用户名: 密码: 验证码:
长期施氮对小麦光合特性及土壤呼吸的调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤水分不足和氮素亏缺是限制作物高产的主要因素,施用氮肥因此成为旱作条件下实现农业高产的主要途径之一。本实验由室内控制实验与大田试验两部分组成:室内实验分析了水分和氮素亏缺下小麦光合性能指数及抗逆信号物质的变化;大田试验在0~360kg/hm~2范围内设计4个氮肥水平,研究了氮肥水平对小麦光合生理生态特性和土壤呼吸的影响。本研究取得如下主要结论:
     (1)不同品种小麦苗期受到水分和氮素胁迫时光合性能指数下降的主要原因不一。郑麦9023遇胁迫时光合性能指数下降主要是由于光合电子传递链的破坏和叶片水分的丧失;而长武134在水分亏缺时光合电子传递受到影响,氮素亏缺时天线色素的光捕获能力和反应中心的活性减弱,水分和氮素亏缺共同胁迫时,光捕获能力和光合电子传递在一定程度上受到影响。水氮胁迫对小麦光合作用的影响程度和内源NO及CTK水平密切相关。长武134在受胁迫时NO信号没有明显减弱,iP+iPA和Z+ZR向DHZ+DHZR转化率较高,有利于清除胁迫产生的ROS,因此其光合机构对胁迫的忍耐程度强于郑麦9023。
     (2)在0~180kgN/hm~2范围内,增施氮肥能明显提高小麦拔节后不同生育时期的叶绿素含量、光合速率和光合性能指数,且不同的小麦品种对氮肥用量的需求不同。施用高水平的氮肥对长武134光合作用的调节效果明显,例如在N180和N360两个处理水平时的Chl和PI显著高于其它处理,且在灌浆期和成熟期由于长武134叶绿素含量明显高于郑麦9023,因此即使在生育后期也能维持较高的光合速率和光合性能指数。但是在0~180kgN/hm~2范围内,不同氮肥水平均能明显增加郑麦9023的Chl和光合性能指数值,而相对于N180处理,N360处理的PI及其各参数值和Pn降低。
     (3)施氮处理与不施氮处理的红边参数差异显著。小麦光合特性、叶片氮含量和生物量除与Lwidth呈负相关性外,与其它红边参数均呈正相关,且与REP之间的相关系数高于其他参数。由于叶片N含量或Chl含量的增加,施用氮肥处理的REP、N90和N180处理的Lo均呈现“红移”现象。350~680nm和750~1100nm这两个波段范围可作为检测小麦氮素营养的冠层光谱敏感波段。
     (4)除了具备较高的光合能力,干物质和N的积累与分配也是决定小麦产量的主要原因。尽管长武134具有较强的抗旱性,且成熟期的光合持续期比郑麦9023长,但是其只有在高氮(N180和N360)处理时,花前营养器官积累N素向籽粒中的转移率和N素在籽粒中的分配才会明显增加,总体上仍低于郑麦9023,推测长武134是高氮低效性品种。适当增施氮肥(≤180kgN/hm~2)能促进拔节后不同生育时期干物质的积累和收获期干物质向地上部分的分配,降低根冠比,有利于干物质向籽粒中转移,这也是氮肥增产的主要原因之一。此外,郑麦9023在各种氮肥处理中的地上生物量均高于长武134,长武134的产量因此低于郑麦9023。
     (5)在小麦的整个生育时期内,土壤CO_2的释放速率受到土壤温湿度、生物量和氮肥水平的综合影响。总体来看:0~180kgN/hm~2的范围内,施用氮肥能显著增加小麦生育期间土壤CO_2的释放速率和总量,当施氮量超过180 kgN/hm~2时,土壤CO_2的释放速率和总量并没有再明显增加;土壤CO_2的释放速率和土壤温度成正相关,与土壤水分成负相关,土壤温度比土壤水分对土壤呼吸速率的影响显著;当土壤水分接近植物萎蔫点时(8.5%),土壤温度对土壤呼吸速率的影响减弱,土壤呼吸速率开始下降。麦田不同氮肥处理小区的土壤CO_2释放总量分别比裸地高42%, 65%, 90%和95%(N0,N90,N180,N360),说明增施氮肥能提高根系呼吸占土壤呼吸的比例。
Water and nitrogen nutrition deficit are the key factors limiting agricultural production in arid and semiarid region, thus it is essential to fertilize nitrogen for increasing agricultural productivity under rain-fed conditions. The experiment was composed of indoor experiment and outdoor experiment. First part is to discuss the changes of photosynthetic performance index and adverse resistance signal of wheat under water and nitrogen deficiency condition. Then four nitrogen levels were devised in the range of 0-360 kgN/hm~2 to survey the effects of the nitrogen level on the physio-ecological characteristics and soil respiration. The main conclusions of this study were as follows:
     (1) It indicated that the reason of the decline of Photosynthetic Performance Index is different between the two varieties under water and nitrogen deficiency condition. The main reason of Zhengmai 9023 was because of destoy of photosynthetic electron transport chain and the loss of leaf water. The photosynthetic electron transport of Changwu 134 was affected by drought stress. The capacity of light-harvesting of antenna pigment and the activity of reaction center decreased under nitrogen stress. The capacity of light-harvesting and photosynthetic electron transport were affected to some extent under drought and nitrogen stress. But the influence degree of drought and nitrogen stress on photosynthetic capacity was closely related with the contents of endogenous NO and CTK. NO signal of Changwu 134 was not weakened obviously and the high conversion of iP+iPA and Z+ZR to DHZ+DHZR was contributed to scavenge the ROS which produced under stress condition. Therefore, the tolerent degree of its photosynthetic apparatus was better than Zhengmai 9023.
     (2) Chlorophyll content, photosynthetic rate, photosynthetic capacity index of the different developmental stage was improved by increasing nitrogen after jionting stage in renge of 0-180 kgN/hm~2, it is different to need different nitrogen level for different wheat varieties. The regulative effect of nitrogen was obvious on photosynthesis of Changwu 134, for example, the Chl and PI of N180 and N360 were significantly higher than the other treatments. The chlorophyll content of Changwu 134 was higher than Zhengmai 9023 in filling stage and ripening stage, so it could maintain higher photosynthetic rate and PI value in late growth stage. With the nitrogen level increasing in the range of 0~180 kgN/hm~2, the Chl and PI of Zhengmai 9023 were improved and the value of PI and its parameters and Pn in N360 were lower than that in N180.
     (3) The red edge parameters between nitrogen and no-nitrogen treatments had a significant difference. There was a significant negative correlation between photosynthetic characteristics, leaf nitrogen contents and biomass of wheat with Lwidth. It had a positive correlation with other red edge parameters and higher correlation coefficient with REP than others. With the N content or Chl content of leaf increasing, red shift was observed in REP fertilized nitrogen and Lo with N90 and N180. 350-680 nm and 750-1100 nm could serve as canopy spactra sensitive band to detecte nitrogen nutrition.
     (4) The accumulation and distribution of dry matter and N were the main reasons to determine wheat yield except higher photosynthetic capacity. Though Changwu 134 had an obvious drought resistance and photosynthetic duration in ripenning stage than Zhengmai 9023, its N transferation from pre-flowering vegetative organs to grain and the N distribution in grain was increased obviously only on 180 kg N/hm~2 and 360 kgN/hm~2. But it was lower than Zhengmai 9023 in general. Accordingly, Changwu 134 was a variety that needed high N and had lower efficiency. To increase nitrogen application(≤180 kgN/hm~2)could promote the dry matter accumulation of different growth stages after jionting, the dry matter distribution to aerial part in harvest stage, reduce root-shoot ratio which was contributed to the dry matter transfer to grain and one of the main reasons why N could increase yield. In addition, the biomass of aerial part of Zhengmai 9023 in every N treatment was higher than that of Changwu 134. So the yeild of Changwu 134 was lower than Zhengmai 9023.
     (5) Soil CO_2 emission rate was affected by the root biomass, soil temperature and soil humidity and N levels in the growth stage of wheat. With the N application increasing in the range of 0-180 kg/hm~2, the total soil CO_2 emission and rate were increased significantly by N application. When nitrogen level was above 180 kg/hm~2, the total soil CO_2 emission was not increased significantly. Soil CO_2 emission rate had a positive correlation with soil temperature and a negative correlation with soil humidity. Besides, there was consistent season change between soil CO_2 emission rate and soil temperature. Soil temperature had a great influence than soil humidity on soil CO_2 emission rate. When soil humidity closing to soil wilting poin(t8.5%), the influence of soil temperature was not obvious on soil CO_2 emission rate. The soil CO_2 emission rate began to decrease. The total soil CO_2 emission rate of 0,90,180,360 kgN/hm~2 in wheat field were 42%, 65%, 90% and 95% higher than bare land respectively. It indicated that increasing N could promote the ratio of root respiration to soil respiration.
引文
[1]山仑,邓西平,康绍忠.我国半干旱地区农业用水现状及发展方向[J].水利学报, 2002, 9: 27-31.
    [2]吴普特,冯浩.中国节水农业发展战略初探[J].农业工程学报, 2005, 6: 152-157.
    [3]高亚军,李生秀.黄土高原地区农田水氮效应[J].植物营养与肥料学报, 2003, 9(1): 14-18.
    [4]赵新春,王朝辉.半干旱黄土区不同施氮水平小麦产量形成与氮素利用[J].干旱地区农业研究, 2010, 28(9): 65-70.
    [5] Arnon I. Physiological principles of dry land crop production. In: Gupta US. Physical aspects of dry land farming [M]. New Delhi: Ronald press, 1975. 391.
    [6] Zhang J, Blackmer AM, Ellsworth JW, Koehler KJ. Sensitivity of chlorophyll meters for diagnosing nitrogen deficiencies of corn in production agriculture [J]. Agronomy Journal, 2008,100(3): 543-550.
    [7] Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression [J]. Remote Sensing of Environment, 2003, 86(4): 542-553.
    [8] Smil V. Global population and nitrogen cycle [J]. Scientific American, 1997, 277: 76-81.
    [9] Patteye, Strachan I B, Boisvert J B, Desjardins R L, McLaughlin N B. Detecting effects of nitrogen rate and weather on corn growth using micrometeorological and hyperspectral reflectance measurements [J]. Agricultural and Forest Meteorology, 2001, 108: 85-99.
    [10] Strachan I B, Patteye, Boisvert J B. Impact of nitrogen and environment conditions on corn as detected by Hyperspectral reflectance [J]. Remote Sensing of Environment, 2002, 80: 213-224.
    [11]乔云发,苗淑杰,王树起,韩晓增,李海波.不同施肥处理对黑土土壤呼吸的影响[J].土壤学报, 2007, 44(6): 1028-1035.
    [12] Levitt J. Responses of plants to environmental stresses. In: Responses of plants toenvironmental stresses. Volume II. Water, radiation, salt, and other stresses [M]. New York: Academic Press, 1980. 607.
    [13] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction [J]. Annual Review of Plant Biology, 2004, 55: 373-399.
    [14] Wendehenne D, Durner J, Klessig D F. Nitric oxide: a new player in plant signalling and defence responses [J]. Current Opinion in Plant Biology, 2004, 7: 449-455.
    [15] Boyer J S, Westgate. M E. Grain yields with limited water [J]. Journal of Experimental Botany, 2004, 55(407): 2385-2394.
    [16]程艳丽,宋纯鹏.植物细胞H2O2的信号转导途径[J].中国科学C辑,生命科学2005, 35(6): 480-489.
    [17]郭安红,冯兆忠,刘庚山,任三学,安顺清.土壤干旱胁迫下非水力根信号调控夏玉米气体交换对大气环境的响应[J].生态学报, 2005, 25(12): 3161-3166.
    [18] Zhang M C, Duan L S, Tian X L, He Z P, Li J M, Wang B M, Li Z H. Uniconazole-induced tolerance of soybean to stress in relation to changes in photosynthesis, and antioxidant systemwater deficithormones [J]. Journal of Plant Physiology, 2007, 164(6): 709-717.
    [19] Zhang M S, XIE B, Tan F. Relationship between changes of endogenous hormone in sweet potato under water stress and variety drought-resistance [J]. Agricultural Sciences in China , 2002, 1(6): 626-630.
    [20] Correa-Aragunde N, Lanteri M L, Garca-Mata C, Have A T, Laxalt A M, Graziano M, Lamattina L. Nitric oxide functions as intermediate in auxin, abscisic acid, and lipid signaling pathways [J]. Plant Cell Monographs, 2007, 5: 113-130.
    [21] Beligni M V, Lamattina L. Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants [J]. Nitric Oxide, 1999, 3: 199-208.
    [22]相昆,李宪利,张美勇,史作安,王晓芳.外源一氧化氮对核桃幼苗抗旱性的影响[J].林业科学, 2007, 43(10): 122-126.
    [23] Friebe A, Koesling D. Regulation of nitric oxide-sensitive guanylyl cyclase [J]. Circulation Research, 2003, 93(2): 96-105.
    [24]马向丽,魏小红,龙瑞军,崔文娟,万引琳.外源一氧化氮提高一年生黑麦草抗冷性机制[J].生态学报, 2005, 25(6): 1269-1271.
    [25] Beligni M V, Lamattina L. Nitric oxide in plants: the history is just beginning [J].Plant, Cell and Environment, 2001, 24(3): 267-278.
    [26] Grubisic D, Konjevic R. Light and nitrate interaction in phytochrome-controlled germination of Paulownia tormentosa seeds [J]. Planta, 1990, 181: 239-243.
    [27] Keeley J E, Fotheringham C J. Trace gas emissions and smoke-induced seed germination [J]. Science, 1997, 276: 1248-1250.
    [28] Beligni M V, Lamattina L. Nitric oxide induces seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants [J]. Planta, 2000, 210: 215-221.
    [29] Bewley J D. Seed germination and dormancy [J]. Plant Cell, 1997, 9: 1055-1066.
    [30] Sauter M, Seagull R W, Kende H. Internodal elongation and orientation of cellulose microfibrils and microtubules in deepwater rice [J]. Planta, 1993, 190: 354-362.
    [31] Leshem Y Y, Haramaty E. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage [J]. Journal of Plant Physiology, 1996, 148: 258-263.
    [32] Gouvêa C M C P, Souza J F, Magalhaes A C N, Martins I S. NO-releasing substances that induce growth elongation in maize root segments [J]. Plant Growth Regulation, 1997, 21 (3): 183-187.
    [33] Coenen C, Lomax T L. Auxin–cytokinin interaction in higher plants: old problems and new tools [J]. Trends in Plant Sciences, 1997, 2: 351-355.
    [34] Chory J. Light modulation of vegetative development [J]. Plant Cell, 1997, 9: 1225-1234.
    [35] Orzaez D, Granell A. DNA fragmentation is regulated by ethylene during carpel senescence in Pisum sativum [J]. Plant Journal, 1997, 11: 137-144.
    [36] Shaul P W, Smart E J, Robinson L J, German Z, Yuhanna I S, Ying Y S, Anderson R G W, Michel T. Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae [J]. Journal of Biological Chemistry, 1996, 271(11): 6518-6522.
    [37] Guo F Q, Okamoto M, Crawford N M. Identification of a plant nitric oxide synthase gene involved in hormonal signaling [J]. Science, 2003, 302(5642): 100-103.
    [38] Corpas F, Barroso J, Carreras A, Valderrama R, Palma J, León A, Sandalio L, del Río L A. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development [J]. Planta, 2006, 224: 246-254.
    [39] Rochel P, Strube F, Rocket A. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro [J]. Journal of Experimental Botany, 2002, 53 (366): 103-110.
    [40] Yamasaki H, Sakihama Y, Takahashi S. An alternative pathway for nitric oxide production in plants: new features of an old enzyme [J]. Trends in Plant Sciences, 1999, 4: 128-129.
    [41] Weitzberg E, Lundberg J O N. Nonenzymatic nitric oxide production in humans [J]. Nitric Oxide, 1998, 2: 1-7.
    [42] Dean J V, Harper J E. The conversion of nitrite to nitrogen oxide (s) by the constitutive NAD(P)H-nitrate reductase enzyme from soybean [J]. Plant Physiology, 1988, 88: 389-395.
    [43]刘新,张蜀秋,娄成后.植物体内一氧化氮的来源及其与其他信号分子之间的关系[J].植物生理学通讯, 2003, 39(5): 513-518.
    [44] Wendehenne D, Durner J, Klessig D F. Nitric oxide: a new player in plant signalling and defence responses [J]. Current Opinion in Plant Biology, 2004, 7: 449-455.
    [45] Lu Z B, Tao Y, Zhou Z X, Zhang J J, Li C, Ou L C, Zhao B L. Mitochondrial reactive oxygen species and nitric oxide-mediated cancer cell apoptosis in 2-butylamino-2 -demethoxyhypocrellin B photodynamic treatment [J]. Free Radical Biology and Medicine, 2006, 41: 1590-1605.
    [46] Wodala B, Deák Z, Vass I, Erdei L, Horvath F. Nitric oxide modifies photosynthetic electron transport in pea leaves [J]. Acta Biologica Szeged, 2005, 49(1-2): 7-8.
    [47] Thors L, Fowler C J. Effect of donors on tritium accumulation of endocannabinoids and related endogenous lipidsnitric oxide membrane[J]. European Journal of Pharmacology, 2009, 621(1-3): 10-18.
    [48] Nedeianu S, Páli T, Marsh D. Membrane penetration of and its donor S-nitroso-N-acetylpenicillamine: a spin-label electron paramagnetic resonance spectroscopic studynitric oxide[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2004, 1661(2):135-143.
    [49] Ischiropoulos H, Nelson J, Duran D, Al-Mehdi A. Reactions of and peroxynitrite with organic molecules and ferrihorseradish : Interference with the determination of hydrogen peroxidenitric oxideperoxidase[J]. Free Radical Biology and Medicine, 1996,20(3): 373-381.
    [50] Shao R X, Wang K B, Shangguan Z P. Cytokinin-induced photosynthetic adaptability of Zea mays L. to drought stress associated with nitric oxide signal: Probed by ESR spectroscopy and fast OJIP ?uorescence rise [J]. Journal of Plant Physiology, 2010, 167: 472-479.
    [51]熊国胜,李家洋,王永红.植物激素调控研究进展[J].科学通报, 2009, 54(18): 2718-2733.
    [52] Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview[J]. Arch Biochem Biophys, 2005, 444: 139-158.
    [53] Langridge P, Paltridge N, Fincher G. Functional genomics of abiotic stress tolerance in cereals [J]. Brief Funct Genomic Proteomic, 2006, 4: 343-354.
    [54] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance [J]. Journal of Experimental Botany, 2007, 58: 221-227.
    [55] Barnabas B, Jager K, Feher A. The effect of drought and heat stress on reproductive processes in cereals [J]. Plant and Cell Environment, 2008, 31: 11-38.
    [56] Ergen N Z, Thimmapuram J, Bohnert H J, Budak H. Transcriptome pathways unique to dehydration tolerant relatives of modern wheat [J]. Functional Integrative Genomics, 2009, 9: 377-396.
    [57] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance [J]. Journal of Experimental Botany, 2007, 58: 221-227.
    [58] Blackman P G, Davies W J. Root- to-shoot communication in maize plants of the effect of soil drying [J]. Journal of Experimental Botany, 1985, 36: 39-48.
    [59] Gowing D J, Davies W J, John H G. A positive root-sourced signal as an indicator of soil drying in apple, Malse domestica Borkh [J]. Journal of Experimental Botany, 1990, 41: 1535-1540.
    [60] Gowing D J, Jones H G, Davies W J. Xylem-transported abscisic acid: the relative importance of its mass and its concentration in the control of stomatal aperture [J]. Plant, Cell and Environment, 1993, 16: 453-459.
    [61] Khalil A A M, Grace J. Dose xylem sap ABA control the stomatal behavior of water-stressed sycamore (Acer Pseudoplatanus L. ) seedlings? [J] Journal of Experimental Botany, 1993, 44: 1127-1134.
    [62] Tuberosa R, Sanguineti M C , Landi P. Abscisic acid concentration in leaf and xylem sap, leaf water potential and stomatal conductance in maize [J]. Crop Science, 1994, 34(6): 1557-1263.
    [63] Pei Z M, Murata Y, Benning G, Thomine S, Klusener B, Allen G J, Grill E, Schroeder J L. Caclium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells [J]. Nature, 2000, 406: 731-734.
    [64] Murata Y, Pei ZM, Mori IC, Schroeder J. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants [J]. Plant Cell, 2001, 13: 2513-2523.
    [65] Zhang X, Miao Y C, An G Y, Zhou Y, Shangguan Z P, Gao J F, Song C P. K+ channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells [J]. Cell Research, 2001, 11: 195-202.
    [66]刘子会,郭秀林,王刚,李广敏.干旱胁迫与ABA的信号转导[J].植物学通报, 2004, 21 (2): 228-234.
    [67] Morgan P W, Drew M C. Ethylene and plant responses to stress [J]. Physiologia Plantarum, 1997, 100: 620-630.
    [68] Lethem D S. Cytokinins as phytohormones sites of biosynthesis, translocation, and function of translocated cytokinin. In: Mok D W S, Mok M C. Cytokinin: chemistry, activity, and function [M]. Boca Raton, Florida: CRC Press, 1994. 57-80.
    [69] Lethem D S, Palni L M S. The biosynthesis and metabolism of cytokinins [J]. Annual Review of Plant Physiology, 1983, 34: 163-167.
    [70] Silverman F P, Assiamah A A, Douglas S B. Membrane transport and cytokine action in root hairs of Medicagos ativa [J]. Planta, 1998, 205: 23-31.
    [71]师晨娟,刘勇,荆涛.植物激素抗逆性研究进展[J].世界林业研究, 2006, 19(5): 21-26.
    [72] Ogweno J O, Hu W H, Song X S, Shi K, Mao W H, Zhou Y H, Yu JQ. Photoinhibition -induced reduction in photosynthesis is alleviated by abscisic acid, cytokinin and brassinosteroid in detached tomato leaves [J]. Plant Growth Regulation, 2010, 60(3): 175-182.
    [73] Bray E A. Plant response to water deficit [J]. Trend in Plant Science, 1997, 2 (2): 48-54.
    [74] Mallick N, Mohn F H, Soeder C J, Grobbelaar J U. Ameliorative role of nitric oxide on H2O2 toxicity to a chlorophycean alga scenedesmus obliquus. Journal of General and Applied Microbiology, 2002, 48: 1-7.
    [75] Kang S Z, Zhang L, Liang Y L, Hu X T, Cai H J, Gu B J. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China [J]. Agricultural Water Management, 2002, 55: 203-216.
    [76] Schahram B, Sharyar B, Peter W, Konrad M. Improvement of water use and N fertilizer efficiency by subsoil irrigation of winter wheat [J]. European Journal of Agronomy, 2008, 28: 1-7.
    [77] Singh B, Singh G. Effects of controlled irrigation on water potential, uptake and biomass production in Dalbergia sissoo seedlingsnitrogen[J]. Environmental and Experimental Botany, 2006, 55(1-2): 209-219.
    [78] H?gberg P, Hogbom L, Schinkel H. Nitrogen related root variables of trees along an N deposition gradient in Europe [J]. Tree Physiology, 1998, 18: 823-828.
    [79] Eckersten H, Torssell B, Kornher A, Bostr?m U. Modelling biomass, water andin grass ley: Estimation of N parametersnitrogen uptake [J]. European Journal of Agronomy, 2007, 27(1):89-101.
    [80] Murthy R, Dougherty P M, Zarnoch S J, Allen H L. Effects of carbon dioxide fertilization, and irrigation on photosynthetic capacity of loblolly pine trees [J]. Tree Physiology, 1996, 16: 537-546.
    [81] Gastal F, Lemaire G. N uptake and distribution in crops: an agronomical and ecophysiological perspective [J]. Journal of Experimental Botany, 2002, 53(370): 789-799.
    [82]霍常富,孙海龙,范志强,王政权.根系氮吸收过程及其主要调节因子[J].应用生态学报, 2007, 18(6): 1356-1364.
    [83] Bassirirad H. Kinetics of nutrient uptake by roots: responses to global change [J]. New Phytologist, 2000, 147: 155-169.
    [84] Cumbus I P, Nye P H. Root zone temperature effects on growth and nitrate absorption in rape (Brassica napus cv. Emerald) [J]. Journal of Experimental Botany, 2006, 33:1138-1146.
    [85] Dong S, Scagel C F, Cheng L, Fuchigami L H, Rygiewicz P. Soil temperature and plant growth stage influence nitrogen uptake and amino acid concentration of apple during early spring growth [J]. Tree Physiology, 2001, 21: 541-547.
    [86] Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems [J]. New Phytologist, 2000, 147: 13-31.
    [87] Pregitzer K S, King J S, Burton A J, Brown S J. Responses of tree fine roots to temperature [J]. New Phytologist, 2000, 147: 105-115.
    [88] Atkin O K, Edwards E J, Loveys B R. Response of root respiration to changes in temperature and its relevance to global warming [J]. New Phytologist, 2000, 147: 141-154.
    [89] Burton A, Pregitzer K, Ruess R, Hendrick R, Allen M. Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes [J]. Oecologia, 2002, 131(4): 559-568.
    [90] Peterjohn W T, Melillo J M, Steudler P A. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures [J]. Ecological Applications, 1994, 4(3): 617-625.
    [91] Clarkson D T, Warner A J. Relationships between root temperature and transport of ammonium and nitrate ions by Italian and perennial ryegrass (Lolium multiflorum and Lolium perenne) [J]. Plant Physiology, 1979, 64: 557-561.
    [92] Bassirirad H, Caldwell M M, Bilbrough C. Effects of soil temperature and nitrogen status on kinetics of 15NO3- uptake by roots of field-grown Agropyron desertorum (Fisch, ex Link) Schult [J]. New Phytologist, 1993, 123: 485-489.
    [93] Chapin III F S, Matson P A, Mooney H A. Principles of terrestrial ecosystem ecology [M]. New York: Springer-Verlag, 2002.
    [94]吴楚,王政权,范志强,等.氮胁迫对水曲柳幼苗养分吸收、利用和生物量分配的影响[J].应用生态学报, 2004, 15(11): 2034-2038.
    [95] Parsons R, Sunley R J. Nitrogen nutrition and the role of root-shoot nitrogen signaling particularly in symbiotic systems [J]. Journal of Experimental Botany, 2001, 52: 435-443.
    [96] Chapin FS III. Environmental control over growth of tundra plants [J]. EcologicalBulletins, 1987, 38: 69-79.
    [97] Coomes D A, Grubb P J. Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments [J]. Ecological Monographs, 2000, 70: 171-207.
    [98] Coomes D A, Grubb P J. Responses of juvenile trees to above- and belowground competition in nutrient-starved amazonian rain forest [J]. Ecology, 1998, 79(3): 768-782.
    [99] Shenglei F U, Ferris H. Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems [J]. Science in China Series C: Life Sciences, 2006, 49: 603-612.
    [100] Grechi I, Vivin P, Hilbert G, Milin S, Robert T, Gaudillere J P. Effect of light and nitrogen supply on internal C: N balance and control of root-to-shoot biomass allocation in grapevine [J]. Environmental and Experimental Botany, 2007, 59(2): 139-149.
    [101] Kiniry J R, Simpson C E, Schubert A M, Reed J D. Peanut leaf area index, interception, radiation use efficiency, and harvest index at three sites in Texaslight[J]. Field Crops Research, 2005, 91(2-3): 297-306.
    [102] Knops J M H, Reinhart K. Specific leaf area along a nitrogen fertilization gradient [J]. The American Midland Naturalist, 2000, 144: 265-272.
    [103] White J W, Montes-R C. Variation in parameters related to thickness in common bean (Phaseolus vulgaris L.)leaf. Field Crops Research, 2005, 91(1): 7-21.
    [104] Oscar R V, Tollennar M. Effect of genotype, nitrogen, plant density and row spacing on the area-per leaf profile in maize [J]. Agronomy Journal, 2006, 98: 94-99.
    [105] Olsen J, Weiner J. The influence of Triticum aestivum density, sowing pattern and nitrogen fertilization on leaf area index and its spatial variation [J]. Basic and Applied Ecology, 2007, 8(3): 252-257.
    [106] Shangguan Z P, Shao M A. Effect of nitrogen nutrition and water deficiton net photosynthetic rate and chlorophyll fluorescence in winter wheat [J]. Plant Physiological, 2000, 56: 46-51.
    [107]孙曦.植物营养原理[M].北京:中国农业出版社, 1997.
    [108]史吉平,董永华.水分胁迫对小麦光合作用的影响[J].麦类作物学报, 1995, 5:49-51.
    [109] Makino A, Shimada T, Takumi S, Kaneko K, Matsuoka M, Shimamoto K, Nakano H, Miyao-Tokutomi M, Mae T, Yamamoto N. Does decrease in ribulose-1.5-bisphosphate carboxylase by antisense rbcS lead to a higher N-use efficency of photosynthesis under condition of saturating CO2 and light in rice plants [J]. Plant Physiology, 1997, 114: 483-491.
    [110] Evans J R. Photosynthesis and nitrogen relationships in leaves of C3 plants [J]. Oecologia, 1989, 78: 9-19.
    [111] Makino A, Mac T, Chira K. Variations in the contents and kinetic properties of ribulose 1,5-bisphosphate carboxylase among rice species [J]. Plant and Cell Physiology, 1987, 28: 799-804.
    [112]魏爱丽,王志敏,翟志席,龚元石.土壤干旱对小麦旗叶和穗器官C4光合酶活性的影响[J].中国农业科学, 2003, 36(5): 508-512.
    [113]关义新,林葆,凌碧莹.光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响[J].植物营养与肥料学报, 2000, 6(2): 152-158.
    [114]刘瑞显,王友华,陈兵林,郭文琦,周治国.花铃期干旱胁迫下氮素水平对棉花光合作用与叶绿素荧光特性的影响[J].作物学报, 2008, 34(4): 657-683.
    [115]金继运,何萍. Effect of N and K nutrition on post metabolism of carbon and nitrogen and grain weight formation in maize [J].中国农业科学, 1999, 32 (4): 55-62.
    [116] Thach L B, Shapcott A, Schmidt S, Critchley C.The OJIP fast ?uorescence rise characterizes Graptophyllum species and their stress responses [J]. Photosynthsis Research, 2007, 94: 423-436.
    [117] Pietrini F, Chaudhuri D, Thapliyal A P, Massacci A. Analysis of chlorophyll ?uorescence transients in mandarin leaves during a photo-oxidative cold shock and recovery [J]. Agriculture, Ecosystems and Environment, 2005,106: 189-198.
    [118]李鹏民,高辉远, Strasser R J.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报, 2005, 31(6): 559-566.
    [119] Srivastava A, GuisséB, Greppin H, Strasser R J. Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1997, 1320(1): 95-106.
    [120] Strasser R J, Govindjee S A. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria [J]. Photochemical Photobiology, 1995, 61: 32-42.
    [121] Strasser R J, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P. Probing Photosynthesis: Mechanism, Regulation and Adaptation [M]. London: Taylor and Francis Press. 2000, 445-483.
    [122] Strasser R J, Tsimill-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee. Advances in Photosynthesis and Respiration [M]. Netherlands: KAP Press, 2004. 1-42.
    [123] Van Heerden P D R, Strasser R J, Krüger G H J. Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics [J]. Physiol. Plant, 2004, 121(2): 239-249.
    [124] Petkova V, Denev I D, Cholakov D, Porjazov I. Field screening for heat tolerant common bean cultivars (Phaseolus vulgaris L.) by measuring of chlorophyll fluorescence induction parameters [J]. Scientia Horticulturae, 2007, 111(2): 101-106.
    [125]徐爱东,邱念伟,娄苑颖.判断玉米幼苗缺氮程度的叶绿素荧光动力学指标[J].植物营养与肥料学报, 2010,16 (2): 498- 503.
    [126] Zhao D L, Reddy K R, Kakani V G, Reddy V R. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral re?ectance properties of sorghum. European Journal of Agronomy, 2005, 22: 391-403.
    [127] Naumann J C, Young D R, Anderson J E. Leaf chlorophyll ?uorescence, re?ectance, and physiological response to freshwater and saltwater ?ooding in the evergreen shrub, Myrica cerifera [J]. Environmental and Experimental Botany, 2008, 63: 402-409.
    [128]林芬芳,陈祝炉,邓劲松,王珂.傅立叶变换中红外光谱估测水稻叶片氮素含量的研究[J].植物营养与肥料学报, 2009,15 (4): 750-755.
    [129]朱西存,赵庚星,王凌,董芳,雷彤,战兵.基于高光谱的苹果花氮素含量预测模型研究[J].光谱学与光谱分析, 2010, 30(2): 416-420.
    [130] Aase J Kristian, Siddoway F H. Spring wheat yield estimates from spectral reflectance measurements [J]. Geoscience and Remote Sensing, 2007, 19(2): 78-84.
    [131] Curran P J, Dungan J L, Peterson D L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry test the Kokaly and clark methodologies [J]. Remote sensing of environment, 2001, 74: 38-45.
    [132] Hinzman L D, Bauer M E, Daughtry C S T. Effects of nitrogen fertilization on growth and reflectance characteristics of winter growth and reflectance characteristics of winter wheat [J]. Remote Sensing of Environment, 1986,19(01): 47-61.
    [133] Walburg G, Bauer M E, Daughtry C S T, Housley T L. Effects of nitrogen nutrition on the growth, yield, and reflectance characteristics of corn canopies [J]. Agronomy Journal, 1982, 74: 677-683.
    [134] Chubachi T, Asano I, Oikawa T. The diagnosis of nitrogen nutrition of rice plants (Sasanishiki) using a chlorophyll meter [J]. Japanese Journal of Soil Science and Plant Nutrition, 1986, 57(2): 190-193.
    [135] Blackmer T M. Schepers J S, Varvel G E, Walter-Shea E A. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies [J]. Agronomy Journal, 1996, 88: 1-5.
    [136] Munden R, Curran P J, Catt J A. The relationship between red edge and chlorophyll concentration in broadbalk winter wheat experiment at rothamsted [J]. International Journal of Remote Sensing,1994,15: 705-709.
    [137] Jensen A, Lorenzen B, Spelling-Ostergaard H, Kloster-Hvelplund E. Radiometric estimation of biomass and nitrogen content of barley grown at different nitrogen levels [J]. International Journal of Remote Sensing,1990,11 (10): 1809-1820.
    [138]王磊,白由路,卢艳丽,王贺.不同形式的光谱参量对春玉米氮素营养诊断的比较[J].农业工程学报, 2010, 26(2): 218-223.
    [139]冯伟,朱艳,姚霞,田永超,郭天财,曹卫星.利用红边特征参数监测小麦叶片氮素积累状况[J].农业工程学报, 2009, 25(11): 194-201.
    [140] Jongschaap R E E, Rooij R. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status [J]. International Journal of Applied Earth Observation and Geoinformation, 2004, 5: 205-218.
    [141] Zhao D L, Raja Reddy K, Kakani V G, Read J J, Carter G A. Corn (Zea mays L.) growth, leaf pigment concentration, phtotosynthesis and leaf hyperspectralreflectance properties as affected nitrogen supply [J]., 2003, 257: 205-217.
    [142]唐延林,王人潮,黄敬峰,孔维姝,程乾.不同供氮水平下水稻高光谱及其红边特征研究[J].遥感学报, 2004, 8 (2): 185-192.
    [143]蒋金豹,陈云浩,黄文江.用高光谱微分指数监测小麦病害的研究[J].光谱学与光谱分析, 2007, 27 (12): 2475-2479.
    [144]邢东兴,常庆瑞.基于光谱分析的果树叶片微量元素含量估测研究—以红富士苹果树为例[J].西北农林科技大学学报:自然科学版, 2008, 36 (11): 143-150.
    [145]薛利红,杨林章.采用不同红边位置提取技术估测蔬菜叶绿素含量的比较研究[J].农业工程学报, 2008, 24 (9): 165-169.
    [146]张霞,刘良云,赵春江,张兵.利用高光谱遥感图像估算小麦氮含量[J].遥感学报, 2003, 7 (3): 176-182.
    [147]刘炜,常庆瑞,郭曼,邢东兴,员永生.基于改进红边面积的夏玉米叶片氮素含量导数光谱监测[J].西北农林科技大学学报(自然科学版), 2010, 38(4): 91-98.
    [148] Etheridge D M, Steele L P, Langenfelds R L, Francey R J, Barnola J M, Morgan V I. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn [J]. Journal of Geophysical Reseach,1996, 101(D2): 4115-4128.
    [149] Houghton L J T. Climate change 2001: the scientific basis [M]. New York: Cambridge University Press, 2001. 185-236.
    [150] Gifford R M. The global carbon cycle: A view point on the missing sink [J]. Australian Journal of Plant Physiology, 1994, 21: 1-15.
    [151]陈全胜,李凌浩,韩兴国,董云社,王智平,熊小刚,阎志丹.土壤呼吸对温度升高的适应[J].生态学报, 2004, 24(11): 2649-2655.
    [152]李凌浩,陈佐忠.草地群落的土壤呼吸[J].生态学杂志, 1998, 17(4): 45-51.
    [153]齐志勇,王宏燕,王江丽,等.陆地生态系统土壤呼吸的研究进展[J].农业系统科学与综合研究, 2003, 19 (2): 116-119.
    [154] Buchmann N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands [J]. Soil Biology and Biochemistry, 2000, 32: 1625-1635.
    [155] Wilson H M, Al-Kaisi M M. Crop rotation and nitrogen fertilization effect on soil CO2 emissions in central Iowa [J]. Applied Soil Ecology, 2008, 39: 264-270.
    [156] Hussain M Z, Otieno D O, Mirzae H, Li Y L, Schmidt M W T, Siebke L, Foken T,Ribeiro N A, Pereira J S, Tenhunen J D. CO2 exchange and biomass development of the herbaceous vegetation in the Portuguese Montado ecosystem during spring [J]. Agriculture, Ecosystem and Environment, 2009, 132: 143–152.
    [157] David A N, Lal U R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio [J]. Soil and Tillage Research, 2009, 104: 39-47.
    [158] Davidson E A, Trumbore S E, Amundson R . Soil warming and carbon content [J]. Nature, 2000, 408: 789-790.
    [159] Fang C, Moncrieff J B. The dependence of soil CO2 efflux on temperature [J]. Soil Biology and Biochemistry, 2001, 33: 155-165.
    [160] Reth S, Gockede M, Falge E. CO2 efflux from agricultural soils in Eastern Germany—comparison of a closed chamber system with eddy covariance measurements [J]. Theoretical and Applied Climatology, 2005, 80, 105-120.
    [161] Rey A, Pegoraro E, Tedeschi V, Parri I D, Jarvis P G, Valentini R. Annual variation in soil respiration and its components in a coppice oak forest in central Italy [J]. Global Change Biology, 2002, 8: 851-866.
    [162] Tang J W, Dennis D B, Qi Y, Xu L K. Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid state sensors [J]. Agricultural and Forest Meteorology, 2003, 118: 207-220.
    [163] Raich J W, Tufekcioglu A. Vegetation and soil respiration: correlations and controls [J]. Biogeochemistry, 2000, 48: 71-90.
    [164] Han G X, Zhu B, Jiang C S. Soil respiration and its controlling factors in rice fields in the hill region of the central Sichuan Basin [J]. Journal of Plant Ecology formerly Acta Phytoecologica Sinica, 2006,30: 450-456.
    [165]孟凡乔,关桂红,张庆忠,史雅娟,屈波,况星.华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律[J].环境科学学报, 2006, 26 (6): 992-999.
    [166]刘巧辉,黄耀,郑循华.基于BaPS系统的旱地土壤呼吸作用及其分量确定探讨[J].环境科学学报, 2005, 25(8): 1105-1111.
    [167] Hanson P J, Edwards N T, Garten C T, Andrews J A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations [J]. Biogeochemistry, 2000, 48: 115-146.
    [168]李建敏,丁维新,蔡祖聪.氮肥对玉米生长季土壤呼吸的影响[J].应用生态学报, 2010, 21(8): 2025-2030.
    [169]刘爽,严昌荣,何文清,刘勤.不同耕作措施下旱地农田土壤呼吸及其影响因素[J].生态学报, 2010, 30(11): 2919-2924.
    [170] Strasser R J, Srivastava A, Tsimilli-Michael M. Analysis of the ?uorescence transient. In: Papageogiou G, Govindjee. Chlorophyll a ?uorescence: a signature of photosynthesis. Advances in photosynthesis and respiration [M]. Dordrecht: Springer, 2004. 321-362.
    [171]吴颂如,陈婉芬,周燮.酶联免疫法(ELISA)测定内源植物激素[J].植物生理学通讯, 1988, 5: 53-57.
    [172]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2004.
    [173] Zhao J Y, Yu Z W. Effects of nitrogen fertilizer rate on uptake,distribution and utilization of nitrogen in winter wheat under high yielding cultivated condition [J]. Acta Agronomic Sinica, 2006, 32(4): 484-490.
    [174] Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance. An inverted-Gaussian reflectance model [J]. Internal Journal of Remote Sensing. 1990, 11: 1755-1773.
    [175]胡昊,白由路,杨俐苹,卢艳丽,王磊,王贺,孔庆波.不同氮营养小麦冠层光谱红边特征分析[J].植物营养与肥料学报, 2009, 15(6): 1317-1323.
    [176] Kou T, Zhu J, Xie Z, Hasegawa T, Heiduk K. Effect of elevated atmospheric CO2 concentration on soil and root respiration in winter wheat by using a respiration partitioning chamber [J]. Plant and Soil, 2007, 299: 237-249.
    [177] Page A L, Miller R H, Keeney D R. Methods of soil analysis [M]. ASA and SSSA, Madison: WI, 1982. 539-580.
    [178]中国科学院南京土壤所.土壤理化性质分析方法[M].北京:中国科技出版社,1978.
    [179] Nelson D W, Sommer L E. Total carbon,organic carbon, and organic matter. In: Page A L, Miller R H, Keeney D R. Methods of soil analysis [M], Part 2. second ed. Agron. Monogr. Madison, WI: Soil Science Society of America, 1982. 539-77.
    [180]云建英,杨甲定,赵哈林,干旱和高温对植物光合作用的影响机制研究进展[J].西北植物学报, 2006, 26(3): 641-648.
    [181] Flexas J, Bota J, Galmes J, Medrano H, Ribas-Carbo M. Keeping a positive carbonbalance under adverse conditions: responses of photosynthesis and respiration to water stress [J]. Physiologia Plantarum, 2006, 127 (3): 343-352.
    [182]安慧,上官周平.根域限制和氮素水平对连翘幼苗生长的影响[J].生态学报, 2007, 4 (27): 1323-1332.
    [183] Kaoua M E, Serraj R, Benichou M, Haissou D. Comparative sensitivity of two Moroccan wheat varieties to water stress: the relationship between fatty acids and proline accumulation [J]. Botanical Studies, 2006, 47: 51-60.
    [184]王磊,胡楠,张彤,丁圣彦.干旱和复水对大豆叶片光合及叶绿素荧光的影响[J].生态学报, 2007, 27(9): 3630-3636.
    [185] Zavaleta-Manceraa H A, Lopez-Delgadob H, Loza-Taverac H, Mora-Herrerab M, Trevilla-Garc?a C, Vargas-Suarezc M, Oughame H. Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence [J]. Journal of Plant Physiology, 2007,164: 1572-1582.
    [186] Glover B J, Torney K, Wilkins C G, Hanke D E. CYTOKININ INDEPENDENT-1 regulates levels of different forms of cytokinin in Arabidopsis and mediates response to nutrient stress [J]. Plant Physiology, 2008,165: 251-261.
    [187] Morris G. Cline, Mirunalni Thangavelu, Kim Dong-Il. A possible role of cytokinin in mediating long-distance nitrogen signaling in the promotion of sylleptic branching in hybrid poplar [J]. Journal of Plant Physiology, 2006,163: 684-688.
    [188] Zavaleta-Mancera H A, López-Delgado H, Loza-Taverac H, Mora-Herrerab M, Trevilla-Garcíad C, Vargas-Suárezc M, Ougham H. Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence [J]. Journal of Plant Physiology, 2007, 164(12):1572-1582.
    [189] Beligni M V, Lamattina L. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues [J]. Planta,1999, 208(3): 337-344.
    [190]徐茂军.一氧化氮:植物细胞次生代谢信号转导网络可能的关键节点[J].自然科学进展, 2007,17(12): 1622-1630.
    [191]阮海华,沈文飚,叶茂炳,徐朗莱.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应[J].科学通报, 2001, 46(23): 1993-1997.
    [192] Ruan H H, Shen W B, Xu L L. Nitric oxide modulates the activities of plasma membrane H+-ATPase and PPase in wheat seedling roots and promotes the salttolerance against salt stress [J]. Acta Botanica Sinica, 2004, 46(4): 415-422.
    [193] Durner J, Wendehenne D, Klessig D F. Defense gene induction in tobacco by nitric oxide,cyclic G M P,and cyclic ADP-ribose [J]. Proceedings of the National Academy of Sciences, 1998, 95 (17): 10328-10333.
    [194]陈明,沈文飚,阮海华,徐朗莱.一氧化氮对盐胁迫下小麦幼苗根生长和氧化损伤的影响[J].植物生理与分子生物学报, 2004, 30(5): 569-576.
    [195]王宪叶,沈文飚,徐朗莱.外源一氧化氮对渗透胁迫下小麦幼苗叶片膜脂过氧化的缓解作用[J].植物生理与分子生物学学报, 2004, 30(2): 195-200.
    [196] Oukarroum A, Madidi S E, Schansker G, Strasser R J. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering [J]. Environmental and Experimental Botany, 2007, 60(3): 438-446.
    [197] Strasser B J, Strasser R J. Measuring fast ?uorescence transients to address environmental questions: the JIP-test. In: Mathis P. Photosynthesis: from light to biosphere [M]. Dordrecht: Kluwer Academic Publishers, 1995. 977-980.
    [198] Jiang C D, Gao H Y, Zou Q. Changes of donor and acceptor side in photosystem II complex induced by iron deficiency in attached soybean and maize leaves [J]. Photosynthetica, 2003, 41(2): 267-271.
    [199] Hermans C, Smeyers M, Rodriguez R M, Eylettersb M, Strassera R J, Delhaye J P. Quality assessment of urban trees: A comparative study of physiological characterisation, airborne imaging and on site fluorescence monitoring by the OJIP-test [J]. Journal of Plant Physiology, 2003, 160(1): 81-90.
    [200]上官周平.氮素营养对旱作小麦光合特性的调控[J].植物营养与肥料学报, 1997, 3(2): 105-110.
    [201]安慧,上官周平.根域限制和氮素水平对连翘幼苗生长的影响[J].生态学报, 2007, 27(4): 1323-1332.
    [202]周鹏,彭福田,魏绍冲,彭勇.氮素形态对平邑甜茶细胞分裂素水平和叶片生长的影响[J].园艺学报, 2007, 34 (2): 269-274.
    [203] Chen C M. Cytokinin biosynthesis and interconversion [J]. Physiologia Plantarum, 1997, 101: 665-673.
    [204] Dobra J, Motyka V, Dobrev P, Malbeck J, Prasil I T, Haisel D, Gaudinova A,Havlova M, Gubis J, Vankov R. Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content [J]. Journal of Plant Physiology, 2010, 167(16): 1360-1370.
    [205] He P, Osaki M, Takebe M. Endogenous hormones and expression of senescence-related genes in different senescent type of maize [J]. Journal of Experimental Botany, 2005, 56(414): 1117-1128.
    [206] Field C, Mooney H A. The photosynthesis-nitrogen relationship in wild plants. In: Givinsh T J. On the economy of form and function [M]. Cambridge University Press: Cambridge, 1986. 25-55.
    [207] Sun N X, Zong X F, Wang S G. Effects of nitrogen supply on photosynthetic traits of maize [J]. Journal of Southwest Agricultural University, 2005, 27(3): 389-392.
    [208] Nziger M, Edmeades G O, Lafitte R H. Selection for drought tolerance increases maize yields across a range of nitrogen levels [J]. Crop Science, 1999, 39 (4): 1035-1040.
    [209] Appenroth K J, Stckel J, Srivastava A, Strasser R J. Multiple effects of chromate on the photosyntheticapparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements [J]. Environmental Pollution, 2001, 115: 49-64.
    [210] Van Heerden P D R, Tsimilli-Michael M, Krüger G H J, Strasser R J. Dark chilling effects on soybean genotypes during vegetative development:parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation [J]. Physiologia plantarum, 2003, 117: 476-491.
    [211] Van Heerden P D R, Strasser R J, Krüger G H J. Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics [J]. Physiologia plantarum, 2004,121: 239-249.
    [212]王西娜,王朝辉,李生秀.施氮量对夏季玉米产量及土壤水氮动态的影响[J].生态学报, 2007, 27(1): 197-204.
    [213]段巍巍,赵红梅,郭程瑾,肖凯,李雁鸣.夏玉米光合特性对氮素用量的反应[J].作物学报, 2007, 33 (6): 949-954.
    [214]王继芳,刘树堂,宋希云.长期定位施肥对夏玉米光合性状及产量的影响[J].中国农学通报, 2009, 25(15): 136-139.
    [215] Dai J, Gao H, Dai Y, Zou Q. Changes in activity of energy dissipating mechanisms inwheat flag leaves during senescence [J]. Plant Biology 2004, 6 (2): 171-177.
    [216] Jiang C D, Gao H Y, Zou Q. Changes of donor and accepter side in photosystem II complex induced by iron deficiency in attached soybean and maize leaves [J]. Photosynthetica, 2003, 4 (2): 267-271.
    [217] Chen S G, Dai X B, Qiang S, Tang Y L. Effect of a nonhost-selective toxin from Alternaria alternata on chloroplast-electron transfer activity in Eupatorium adenophorum [J]. Plant Phathology, 2005, 54: 671-677.
    [218] Fryer M J, Andrews J R, Oxborough K, Blowers D A, Baker N R. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature [J]. Plant Physiology, 1998, 116: 571-580.
    [219] Chen H X, Li W J, An S Z, Li W J. Dissipation of excess energy in Mehler-peroxidase reaction in Rumex leaves during salt shock [J]. Photosynthetica, 2004, 42(1): 117-122.
    [220] Shao R X, Wang K B, Shangguan Z P. Cytokinin-induced photosynthetic adaptability of Zea mays L. to drought stress associated with nitric oxide signal: Probed by ESR spectroscopy and fast OJIP fluorescence rise [J]. Journal of Plant Physiology, 2010, 167(6): 472-479.
    [221] Thach L B, Shapcott A, Schmidt S, Critchley C. The OJIP fast fluorescence rise characterizes Graptophyllum species and their stress responses [J]. Photosynthesis Research 2007, 94 (2-3): 423-436.
    [222]黄中文,赵团结,喻德跃,陈受宜,盖钧镒.大豆生物量积累、收获指数及产量间的相关与QTL分析[J].作物学报, 2008(6): 944-951.
    [223]平晓燕,周广胜,孙敬松.植物光合产物分配及其影响因子研究进展[J].植物生态学报, 2010, 34 (1): 100-111.
    [224]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社, 2000.
    [225]申广荣,王人潮.植被高光谱遥感的应用研究综述[J].上海交通大学学报(农业科学版), 2001, 19 (4): 315-321.
    [226] Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves [J]. Journal of Plant Physiology, 2003, 160(3):271-282.
    [227] Cho M A, Skidmore A, Corsi F, Van Wieren S E, Sobhan I. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression [J]. International Journal of Applied Earth Observation and Geoinformation, 2007, 9(4): 414-424.
    [228] Ju C H, Tian Y C, Yao X, Cao W X, Zhu Y, Hannaway D. Estimating leaf chlorophyll content using red edge parameters [J]. Pedosphere, 2010, 20(5): 633-644.
    [229]关丽,刘湘南.两种用于作物冠层叶绿素含量提取的改进光谱指数[J].地球科学进展, 2009, 24(5): 548-553.
    [230]田永超,杨杰,姚霞,朱艳,曹卫星.利用红边面积形状参数估测水稻叶层氮浓度[J].植物生态学报, 2009, 33 (4): 791-801.
    [231] Filella I. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status [J]. International Journal of Remote Sensing, 1994, 15 (7): 1459-1470.
    [232]代辉,胡春胜,程一松.小麦冠层光谱红边特征分析[J].中国生态农业学报, 2007, 15 (5): 80- 83.
    [233] Guyot G, Baret F, Jacquemoud S. Imaging spectroscopy forvegetationstudies [A]. Toselli F , Bodechtel J. Imaging spectroscopy: fundamentals and prospective applications [M]. Dordrecht , The Nethelands: Kluwer Academic, 1992, 145-165.
    [234] Baret F, Jacquemoud S, Guyot G, Leprieur C. Modeled analysis of the biophysical nature of spectral shift and comparis on with in formation content of broad bands [J]. Remote Sensing of Environment, 1992, 41: 133- 142.
    [235]吴华兵.基于反射光谱的棉花氮素营养与生长监测研究[D].南京:南京农业大学硕士论文, 2006.
    [236]乔欣.基于光谱技术的大豆营养信息诊断及其变量施肥系统研究[D].长春:吉林大学博士论文, 2008.
    [237] Horler D N H, Dockray M, Barber J. The red edge of Plant leaf refleetance [J]. Internal Journal of Remote Sensing, 1983, 4(3): 273-285.
    [238] Boochs F, KuPfer G, Doekter. Shape of the red edge as vitality indieator for Plants. Internal Journal of Remote Sensjng, 1990,11(12):1741-1753.
    [239]代辉,胡春胜,程一松.小麦冠层光谱红边特征分析[J].中国生态农业学报,2007, 15(5): 80-83.
    [240]张继林,孙元敏,郭绍铮.高产小麦营养生理特性与高效施肥技术研究[J].中国农业科学, 1988, 21(4): 39-45.
    [241]张洪程,许轲,戴其根,霍中洋,董明辉.超高产小麦吸氮特性与氮肥运筹的初步研究[J].作物学报, 1988, 24(6): 935-939.
    [242] Burns I G. A mechanistic theory for the relationship between growth rate and the concentrat ion of nitrate-N or organic-N in young plants derived from nutrient interruption experiments [J]. Annals of Botany, 1994, 74(2): 159-172.
    [243]朱新开,郭文善,封超年,彭永欣,凌启鸿.不同类型专用小麦氮素吸收积累差异研究[J].植物营养与肥料学报, 2005, 11(2): 148-154.
    [244]张国平,张光恒.小麦氮素利用效率的基因型差异研究[J].植物营养与肥料学报, 1996, 2(4): 331-336.
    [245]姜丽娜,李春喜,代西梅,尚玉磊,吴勇.超高产小麦氮素吸收、积累及分配规律的研究[J].麦类作物学报, 2000, 20(2): 53-59.
    [246]杜金哲,李文雄,胡尚连,刘金宏.春小麦不同品质类型氮的吸收、转化利用及与籽粒产量和蛋白质含量的关系[J].作物学报, 2001, 27(2): 253-260.
    [247]许为钢,胡琳,吴兆苏,盖钧镒.关中小麦品种同化物积累分配特性与源库构成遗传改良的研究[J].作物学报, 1999, 25(5): 548-555.
    [248]李世清,王瑞军,张兴昌,伍维模,邵明安.小麦氮素营养与籽粒灌浆期氮素转移的研究进展[J].水土保持学报, 2004, 18 (3): 106-111.
    [249]岳寿松,于振文,余松烈,许玉敏.不同生育时期施氮对小麦旗叶衰老和粒重的影响[J].中国农业科学, 1997, 30(2): 42-46.
    [250]赵满兴,周建斌,杨绒,郑险峰,翟丙年,李生秀.不同施氮量对旱地不同品种小麦氮素累积、运输和分配的影响[J].植物营养与肥料学报, 2006, 12(2): 143-149.
    [251] Wang C H, Wang B, Li S X. Influence of water deficit and supplemental irrigation on nitrogen uptake by winter wheat and nitrogen residual in soil [J]. Chinese Journal of Applied Ecology, 2004, 15: 1339-1343.
    [252] Schahram B, Sharyar B, Peter W, Konrad M. Improvement of water use and N fertilizer efficiency by subsoil irrigation of winter wheat [J]. European Journal of Agronomy, 2008, 28: 1-7.
    [253]李生秀.中国旱地农业[M].北京:中国农业出版社. 2004.
    [254] Marschner H. Mineral nutrit ion of higher plants [M]. San Diego, CA: Academic press. 1995.
    [255] Subedi K D, Ma B L. Effects of N-deficiency and timing of N supply on the recovery and distribution of labeled 15N in contrasting maize hybrids [J]. Plant and Soil, 2005, 273: 189- 202.
    [256]同延安,赵营,赵护兵,樊红柱.施氮量对小麦氮素吸收、转运及产量的影响[J].植物营养与肥料学报, 2007, 13(1): 64-69.
    [257] Barneix A J, Arnozis P A, Guitman M R. The regulation of the nitrogen accumulation in the grain of wheat plants (Triticum aestivaon L) [J]. Physiology Plant, 1992, 86: 609-615.
    [258]王月福,姜东,于振文,曹卫星.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础[J].中国农业科学, 2003, 36(5): 513-520.
    [259] Pheloung P C, Siddique K H. Contribution of stem dry matter to grain yield in wheat cultivars [J]. Australian Journal of Plant Physiology, 1991, 18: 52-64.
    [260] Lal R. Soil and the green house effect. In: Lal R and Kevin M. Soil carbon sequestration and the greenhouse effect [M]. New York: Soil Science Society of America, Inc, 2001. 1-8.
    [261] Miltner A, Richnow H-H, Kopinke F-D, K?stner M. Assimilation of CO2 by soil microorganisms and transformation into soil organic matter [J]. Organic Geochemistry, 2004, 35(9): 1015-1024.
    [262]吕家珑,张一平,王旭东,赵高霞,张春惠.长期单施化肥对土壤性状及作物产量的影响[J].应用生态学报, 2001, 4 (12): 569-572.
    [263]朱海平,姚槐应,张勇勇,吴愉萍.不同培肥管理措施对土壤微生物生态特征的影响[J].土壤通报, 2003, 2(34): 140-142.
    [264] Iqbal J, Hu R, Lin S, Hatano R, Feng M, Lu L, Ahamadou B, Du L. CO2 emission in a subtropical red paddy soil (Ultisol) as affected by straw and N-fertilizer applications: A case study in Southern China [J]. Agriculture, Ecosystem and Environment, 2009, 131: 292–302.
    [265] Meijide A, Cárdenas L M, Sánchez-Martín L, Vallejo A. Carbon dioxide and methane fluxes from a barley field amended with organic fertilizers under Mediterranean climatic conditions [J]. Plant and Soil, 2009, 328: 353-367.
    [266] Kechavarzi C, Dawson Q, Bartlett M, Leeds-Harrison P B. The role of soil moisture, temperature and nutrient amendment on CO2 efflux from agricultural peat soil microcosms [J]. Geoderma, 2009, 154:203-210.
    [267] Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 2004, 304: 1623-1626.
    [268] Bowden R D, Davidson E, Savage K, Arabia C, Steudler P. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest [J]. Forest Ecology and Manage, 2004,196: 43-56.
    [269] Jagadamma S, Lal R, Hoeft R G, Nafziger E D, Adee E A. Nitrogen fertilization and cropping systems effects on soil organic carbon and total nitrogen pools under chisel-plow tillage in Illinois [J]. Soil and Tillage Research, 2007, 95: 348-356.
    [270] DeForest J L, Zak D R, Pregitzer K S, Burton A J. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in Northern hardwood forests [J]. Soil Science Society of America Journal, 2004, 68: 132-138.
    [271] Qi Y C, Dong Y S, Liu J Y, Domroes M, Geng Y B, Liu L X, Liu X R, Yang X H. Effect of the conversion of grassland to spring wheat field on the CO2 emission characteristics in Inner Mongolia China [J]. Soil and Tillage Research, 2007, 94: 310-320.
    [272] Gavrichkova O, Kuzyakov Y. Ammonium versus nitrate nutrition of Zea mays and Lupinus albus: Effect on root-derived CO2 efflux [J]. Soil Biology and Biochemistry, 2008, 40: 2835-2842.
    [273] Wang W, Feng J, Oikawa T. Contribution of root and microbial respiration to soil CO2 efflux and their environmental controls in a humid temperate grassland of Japan [J]. Pedosphere, 2009, 19: 31-39.
    [274] Ma S, Baldocchi D D, Xu L, Hehn T. Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California [J]. Agriculture and Forest Meteorology, 2007, 147: 157-171.
    [275] Almagro M, López J, Querejeta J I, Martínez-Mena M. Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in Mediterranean ecosystem [J]. Soil Biology Biochemistry, 2009, 41: 594-605.
    [276] Maestre F T, Cortina J. Small-scale spatial variation in soil CO2 efflux in aMediterranean semiarid steppe [J]. Applied Soil Ecology, 2003, 23: 199-209.
    [277] Shangguan Z P, Shao M A, Ren S J, Zhang L M. Effect of nitrogen on root and shoot relations and gas exchange in winter wheat [J]. Botanical Bulletin of Academic Sinica. 2004, 45: 49-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700