稻生产可能影响的数值模拟试验研究.应用气象学报,1995,6(增刊):19-25.
    [42]张建平,赵艳霞,王春乙,等.气候变化对我国南方双季稻发育和产量的影响.气候变化研究进展,2005,1(4):151-156.
    [43]石春林,金之庆,葛道阔,等.气候变化对长江中下游平原粮食生产的阶段性影响和适应性对策.江苏农业学报,2001,17,(1):1-6.
    [44]Lobell D B, Burke M B, Tebaldi C, et al. Prioritizing climate change adaptation needs for food security in 2030. Science,2008,319:607-610.
    [45]方修琦,王嫒,徐锬,等.近20年气候变暖对黑龙江省水稻增产的贡献.地理学报,2004,59(6):820-828.
    [46]Mohammed A R, Tarpley L. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology,2009,149:999-1008.
    [47]Mohammed A R, Tarpley L. Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Science,2009,49:313-322.
    [48]魏金连,潘晓华.夜间温度升高对早稻生长发育及产量的影响.江西农业大学学报,2008,30(3):427-432.
    [49]Ziska L H, Manalo P A. Increasing night temperature can reduce seed set and potential yield of tropical rice. Australian Journal of Plant Physiology,1996,23:791-794.
    [50]Cheng S H, Zhuang J Y, Fan Y Y, et al. Progress in research and development on hybrid rice:a super-domesticate in China. Annals of Botany,2007,100:959-966.
    [51]Zhang Q. Strategies for developing green super rice. Proceedings of the National Academy of Sciences of the United States of America,2007,104:16402-16409.
    [52]Yang J, Zhang J. Grain-filling problem in'super'rice. Journal of Experimental Botany,2010,61: 1-5.
    [53]Ishimaru T, Hirose T, Matsuda T, et al. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.): comparison of caryopses located at different positions in a panicle. Plant Cell Physiology,2005,46: 620-628.
    [54]程方民,张嵩午,吴永常.灌浆结实期温度对稻米垩白形成的影响.西北农业学报,1996,5(2):31-34.
    [55]朱碧岩,程方民.稻米外观品质形成动态变化规律及结实期温度的影响.华南师范大学学报,2000,3:75-80.
    [56]张国发,王绍华,尤娟,等.结实期不同时段高温对稻米品质的影响.作物学报,2006,32(2):283-287.
    [57]李欣,顾铭洪,潘学彪.稻米品质研究:Ⅱ.灌浆期间环境条件对稻米品质的影响.江苏农学院学报,1989,10(1):7-12.
    [58]滕中华,智丽,宗学凤,等.高温胁迫对水稻灌浆结实期叶绿素荧光、抗活性氧活力和稻米品质的影响.作物学报,2008,34(9):1662-1666.
    [59]Takeda. Effect of temperature on amylose content in hokkaido rice. Nihon Eutelegenesis Magazine. 1988,38 (2):357-362.
    [60]孟亚利,周志国.结实期温度与稻米品质的关系.中国水稻科学,1997,11(1):51-54.
    [61]王小宁,申双和,王志明,等.白天和夜间增温对水稻光合作用的影响.江苏农业学报,2008,24(3):237-240.
    [62]欧志英,林桂珠,彭长连.超高产杂交水稻培矮64S/E32和两优培九剑叶对高温的响应.中国水稻科学,2005,19(3):249-254.
    [63]Oh-e I, Saitoh K, Kuroda T. Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Production Science,2007,10:412-422.
    [64]郭培国,李荣华.夜间高温胁迫对水稻叶片光合机理的影响.植物学报,2000,42(7):673-678.
    [65]吴国胜,曾婉虹,王永健,等.细胞膜热稳定性及保护酶和大白菜耐热性的关系.园艺学报,1995,22(4):353-358.
    [66]马德华,庞金安,李淑菊,等.温度逆境锻炼对高温下黄瓜幼苗生理的影响.园艺学报,1998,25(4):350-355.
    [67]刘萍,郭文善,浦汉春,等.灌浆期高温对小麦剑叶抗氧化酶及膜脂过氧化的影响.中国农业科学,2005,38(12):2403-2407.
    [68]刘媛媛,滕中华,王三根,等.高温胁迫对水稻可溶性糖及膜保护酶的影响研究.西南大学学报(自然科学版),2008,30(2):59-63.
    [69]Schoff F, Prandl R, Reindl A. Regulation of the heat shock response. Plant Physiology,1998,117(4): 1135-1141.
    [70]马德华,庞金安,霍振荣,等.高温对黄瓜幼苗膜脂过氧化作用的影响.西北植物学报,2000,20(1):141-144.
    [71]李敏,王维华,王然,等.高温胁迫对菠菜叶片保护酶活性和膜透性的影响.园艺学报,2004,31(1):99-100.
    [72]汪炳良,徐敏,史庆华,等.高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧光参数的影响.中国农业科学,2004,37(8):1245-1250.
    [73]曹云英,段骅,杨立年,等.减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因.作物学报,2008,34(12):2134-2142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700