用户名: 密码: 验证码:
酸黄瓜(Cucumis hystrix Chakr.)抗南方根结线虫(Meloidogyne incognita)相关机理与抗病渐渗系鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南方根结线虫(Meloidogyne incognita)是危害黄瓜(Cucumis sativus L.,2n=2x=14)生产的重要病原。栽培黄瓜种内南方根结线虫病抗源匮乏,致使黄瓜南方根结线虫病抗性育种滞后。通过种间杂交将野生种中的抗线虫性状引入栽培黄瓜是黄瓜抗线虫育种取得重要突破的有效途径。甜瓜属野生种酸黄瓜(Cucumis hystrix Chakr.,2n=2x=24)与栽培黄瓜已成功实现杂交,对其杂种染色体加倍后获得双二倍体新种(Cucumis hytivus Chen and Kirkbride,2n=4x=38),该种间杂种是进行黄瓜遗传改良的重要基因资源。全文从发掘和利用黄瓜南方根结线虫病抗性基因资源出发,以酸黄瓜、栽培黄瓜以及酸黄瓜与栽培黄瓜种间杂交后代为研究材料,研究酸黄瓜的南方根结线虫病抗性特点及其遗传转移,探讨其抗性形成的内在机制,在种间杂交基础上,筛选抗南方根结线虫病的黄瓜-酸黄瓜渐渗系,分析其在抗性基因定位与黄瓜遗传改良中的利用价值。主要研究内容及结果如下:
     1.黄瓜根结线虫病原鉴定与抗病种质资源筛选
     对供试的3个根结线虫样本进行了形态学观测和同工酶分析,结果表明其雌虫会阴花纹形态与南方根结线虫(Meloidogyne incognita)和爪哇根结线虫(M. javanica)相似,苹果酸脱氢酶(MDH)和酯酶(EST)表型与南方根结线虫相同,确定供试线虫样本为南方根结线虫。根结线虫适宜寄主筛选结果表明,粉果番茄品种‘苏粉3号’繁殖南方根结线虫效果优于红果番茄‘农大508’,夏秋季繁殖效果好于冬春季,培养时间以45d~55d为宜,4℃离体保存选择在4d以内。
     采用温室盆栽苗期人工接种鉴定技术,对14份甜瓜属(Cucumis)种质资源进行了南方根结线虫抗病性鉴定。通过聚类和方差分析,将供试材料分为高感、中感、感病和高抗4类,2份野生种质对南方根结线虫表现高度抗性,甜瓜属其它栽培种为感病类型。酸黄瓜与栽培黄瓜种间杂交后代材料均为抗病类型,表明酸黄瓜的南方根结线虫病抗性已通过种间杂交部分转移至后代中。
     2.酸黄瓜南方根结线虫病抗性的形成机制
     为探明酸黄瓜南方根结线虫病抗性的解剖学及其细胞学机理,对线虫侵入与幼虫发育、根的解剖学及线虫诱导形成的取食位点的细胞学结构进行了研究。结果表明,抗病材料酸黄瓜根系中线虫侵入率极显著低于感病材料北京截头(P<0.01),酸黄瓜能够有效抵抗南方根结线虫的侵入;抗、感材料根系中雌雄虫个体比例分别为1:12和1:5(P<0.01),抗性反应能够抑制线虫取食和幼虫发育;抗病反应中细胞发生过敏性坏死,感病反应中无此类现象发生。抗侵入、抑制取食和坏死反应是抗病材料酸黄瓜抗性反应的主要特征。
     采用高效液相色谱(HPLC)分析法,研究了南方根结线虫病抗性与葫芦素B含量的关系。供试材料根系中的葫芦素B含量以酸黄瓜的最高(1.31μg/g),非洲角次之(0.85μg/g),北京截头最低(0.35μg/g),表明酸黄瓜中葫芦素B的本体含量较高。酸黄瓜、非洲角、北京截头受线虫侵染后根系中的葫芦素B含量较相应未接种对照分别升高了198%、214%和40%,表明酸黄瓜经线虫诱导后葫芦素B含量上升较大。酸黄瓜受线虫危害低于非洲角并显著低于北京截头,说明酸黄瓜的抗线虫能力较强。供试材料受害程度与葫芦素B含量相关性分析表明,作物的抗线虫能力与根系中的葫芦素B含量呈正相关关系,其含量越高,抗性越强,酸黄瓜的高葫芦素B含量是其南方根结线虫病抗性的化学证据。
     以抗、感甜瓜属种质为试材,研究了线虫侵染对根系和叶片活性氧(ROS)代谢、防御酶活性及相关抗性指标的影响。结果表明,抗病材料酸黄瓜中超氧阴离子(O2·-)和过氧化氢(H2O2)含量受线虫侵染增加的幅度显著小于感病材料北京截头,超氧化物歧化酶(SOD)、过氧化物酶(POD)、苯丙氨酸解氨酶(PAL)活性变化率与其病情指数分别呈显著正相关(r=0.8278*)、极显著负相关(r=-0.9679**)和显著负相关(r=-0.8499*),线虫侵染后酸黄瓜根系中增加了3条POD同工酶谱带(Rf=0.126,0.188,0.944),而北京截头只增加了1条弱带(Rf=0.396),线虫侵染导致电导率(EL)上升和丙二醛(MDA)含量增加幅度北京截头高于酸黄瓜,根系活力下降幅度酸黄瓜显著小于北京截头。酸黄瓜受线虫侵染氧化胁迫较小,根系活力较高,从而使酸黄瓜对线虫侵染表现出了较好的耐性。
     为解析酸黄瓜南方根结线虫病抗性的光合响应机制,研究了线虫侵染对黄瓜叶片光合作用、叶绿素荧光参数及相关生理指标的影响。线虫侵染使酸黄瓜叶片叶绿素(Chl)含量降低幅度显著小于‘北京截头’,酸黄瓜Chl随氮(N)素含量降低较‘北京截头’平缓;线虫侵染导致二者净光合速率(Pn)、气孔导度(Gs)下降,酸黄瓜胞间CO2浓度(Ci)下降,而北京截头接种14d后Ci急剧上升,酸黄瓜Gs对叶片相对含水量(RWC)下降的反应较北京截头敏感;实际光化学效率(φPSⅡ)、光化学猝灭系数(qP)降低幅度酸黄瓜小于北京截头,非光化学猝灭系数(qN)升高幅度酸黄瓜显著高于北京截头;线虫侵染对酸黄瓜Pn/Ci初始斜率影响不大,而使北京截头急剧降低。研究结果说明,酸黄瓜具有相对较高的养分及水分利用率,叶绿素含量下降较小,能够较多地将光能用于光化学反应,热耗散能力较强,从而保持了较高的净光合速率,使得线虫侵染对酸黄瓜植株生长造成的影响不大。
     3.抗南方根结线虫病黄瓜-酸黄瓜渐渗系的筛选鉴定
     通过对黄瓜-酸黄瓜种间杂交后代群体进行抗线虫鉴定、形态学观测和分子生物学鉴定,筛选出抗南方根结线虫病黄瓜-酸黄瓜渐渗系ILs-10-1。渐渗系ILs-10-1抗南方根结线虫,其抗性表现稳定;田间农艺性状和形态学观测发现,其具有小叶、短果、棕色瘤刺、多分枝的特点,且与栽培黄瓜杂交亲和;利用SSR分子标记分析发现,SSR18648能够在渐渗系ILs-10-1中稳定重复地扩增出野生亲本酸黄瓜的特异DNA片段,从分子水平上证实了渐渗系ILs-10-1为酸黄瓜与栽培黄瓜发生渐渗杂交的种间杂交后代。
The root-knot nematode Meloidogyne incognita is an important pathogen and causes significant yield losses to cucumber production throughout the world. Breeding for resistance to M.incognita in cucumber was lagged behind other crops resulting from the poverty of resistance in cultivated cucumber. Introducing resistance in wild into cultivated cucumber based on hybridization is an effective way to make breakthrough in M.incognita-nematode breeding of cucumber. A successful cross has been made between Sour cucumber and cultivated cucumber and Sour cucumber is the important genetic resources for cucumber improvement through interspecific hybridization. In order to exploiting cucumber gene resources resistant to M.incognita, Sour cucumber, cultivated cucumber and interspecific progenies derived from the cross between these two species were used as primary research materials in this paper. Resistant to M.incognita and resistance transfer to its progenies in Sour cucumber were studied, and the internal mechanisms of resistance in Sour cucumber were also investigated. Breeding of cucumber-Sour cucumber introgression lines resistant to M. incognita based on interspecific hybridization were conducted and its values in resistance gene mapping and cucumber improvement were analyzed. The main contents and results are as follows:
     1. Pathogen identification and screening of germplasm for resistance to the root-knot nematode in cucumber
     The morphological observation and isozyme phenotypes analysis of the female were conducted for three Meloidogyne spp. samples collected from infected cucumber roots. The results showed that perineal pattern of the female was similar to Meloidogyne incognita and M.javanica. Malate dehydrogenase (MDH) and esterase (EST) phenotypes of the female were the same as M.incognita, thus the collection of Meloidogyne spp. was identified as M. incognita. Screening for suitable host of M. incognita showed that its reproduction on powder fruit tomato varieties was better than red fruit tomato, in summer and autumn better than in winter and spring. The appropriate culture and conservation time of M. incognita was respectively from 45 days to 55 days and within 4 days in vitro at 4℃after inoculation.
     Fourteen Cucumis germplasms were selected to evaluate their resistance to M.incognita. Cluster and variance analysis showed that they could be clustered 4 groups, i.e. high susceptibility, moderate susceptibility, susceptibility and high resistance. Among of these Cucumis species, two wild germplasms were high resistance, interspecific progenies were resistance, and other species studied were all susceptible to M.incognita. The high resistance to M.incognita in Sour cucumber was transmitted to its progenies through interspecific hybridization.
     2. Resistant mechanism of sour cucumber for its resistance to the root-knot nematode Meloidogyne incognita
     The differences in invasion and development of the nematode, the anatomy of root and cytology of feeding site were compared by using resistant and susceptible cucumber varieties. The results showed that the percentage of nematode invasion in Sour cucumber was significantly lower than that in Beijingjietou (P<0.01). The individual ratio of female and male nematodes was respectively 1:12 and 1:5 in resistant and susceptible roots (P<0.01). The resistant reaction observed in Sour cucumber could inhibit nematode from feeding and juvenile development. The hypersensitive necrosis of cells occured in resistant reaction, no necrosis could be detected in susceptible one. Limited invasion, inhibited feeding of nematodes and necrosis response of feeding site cells were the main features occured in Sour cucumber displaying resistance to M.incognita.
     High performance liquid chromatography was used to study the relationships between resistance and content of Cucurbitacin B in cucumber. The results showed that the highest content of Cucurbitacin B in roots before inoculation is in Sour cucumber (1.31μg/g), followed by the Africa Horned cucumber (0.85μg/g) and the minimum Beijingjietou (0.35μg/g), indicating that the ontology content of Cucurbitacin B in Sour cucumber were higher. The content of Cucurbitacin B in these three Cucumis species were increased by 198%,214% and 40% respectively than the corresponding controls after inoculation, indicating the increased content of Cucurbitacin B in Sour cucumber is greater. The infected degree of Sour cucumber is lower indicating its resistance is higher. The correlation analysis showed that there was positively correlation between nematode-resistant abilities of crops and the content of Cucurbitacin B in roots, the higher its content, the stronger the resistance. The resistance in Sour cucumber for its chemical aspects results from its higher levels of Cucurbitacin B in roots.
     Cucumis genotypes with different resistance to M.incognita were used to study the effects of nematode infection on reactive oxygen metabolism, defense enzyme activities and resistance index related in roots and leaves of cucumber. The results showed that the increase rate of the content of superoxide anion radical (O2·-) and hydrogen peroxide (H2O2) were significantly lower in the resistant genotype Sour cucumber than in the susceptible genotype Beijingjietou. The correlation analysis showed that there was respectively a significant positive correlation of superoxide dismutase (SOD) (r=0.8278*), highly significant negative correlation of peroxidase (POD) (r=-0.9679**) and significant negative correlation of phenylalanine ammonialyase (PAL) (r=-0.8499*) between the rates of changes of SOD, POD and PAL activities in roots associated with the disease index for Cucumis species. POD isoenzyme electrophoresis analysis showed that there were three more enzyme bands (Rf=0.126,0.188,0.944) in Sour cucumber, but only one weak band (Rf=0.396) in Beijingjietou when compared to corresponding control. The rate of increase of EL and MDA induced by M.incognita was higher in Beijingjietou than in Sour cucumber, the root activities were significantly lower in the latter than the former. Oxidative stress infected by M.incognita was less and the root activities were higher in Sour cucumber so that it displayed resistance to M.incognita after infection.
     The effects of nematode infection on photosynthesis, chlorophyll fluorescence parameters and physiological indices related of cucumber were investigated. The results showed that it induced a significantly lower decrease of chlorophyll (Ch1) content in Sour cucumber leaves than in Beijingjietou. Decreased extents of its content accompany with nitrogen content reduction in Sour cucumber were less than in Beijingjietou. Net photosynthetic rate(Pn), stomatal conductance (Gs) decreased in two varieties, intercellular CO2 concentration (Ci) decreased in Sour cucumber, while its value have a sharp rise in Beijingjietou after fourteen days inoculation. Gs reduction in response to relative water content (RWC) declining in Sour cucumber was more sensitive than in Beijingjietou. The nematode infection led to a lower reduction of actual photochemical efficiency (ΦPSⅡ) and photochemical quenching (qP), while induced a significantly higher increase of non-photochemical quenching (qN) in Sour cucumber than in Beijingjietou. Nematode infection has little effect on the initial slope of Pn/Ci in Sour cucumber, leaving a sharp decrease in Beijingjietou. The results indicated that there are a relatively higher nutrients and water use efficiency, lower decrease of Chl, more light energy for photochemical reactions, stronger the heat dissipation ability, so as to maintain a higher Pn in Sour cucumber compared with nematode-susceptible ones. All these did not cause significant effect on the plant growth of resistant Sour cucumber infected by nematode.
     3. Breeding of cucumber-sour cucumber introgression lines with resistance to the root-knot nematode Meloidogyne incognita
     Interspecific progenies from cross between cucumber and Sour cucumber were screened and an introgression lines ILs-10-1 was obtained for resistance to M. incognita through resistance evaluation. The results showed that introgression lines ILs-10-1 displayed high resistance to M. incognita and its resistance was stable. In agronomic traits and morphology, it was characterized to have small-sized leaf, short fruit, brown spine and multi-branching, and it have affinity of hybridization with the cultivated cucumber. Simple sequence repeat (SSR) analysis was carried out with the genomic DNA of ILs-10-1. A pair of primers SSR18648 screened could repeatedly amplify special DNA fragment from its wild parent Sour cucumber. Thus introgression lines ILs-10-1 was confirmed as an interspecific progenies at molecular level.
引文
1. 曹清河,陈劲枫,钱春桃.黄瓜抗霜霉病异源易位系CT-01的筛选与鉴定[J].园艺学报,2005,6(30):685-688.
    2. 陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2002,35-36.
    3. 陈劲枫,林茂松,钱春桃,庄飞云,Stephen Lewis甜瓜属野生种及其与黄瓜种间杂交后代抗根结线虫初步研究[J].南京农业大学学报,2001,24(1):21-24.
    4. 陈劲枫,任刚,余纪柱.甜瓜属远缘杂种回交自交群体的过氧化物酶同工酶分析[J].武汉植物学研究,2002,20(5):336-337.
    5. 陈劲枫,钱春桃,林茂松.甜瓜属植物种间杂交研究进展[J].植物学通报,2004,21(1):1-8.
    6. 陈永芳,吴建宇,胡先奇.用电泳仪快速鉴定根结线虫种类[J].植物病理学报,1998,28(1):73-77.
    7. 陈玉惠,叶建仁,魏初奖,潘宏阳.松材线虫侵染对马尾松、黑松水分及其相关代谢的影响[J].植物病理学报,2005,25(3):201-207.
    8. 董金皋,韩建民.植物与病原物互作中的活性氧代谢及其作用[J].沈阳农业大学学报,2000,31(5):427-431.
    9. 冯志新.植物线虫学[M].北京:中国农业出版社,2001.
    10.顾兴芳,张圣平,张思远,王长林.抗南方根结线虫黄瓜砧木的筛选[J].中国蔬菜,2006(2):4-8.
    11.关军锋.Ca2+对苹果果实细胞膜透性、保护酶活性和保护物质含量的影响[J].植物学通报,1999,16(1):72-74.
    12.桂连友,孟国玲,龚信文,熊三浩.茄子品种(系)对侧多食跗线螨抗性聚类分析[J].中国农业科学,2001,34(5):465-468.
    13.郭衍银,王秀峰,徐坤.生姜对南方根结线虫侵染的生理生化反应[J].植物病理学报,2005,35(1):49-54.
    14.韩旭,管野绍雄.黄瓜根结线虫的鉴别和抗性鉴定试验初探[J].北方园艺,1994(1):27-29.
    15.何元,潘沧桑.南方根结线虫和爪哇根结线虫的发育[J].厦门大学学报,2000,39(4):537-546.
    16.胡凯基.酯酶在根结线虫分类上的应用研究[J].林业科学研究,1988,1(6):650-655.
    17.李合生.植物生理生化实验原理与技术[M].北京:高等教育出版社,2001,119-120,260-261.
    18.李合生.现代植物生理学[M].北京:高等教育出版社,2002,188-420.
    19.李靖,利容千,袁文静.黄瓜感染霜霉病菌叶片中一些酶活性的变化[J].植物病理学报,1991,21(4):277-283.
    20.李忠光,龚明.植物中超氧阴离子自由基测定方法的改进.云南植物研究[J].2005,27:211-216.
    21.李文超,王秀峰.根结线虫对日光温室黄瓜微量元素含量的影响[J].西北农业学报,2006,15(2):91-95.
    22.刘冠明,李文涛,曾瑞珍,张桂权.水稻亚种间单片段代换系的建立[J].中国水稻科学,2003,17(3):201-204.
    23.刘慧,许再福,黄寿山.黄足黄守瓜(Aulcophora femoralis chinensis)取食和机械损伤对南瓜子叶中葫芦素B的诱导作用[J].生态学报,2007,27(12):5421-5426.
    24.刘奇志,李娜,王丽,谢德燕.南方根结线虫侵染黄瓜幼根组织的病理学观察[J].中国农业大学学报,2008,13(4):51-56.
    25.刘维志.植物线虫学研究技术[M].沈阳:辽宁科学技术出版社,1995,42-43.
    26.刘维志,段玉玺.植物病原线虫学[M].北京:中国农业出版社,2000,213-281.
    27.马双武,王吉明,邱江涛.我国西瓜甜瓜种质资源收集保存现状及建议[J].中国西瓜甜瓜,2003(5):17-19.
    28.茆振川,谢丙炎,杨之为.根结线虫与植物的分子互作[J].园艺学报,2006,33(4):901-907.
    29.庞朝友,杜雄明,马峙英.棉花种间杂交渐渗系创新效果评价及特异种质筛选[J].科学通报,2006,51(1):55-62.
    30.钱春桃,陈劲枫,罗向东.黄瓜抗枯萎病异源易位植株AT-04的鉴定筛选[J].南京农业大学学报,2006,29(2):20-24.
    31.沈镝,李锡香,冯兰香,王海平,宋江萍,杨翠荣,龚会芝.葫芦科蔬菜种质资源对南方根结线虫的抗性评价[J].植物遗传资源学报,2007,8(3):340-342.
    32.史庆华,朱祝军,Khalida Al-aghabary,钱琼秋.等渗Ca(NO3)2和NaCl胁迫对番茄光合作用的影响[J].植物营养与肥料学报,2004,10(2):188-191.
    33.王静,王献平,纪军.小麦-黑麦1RS/1BL新易位系的创制和分子细胞遗传学鉴定[J].作物学报,2006,32(1):30-33.
    34.王秀娥,赵彦,张清平,王苏玲,周波,陈佩度,刘大钧.利用PCR技术初步鉴定小麦加州野大麦异染色体系[J].南京农业大学学报,2004,27(4):1-5.
    35.武扬,郑经武,商晗武,洪文英.根结线虫分类和鉴定途径及进展[J].浙江农业学报,2005,17(2):106-110.
    36.徐小明,徐坤,于芹,张晓艳.茄子砧木对南方根结线虫抗性的鉴定与评价[J].园艺学报,2008a,35(10):1461-1466.
    37.徐小明,于芹,徐坤,董灿兴,王玉光.南方根结线虫侵染对茄子砧木幼苗根系活性氧代谢及相关酶活性的影响[J].园艺学报,2008b,35(12):1767-1772.
    38.徐小明,徐坤,于芹,张晓艳.茄子砧木根系苯丙烷类代谢与抗南方根结线虫水平的关系[J].植物保护学报,2008c,35(1):43-46.
    39.杨广东,朱祝军,计玉妹.不同光强和缺镁胁迫对黄瓜叶片叶绿素荧光特性和活性氧产生的影响[J].植物营养与肥料学报,2002,8(1):115-118.
    40.张茂新,凌冰,曾玲,庞雄飞.六种植物叶片中葫芦素B对美洲斑潜蝇寄主选择性的影响[J].生态学报,2004,24(11):2564-2568.
    41.赵鸿,彭德良,朱建兰.根结线虫的研究现状[J].植物保护,2003,29(6):6-9.
    42.赵洪海.中国分布地区根结线虫的种类鉴定和四种最常见种的种内形态变异研究[D].沈阳:沈阳农业大学,1999.
    43.赵世杰,史国安,董新纯.植物生理学实验指导[M].北京:中国农业科学技术出版社,2000.
    44.郑国琦,许兴,徐兆桢,刘振荣.盐胁迫对枸杞光合作用的气孔与非气孔限制[J].西北农业学报,2002,11(3):87-90.
    45. Ahmed S,Nawata E, Hosokawa M. Domae Y, Sakuratani T. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging [J]. Plant Science,2002, 163:117-123.
    46. Amor N B, Jimenez A, Megdiche W, Lundqvist M, Sevilla F, Abdelly C. Response of antioxidant systems to NaCl stress in the halophyte Cakile maritime [J]. Physiologia Plantarum,2006,126: 446-457.
    47. Answar S A, Trudgill D L, Phillips M S. The contribution of variation in invasion and development rates of Meloidogyne incognita to host status differences [J]. Nematologica,1994,40:579-586.
    48. Bains S S, Jhooty J S, Sharma N K. The relation between cation-ratio and host-resistance to certain downy mildew and root-knot disease [J]. Plant and soil,1984,81(1):69-74.
    49. Baker N R, Rosenqvist E. Applications of chlorophyll fluorescence can improve crop production strategies:an examination of future possibilities [J]. J Exp Bot,2004,55:1607-1621.
    50. Balkema-Boomstra A G, Zijlstra S, Verstappen F W A, Inggamer H, Mercke P E, Jongsma M A, Bouwmeester H J. Role of cucurbitacin C resistance to spidermite(Tetranychus urticae) in cucumber(Cucumis sativus L.) [J]. Journal of Chemical Ecology,2003,29(1):225-235.
    51. Barker K R, Pederson G A, Windham G L. Plant and nematode interactions. Madison, Wisconsin. American Society of Agronomy, pp.87-108.1998.
    52. Beharav A, Cohen Y. Effects of gamma radiation on vitality and fertilization ability of Cucumis melo and C. metuliferus pollen [J]. Cucurbit Genet Coop Rpt,1994,17:94-96.
    53. Bendezu I F, Starr J L. Mechanism of resistance to Meloidogyne arenaria in the peanut cultivar COAN [J]. Journal of Nematology,2003,35(1):115-118.
    54. Bharali A and Phukan P N. Reaction of certain cucumber cultivars to root-knot nematode, Meloidogyn incognita [J]. Journal of Agricultural Science Socity of North East India,1996,9(2): 169-170.
    55. Blackford M, Dinan L. The effects of ingested ecdysteroid agonists (20-hydroxyecdysone, RH5849 andRH5992) and an ecdysteroid antagonist (Cucurbitacin B) on larval development of two polyphagous lepidopterans (Acherontia atropos and Lacanobia oleracea) [J]. Entomologia Experimentalis et Applicata,1997,83(3):263-276.
    56. Bota J, Medrano H. Flexas J. Is Photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? [J] New phytologist,2004,162:671-681.
    57. Brenner E D, Lambert K N, Kaloshian I, Williamson V M. Characterization of LeMir, a root-knot nematode induced gene in tomato with an encoded product secreted from the root [J]. Plant Physiology,1998,118:237-247.
    58. Brouwer D J, Clair D A St. Fine mapping of three quantitative trait loci for late blight resistance in tomato using near isogenic lines (NILs) and sub-NILs [J]. Theor Appl Genet,2004,108:628-638.
    59. Carneiro R M D G, Randig O, Almeida M R A. Resistance of vegetable crops to Meloidogyne spp.: suggestion for a crop rotation system [J]. Nematologia-Brasileira,2000,24:149-154.
    60. Chaparzadeh N, Damico M L, Khavari-Nejad RA, Izzo R, Navari-Izzo F. Antioxidative responses of Calendula officinalis under salinity conditions [J]. Plant Physiology and Biochemistry,2004,42: 695-701.
    61. Chen J F, Zhang S, Zhang X. The Xishuangbanna gourd, a traditional cultivated plant of the Hanai people, Xishuangbanna, Yunnan, China [J]. Cucurbit Genetic Cooperative Report,1994,17:18-20.
    62. Chen J F, Staub J E, TashiroY. Successful interspecific hybridization between Cucumis sativus L. and C. hystrix Chakr [J]. Euphytica,1997,96:413-419.
    63. Chen J F, Adelberg J W, Staub J E. A new synthetic amphidiploid in Cucumis from a C.sativusxC.hystrix interspecific hybrid [A]. In:James McCreight ed. Cucurbitaceae' 98-Evaluation and Enhancement of Cucurbit Gemplasm [M]. Alexandria, Va:ASHS Press,1998, 336-339.
    64. Chen J F and Adelberg J. Interspecific hybridization in Cucumis-progress, problems and perspectives [J]. HortScience,2000,35:11-15.
    65. Chen J F and Kirkbride J. A new synthetic species of Cucumis (Cucurbitaceae) by interspecific hybridization and chromosome doubling [J]. Brittonia,2000,52(4):315-319.
    66. Dabauza M, Gonzalez-Candelas L, Bordas M. Regeneration and characterization of Cucumis melon L.×Cucumis anguria L. var. longipes (Hook. fil.) Meeuse somatic hybrids [J]. Plant Cell,1998,52: 123-131.
    67. Dane F. Cytogenetics of the genus Cucumis. In:T. Tsuchiya & P.K. Gupta (Eds.), Chromosome Engineering in Plants:Genetics, Breeding, and Evolution, Part B. Elsevier Science Publishing Company, Inc., New York,1991.
    68. Daykin M E, Hussey R S. Staining and histopathological techniques in nematology [M]. In:Baker K R, Carter C C, Sasser J N (Eds). An advanced treatise on Meloidogyne. Volume Ⅱ:Methodology. Raleigh, NC, USA, North Carolina State University Graphics,1985,39-48.
    69. Deakin J R, Bohn G W and Whitaker T W. Interspecific hybridization in Cucumis [J]. Econ Bot, 1971,25:195-211.
    70. Demmig B, Winter K, Kruger A C F. Photoinhibition and zeaxanthin formation in intact leaves:a possible role of the xanthophyll cyclein the dissipation of excess light energy [J]. Plant Physiol, 1987,84:218-222.
    71. Edens R M, Anand S C, Bolla R T. Enzymes of phenyl propanoid pathway in Glycine max infected with Meloidogyne incognita or Heterodera glycine [J]. Journal of Nematology,1995,27:292-303.
    72. Ehwaeti M E, Fargette M, Phillips M S. Host status differences and their relevance to damage by Meloidogyne incognita [J]. Nematology,1999,1:421-432.
    73. Eisenback J D, Triantaphyllou H H. Root-knot nematodes:Meloidogyne species and races. In: Manual of agricultural nematology (edited by Nickle WR). New York, USA:Marcel Dekker, INC, 1991,191-274.
    74. El-Nagdi W M A, Hasabo S A. Variability in reproduction and development of Meloidogyne incognita on some tobacco cultivars and cellular alterations of the infected plants [J]. Pakistan Journal of Nematology,2005,23(2):331-338.
    75. Esbenshade P R, Triantaphyllou A C. Use of enzyme phenotypes for identification of Meloidogyne species [J]. Journal of Nematology,1985,17:6-20.
    76. Esbenshade P R, Triantaphyllou A C. Enzymatic relationships and evolution in the genus Meloidogyne (Nematoda:Tylenchida) [J]. Journal of Nematology,1987,19(1):8-18.
    77. Esbenshade P R, Triantaphyllou A C. Isozyme phenotype for identification of Meloidogyne species [J]. Journal of Nematology,1990,22(1):10-15.
    78. Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-assciated QTL [J]. Genetics,1995,141: 1147-1162.
    79. Fabien J, Philippe L, Janice A. Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis [J]. The Plant Journal,2005,44:447-458.
    80. Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Ann Rev Plant Physiol, 1982,33:317-345.
    81. Fassuliotis G, Rau G J. Evaluation of Cucumis spp. for resistance to the root-knot nematode Meloidogyne incognita acrita [J]. Plant Disease Report,1963,47:809.
    82. Fassuliotis G. Species of Cucumis resistant to the root-knot nematode, Meloidogyne incognita acrita [J]. Plant Disease Report,1967,51:720-723.
    83. Fassuliotis G. Resistance of Cucumis spp. to the root-knot nematode Meloidogyne incognita acrita [J]. Journal of Nematology,1970,2(2):174-178.
    84. Favery B, Complainville A, Vinardell J M, Lecomte P, Vaubert D, Mergaert P, Kondorosi A, Kondorosi E, Crespi M, Abad P. The endosymbiosis-induced genes ENOD40 and CCS52a are involved in endoparasitic nematode interactions in Medicago truncatula [J]. Molecular Plant-microbe Interactions,2002,15(10):1008-1013.
    85. Flexas J, Ribas-Carbo M, Bota J, Galmes J, Henkle M, Martinez-Canellas S, Medrano H. Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration [J]. New Phytologist,2006,172:73-82.
    86. Food and Agriculture Organization of the United Nations. Rome, Italy:Yearbook Production,2005.
    87. Fridman F, Carrari F, Liu Y S, Fernie A R, Zamir D. Zooming in on a quantitative trait for tomato yield using interspecific introgression [J]. Science,2004,305:1786-1789.
    88. Fukuda K, Hogetsu T, Suzuki K. Cavitation and cytological changes in xylem of pine seed lings inoculated with virulent and a virulent isolates of Bursaphelenchus xylophilus and B.mucrorltus [J]. J Jan For Soc,1992,74(4):289-299.
    89. Ganguly Y A K, Dasgupta D R. Superoxide dismutase activity in resistant and susceptible cowpea cultivars inoculated with root-knot nematode, Meloidogyne incognita [J]. Indian Journal of Nema tology,1988,18 (2):322-325.
    90. Genty B E, Briantais M J, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence [J]. Biochemistry Biophysics Acta,1989,990:87-92.
    91. Goellner M, Wang X, Davis E L. Endo-β-1,4-glucanase expression in compatible plant nematode interactions [J]. The Plant Cell,2001,13:2241-2255.
    92. Gorski P M, Jaworski A, Shannon S. Rapid TLC and HPLC quantification of Cucurbitacin C in cucumber cotyledons [J]. Hortscience,1986,21:1034-1036.
    93. Griffin G D, Anderson J L, Jorgenson E C. Interaction of Meloidogyne hapla and Aagrobacterium tumefaciens in relation to raspberry cultivars [J]. Plant Dis,1968,52:492-493.
    94. Hartman K M, Sasser J N. Indentification of Meloidogyne species on the basis of differential host and perineal pattern morphology [A]. Barker K R, Carter C C, Sasser J N. An advanced treatise on Meloidogyne, Vol. II:Methodology [M]. Ralegh:North Carolina State Univ, Graphics,1985,69-77.
    95. Haynes R L, Jones C M. Effects of the Bi locus in cucumber on reproduction, attraction, and response of the plant to infection by the southern root-knot nematode [J]. J Amer Soc Hort Sci, 1976,101(4):422-424.
    96. Hernandez J A, Ferrer M A, Jimenez, Barcelo A R, Sevilla F. Antioxidant systems and O2·-/H2O2 production in the apoplast of pea leaves:its relation with salt-induced necrotic lesions in minor veins [J]. Plant Physiology,2001,127:817-831.
    97. Hideki Horie, Hidekazu Ito, Katsunari Ippoushi, Keiko Azuma, Yoshiteru Sakata and Isamu Igarashi. Cucurbitacin C—Bitter Principle in Cucumber Plants [J]. JARQ,2007,41 (1),65-68.
    98. Hirschmann H. The genus Meloidogyne and morphological characters differentiating its species. In: An advance treatise on Meloidogyne, Vol I. Biology and Control (edited by Sasser J N and Carter C C). Raleigh, NC, USA:North Carolina State University Grpahics,1985,79-93.
    99. Holtmann B, Kleine M, Grundler F M W. Ultrastructure and anatomy of nematode-induced syncytia in roots of susceptible and resistant sugar beet [J]. Protoplasma,2000,211:39-50.
    100. Hunt O J, Griffin D, Murray J J. The effects of root knot nematode on bacterial wilt in tobacco [J]. Phytopathology,1971,61:256-259.
    101. Hussey R S, Barker K R. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique [J]. Plant Disease Report,1973,57:1025-1028.
    102. Hussey R S. Disease-inducing secretions of plant-parasitic nematodes [J]. Annu Rev Phytopathol, 1989,27:123-141.
    103. Hussey R S, Mims C W, Westcott S W. Immunochemical localization of callose in root cortical cells parasitied by the ringnematode Criconemella xenoplax [J]. Protoplasma,1992,171:1-6.
    104. Hussey R S, Williamson V M. Physiological and molecular aspects of nematode parasitism. In: Plant and Nematode Interactions (Barker K R, Pederson G A, Windham G L, eds.) [M]. American Society of Agronomy, Madison, WI, USA,1998,87-108.
    105. Imlay J A. Pathways of oxidative damage [J]. Annual Review of Microbiology,2003,57:395-418.
    106. Jassen G J W, Norel A, Verkerk-Bakker B. Resistance to Meloidogyne chitwoodi, M.fallax and M. hapla in wild tuber-bearing Solum spp. [J]. Euphytica,1996,92:287-294.
    107. Jones J. Harpin. Pesticide-Outlook,2001,12:4134-4135.
    108. Karssen G. The plant-parasitic nematode genus Meloidogyne Goldli,1892 (Tylenchida) in Europe. Gent, Belgium:University of Gent,1999,1-161.
    109. KhoY O, Den Nijs A P M, Franken J. Interspecific hybridization in Cucumis L. Ⅱ. The crossability of species, an investigation in vivo pollen tube growth and seed set [J]. Euphytica,1980,29: 661-672.
    110. Koltai H, Bird D M. Epistatic repression of PHANTASTICA and class 1 KNOTTED genes is uncoupled in tomato [J]. The Plant Journal,2000,22:455-459.
    111. Kouassi Abou Bakari, Kerlan Marie-Clairel, Sobczak Miroslaw. Resistance to the root-knot nematode Meloidogyne fallax in Solanum sparsipilum:analysis of the mechanisms [J]. Nematology, 2004,6(3):389-400.
    112. Lamberti F, Lemos R M, Sasanelli N. Effect of some nematicides on root-knot nematodes (Meloidogyne spp.) on vegetable crops in Portugal Nematologia-Mediterranea,2001,29(1): 167-176.
    113. Mace E S, Phong D T, Upadhyaya H D. SSR analysis of cultivated groundnut(Arachis hypogaea L.) germplasm resistance to rust and late leaf spot disease [J]. Euphytica,2006,152:317-330.
    114. Maggenti A. Comparative morphology in nemic phylogeny. In:Dougherty, E.C. (Ed.). The lower Metazoa, comparative biology and phylogeny. Berkley & Los Angeles, CA, USA, University of California Press,1963,273-282.
    115. Mana J M, Isidoro L, Angeles D. Root enzyme activities associated with resistance to Heterodera avenae conferred by gene Cre7 in a wheat/Aegilops triuncialis introgression line [J]. Journal of Plant Physiology,2004,161(4):493-495.
    116. Marie-Cecile C, Philippe L, Jamme S. MAP65-3 microtubule associated protein is essential for nematode-induced giant cell ontogenesis in Arabidopsis [J]. The Plant Cell,2008,20:423-437.
    117. Mercer C F, Hussain S W, Moorel K K. Resistance reactions to Meloidogyne trifoliophila in Trifolium repens and T.semipilosum [J]. Journal of Nematology,2004,36(4):499-504.
    118. Molinari S. Changes of catalase and SOD activities in the early response of tomato to Meloidogyne attack [J]. Nematologia Mediterranea,1999,27(1):167-172.
    119. Montasser S A, Alsayed A A, Ahmed S S. Varietal response of potato to Meloidogyne javanica and Rotylenchulus reniformis [J]. Annals of Agricultural Science,1992,30:607-614.
    120. Mor M, Oka Y. Histological study of giant cells formed by the root-knot nematode Meloidogyne artielliaas compared with M. hapla and M. javanica in cabbage, turnip and barley [J]. Phytoparasitica,2006,34(5):502-509.
    121. Moradi F, Ismail A M. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice [J]. Ann Bot,2007,99: 1161-1173.
    122. Mote U N. Effects of inhibitors on enzymic activity of phenylalanine ammonialyase purified from resistant and susceptible tomato cultivars infected with root-knot nematode, Meloidogyne incognita [J]. International Nematology Network News letter,1990,7(4):9-10.
    123. Mote U N, Dasgupta D R, Ganguly A K. Sequential development of deaminases in resistant and susceptible tomato varieties infested with root-knot nematode, Meloidogyne incognita [J]. Indian Journal of Nematology,1993,20(2):127-137.
    124. Murray H G, Thompson W F. Rapid isolation of higher weights DNA [J]. Nucleic Acids Research, 1980,8:4321.
    125. Neill S, Desikan R, Hancock J. Hydrogen peroxide signaling [J]. Current Opinion in Plant Biology, 2002,5:388-395.
    126. Nicola V, Hava F R. Differences in feeding sites induced by root-knot nematodes Meloidogyne spp. in chickpea [J]. Phytopathology,2005,95(4):368-375.
    127. Nijs A P M den and Holfman K. An efficient procedure to screen for resistance to root-knot nematode in cucurbits [J]. Cucurbit Genetics Coop Rept,1983, (6):96-98.
    128. Norton J D, Granberry D M. Characteristics of progeny from an interspecific cross of Cucumis melo with C.metuliferus [J]. Journal of the American Society for Horticultural Science,1980,105: 174-180.
    129. Nutter F W J R. Use of remote sensing to detect soybean cyst nematode-induced plant stress [J]. Journal of Nematology,2002,34:222-231.
    130. Ou Z Y, Peng C L, Lin G Z, Yang C W. Relationship between PSII excitation pressure and content of Rubisco large subunit or small subunit in flag leaf of super high-yielding hybrid rice [J]. Acta Bot Sin,2003,45:929-935.
    131.Pederson G A, Windham G L. Resistance to Meloidogyne incognita in Trifolium interspecific hybrids and species related to white clover [J]. Plant Disease,1989,73:567-569.
    132. Pegard A, Brizzard G, Fazari A. Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum [J]. Phytopathology,2005, 95:158-165.
    133. Peri P L, Moot D J, Mcneil D L, Varella A C, Lucas R J. Modelling net photosynthetic rate of field-grown cocksfoot leaves under different nitrogen,water and temperature regimes [J]. Grass and Forage Science,2002,57:61-71.
    134. Potenza C, Thomans S H, Sengupta-Gopalan C. Genes induced during early responses to Meloidogyne incognita in roots of resistant and susceptible alfalfa cultivars [J]. The Plant Science, 2001,161:289-299.
    135. Powell N T, Melendez P L, Batten C K. Disease complexes in tobacco involving Meloidogyne incognita and certain soil-borne fungi [J]. Phytopathology,1971,61:1322-1337.
    136. Powers T O, Harris T S. A polymerase chain reaction method for identification of five major Meloidogyne species [J]. Journal of Nematology,1993,25:1-6.
    137. Rahi G S, Rich J R, Hodge C. Effect of Meloidogyne incognita and M. javanica on leaf water potential and water use of tobacco [J]. Journal of Nematology,1988,20:516-522.
    138. Rajasekhar S P, Ganguly A K, Swain S C. Quantitative changes in superoxide dismutase, catalase and peroxidase with reference to resistance in tomato to Meloidogyne incognita [J]. Indian Journal of Nematology,1997,27(1):79-85.
    139. Ramesh V, Anil S, Dasgupta D R. Peroxidase possible biochemical resistance marker against the root-knot nematode, Meloidogyne incognita in tomato [J]. Annals of Plant Protection Sciences, 1996,4(2):180-182.
    140. Rice C A, Rymal K S, Chambliss O L. Chromatographic and mass spectral analysis of Cucurbitacins of three Cucumis sativus cultivars [J]. J Agric Food Chem,1981,29:194-196.
    141. Robertson L, Robertson W M, Jones J T. Direct analysis of the secretions of the patato cyst nematode Globodera rostochiensis [J]. Parasitology,1999,119:167-176.
    142. Rodger S, Bengough A G, Griffiths. Does the presence of detached root border cells of Zeamays alter the activity of the pathogenic nematode M.incognita [J]. Phytopathology,2003,93:1111-1114.
    143. Rodrigues A C F de O, Abrantes I M de O, Melillo M T. Ultrastructural response of coffee roots to root-knot nematodes Meloidogyne exigua and M.megadora [J]. Nematropica,2000,30(2):201-210.
    144. Sarr E, Prot J C. Penetration et developpement des juveniles d'une souche de Meloidogyne javanica et d'une race B de M. incognita dans les racines de fonio (Digitaria exilis Stapf) [J]. Revue de Nematologie,1985,8:59-65.
    145. Sasanelli N D, Addabbo T. Reaction of selected cantaloupe F1 hybrids to root-knot nematodes {Meloidogyne spp.) [J]. International Journal of Nematology,1997,7:142-146.
    146. Sasser J N, Carter C C. Overview of the international Meloidogyne project 1975-1984. In Sasser J N, Carter C C, eds. An advanced treatise on Meloidogyne, Vol I. Biology and control Raleigh North Carolina StateUniversity Graphics,1985,19-24.
    147. Schans J, Arntzen F K. Reduction of leaf photosynthesis and transpiration of different potato cuiltivars by Globodera pallida in relation to plant growth [J]. Netherlands Journal of Plant Pathology,1991,18:156-165.
    148. Schmitz A, Kiewnick S, Schlang J, Sikora R A. Use of high resolution thermography to detect Heterodera schachtii infestation in sugar beets [J]. Communications in Agricultral and Applied Biological Sciences,2004,69:359-362.
    149. Seandalios J G Oxygen stress and superoxide dismutases [J]. Plant Physiology,1993,101:7-12.
    150. Siddiqui Z A, Mir R A, Mahmood I. Effects of Meloidogyne incognita, Fusarium oxysporum f.sp. pisi, Rhizobium sp. and different soil types on growth, chlorophyll and carotinoid pigments of pea [J]. Israel Journal of Plant Sciences,1999,47:251-256.
    151. Sijmons P C, Atkinson H J, Wyss U. Parasitic strategies of root nematodes and associated host cell responses [J]. Annu Rev Phytopathol,1994,32:235-259.
    152. Sinclair T R, Horie T. Leaf nitrogen, photosynthesis and crop radiation use efficiency:a review [J]. Crop Science,1989,29:90-98.
    153. Skalova D, Dziechciarkova M, Lebeda A. Interspecific Hybridization of C. anguria^C. zeyheri, C. sativus×C. melo and C. sativus×C. metuliferus with the use of embryo cultures [J]. Acta Horticulturae,2007,731:77-82.
    154. Sudhakar C, Lakshmi A, Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry(Morus alba L.) under NaCl salinity [J]. Plant science,2001,161: 613-619.
    155. Swain B, Prasad J S. Photosynthetic rate in rice as influenced by the root-knot nematode, Meloidogyne graminicola, infection [J]. Revue de nematologie,1989,12(4):431-432.
    156. Tallamy D W. Squash beetle feeding behavior:an adaptation against induced cucurbit defence [J]. Ecology,1985,66:1574-1579.
    157. Tallamy D W, Whittington D P, Defurio F, Fontaine D A, Gorski P M, Gothro P W. Sequestered cucurbitacins and pathogenicity of Metarhizium anisopliae (Moniliales:Moniliaceae) on spotted cucumber beetle eggs and larvae (Coleoptera:Chrysomelidae) [J]. Environmental Entomology, 1998,27(2):366-372.
    158. Tanksley S D, Nelson J C. Advanced backcross TL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines [J]. Theor Appl Genet,1996,92:191-203.
    159. Tezara W, Mitchell V J, Driscoll S D, Lawlor D W. Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower [J]. J Exp Bot,2002, 53:1781-1791.
    160. Thomason I J, Mckinney H E. Reaction of some Cucurbitaceae to root-knot nematodes (Meloidogyne spp.) [J]. Plant Disease Report,1959,43:448-450.
    161. Udalova V B. Evaluation of varieties and hybrids of cucumber for resistance to root-knot nematode. Tr. VNII Selektsii I semenovod ovoshch kul'tur.1977,6:42-44.
    162. United States Department of Agriculture. Germplasm Resources Information Network [EB/OL]. [2008.5.14]. http://www. arsgrin.gov/npgs/acc/acc_queries.html.
    163. Van Gandy S D, Kirkpatrick J D, Golden J. The nature and role of metabolic leakage form root knot nematode galls and infection by Rhizocttonin solani [J]. Journal of Nematology,1977,19:113-121.
    164. Vasil eva I S, Zinov eva S V, Ershov Y V. Adaptogenic effect of furostanol glycosides on photosynthetic pigments of tomato leaves under stress [J]. Doklady akademii nauk,2000,372(3): 404-406.
    165. Veech J A, Starr J L, Nordgren R M. Production and partial characterization of stylet exudates from adult females of Meloidogyne incognita [J]. Journal of Nematology,1987,19(4):463-468.
    166. Verdejo-Lucas S, Sorribas F J. Resistance response of the tomato rootstock SC6301 to Meloidogyne javanica in a plastic house [J]. European Journal of Plant Pathology,2008,121:103-107.
    167. Von Caemmerer S, Evans J R, Hudson G S, Andrews T J. The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesisin leaves of transgenic tobacco [J]. Planta,1994,195:88-97.
    168. Walters S A, Wehner T C, Barker K R. Root-knot nematode resistance in cucumber and horned cucumber [J]. HortScience,1993,28(2):151-154.
    169. Walter S A, Wehner T C. Split-root technique for multiple nematode resistnace in cucumber [J]. Cucurbit Genetics Cooperative Rept,1995,18:29-30.
    170. Walters S A, Wehner T C. NC-42 and NC-43:root-knot nematode-resistant cucumber germplasm [J]. HortScince,1996,31(7):1246-1247.
    171. Walters S A, Wehner T C.'Lucia','Manteo', and 'Shelby' root-knot nematode-resistant cucumber inbred lines [J]. HortScince,1997,32(7):1301-1303.
    172. Walters S A. Independence of the mj nematode resistance gene from 17 gene loci in cucumber [J]. HortScience,1998,33(6):1050-1052.
    173. Walters S A, Wehner T C. Incompatibility in diploid and tetraploid crosses of Cucumis sativus and Cucumis metuliferus [J]. Euphytica,2002,128:371-374.
    174. Wehner T C, Waters S A, Barker K R. Use of reproduction factor and gall index in determining resistance in Cucumis spp [J]. Report Cucurbit Genetics Cooperative,1992,15:28-30.
    175. Wheeler T A, Kaufman H W. Relationship of aerial broad band reflectance to Meloidogyne incognita density in cotton [J]. Journal of Nematology,2003,35:48-57.
    176. Willimason V M, Caswell Chen E P, Westerdahl B B. A PCR assay to identify and distinguish single juvenile of Meloidogyne hapla and M. chitwoodi [J]. Journal of Nematology,1997,29(1): 9-15.
    177. Williamson V M, Hussey R S. Nematode pathogenesis and resistance in plants [J]. The Plant Cell, 1996,8:1735-1745.
    178. Winstead N N, Sasser J N. Reaction of cucumber varieties to five root-knot nematodes (Meloidogyne spp.) [J]. Plant Dis Rpt,1956,40:272-275.
    179. Wuest S B, Cassman K G. Fertilizer-nitrogen use efficiency in irrigated wheat:II. Partitioning efficiency of preplant versus late-season application [J]. Agronomy Journal,1992,84:689-694.
    180. Xie J H, Wehner T C. Gene list 2001 for Cucumber [J]. Cucurbit Genetics Cooperative Report, 2001,24:110-136.
    181. Yi Ren, Zhonghua Zhang, Jinhua Liu, Jack E. Staub, Yonghua Han, Zhouchao Cheng, Xuefeng Li, Jingyuan Lu, Han Miao, Houxiang Kang, Bingyan Xie, Xingfang Gu, Xiaowu Wang, Yongchen Du, Weiwei Jin, Sanwen Huang. An integrated genetic and cytogenetic map of the cucumber genome [J]. Plos one,2009,4(6):1-8.
    182. Zamir D. Improving plant breeding with exotic genetic libraries [J]. Nature Review Genetics,2001, 2:983-989.
    183. Zacheo G, Bleve-Zacheo T, Lamberti F. Role of peroxidase and superoxidase dismutase activity in resistant and susceptible tomato cultivars infested by Meloidogyne incognita [J]. Nematology Mediterr,1982,10:75-80.
    184. Zhao X, Schmitt M, Hawes M C. Species dependent effects of border cell and root tip exudates on nematode behaviour [J]. Phytopathology,2002,90:1239-1245.
    185. Zijlstra C, Donkers-Venne Dorine T H M, Fargette M. Identification of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterized amplified region (SCAR) based PCR assays [J]. Nematology,2000,2(8):847-853.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700