用户名: 密码: 验证码:
喀斯特城市森林生物量及其碳吸存功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市是人口主要集中居住的地区,是人类活动的重要场所,随着城市功能和规模不断扩大,被称为“城市之肺”的城市森林,在美化和改善城市的生态环境,促进人与自然协调,满足社会持续发展的显著功能日益突出,而备受世界各国的重视。贵州省贵阳市地处喀斯特地貌的中心地带,喀斯特面积占全市面积的85.0%。是世界上喀斯特地区植被最好的中心城市,为国家首个森林城市,成为喀斯特地貌上的“绿色奇迹”。对喀斯特城市森林的研究,越来越受到各界科学工作者的关注。本研究在贵阳市选择了9种森林类型,对林分的土壤理化性质、生物量结构特征、林分生产力及碳贮量进行了系统研究。主要研究结果为:
     1.林地土壤为黄壤。pH 4.68—5.33,属酸性土壤;容重为0.92—1.16g·cm-3;自然含水率为22.94%—40.87%;总孔隙度为56.16%—65.17%;有机质含量25.12—32.95 g·kg-1;表明贵阳市森林土壤,酸碱度适中,土壤疏松,结构良好,土层湿润,有机质含量较高,适宜于植物生长。
     2.3种林分的物种丰富度指数为,杨树林2.140,刺槐+梓木混交林1.528,灌木林1.905;Shannon-wiener多样性指数,杨树林2.361,刺槐+梓木混交林2.285,灌木林0.118;Simpson多样性指数,杨树林0.839,刺槐+梓木林0.888,灌木林1.000;均匀度指数,杨树林0.802,刺槐+梓木林0.920,灌木林0.042;生态优势度,杨树林0.161,刺槐+梓木林0.111,灌木林0.086。p多样性指数,刺槐+梓木林和灌木林(0.345)>杨树林和灌木林(0.286)>杨树林和刺槐+梓木林(0.200)。3种林分中,杨树林和刺槐+梓木林,乔木层结构简单,优势种明显;灌木层和草本层物种多样性均匀度高,优势种不突出,分布均匀;灌木林木本植物种类及个体丰富,多样性较高,草本植物种类少,均匀度高。不同林分间的p多样性均不高,而空间异质性较高。
     3.林木单株生物量,樟树(16年生)为7.99 kg、杨树(25年生)189.49 kg、梓木(38年生)43.97 kg、刺槐(38年生)58.82 kg、亮叶桦(10年生)9.54 kg、意杨(10年生)7.03 kg、马尾松(8年生)5.56 kg、麻栎(38年生)173.21 kg、红枫(11年生)1.98 kg、日本晚樱(5年生)5.13 kg;林分生物量为樟树林15.18 t·hm-2、杨树林105.36 t·hm-2、刺槐+梓木林83.65 t·hm-2、亮叶桦+意杨林4.03 t·hm-2、马尾松林2.60 t·hm-2、麻栎林129.04 t·hm-2、红枫林4.95 t·hm-2、日本晚樱林12.82 t·hm-2;6种林分中,林下灌木层生物量为1288.56—7264.14 kg·hm-2、其中地上部生物量占54.77%—83.51%,地下部分生物量占16.49%—39.73%;林下草本层生物量为556.49—9494.98 kg·hm-2;林地死地被物生物量为946.17—9672.29 kg·hm2;基本上存在由未分解层向半分解层和已分解层迁移的趋势。
     林分生产力为樟树林2.862 t·hm-2·a-1、杨树林12.124 t·hm-2·a-1、刺槐+梓木林11.548 t·hm-2·a-1、亮叶桦+意杨林0.988 t·hm-2·a-1、马尾松林0.325 t·hm-2·a-1、麻栎林9.379 t·hm-2·a-1、红枫林1.696 t·hm-2·a-1、日本晚樱林5.526 t·hm-2·a-1。在喀斯特环境条件下,营造的人工林是成功的。
     4.自然生长的灌木林林分生物量为12461.00 kg-hm-2,生物量在组成物种的分配上存在不均匀状态,在空间上具有较大的异质性。地上部分多分枝的茎与近地的树冠生物量为8420.27 kg·hm-2,占林分总生物量的67.57%,地下部分盘根错节的根系生物量为4040.74 kg·hm-2,占32.43%;林下草本植物种类仅6种,生物量为3745.14 kg·hm-2,占灌木林总生物量的23.11%;死地被物层生物量6597.11 kg·hm-2,未分解层己向半分解层和已分解层迁移。灌木林是喀斯特地区一种特殊的森林类型。
     5.喀斯特城市主要树种碳平均含量分别为:樟树585.72 g·kg-1、杨树533.90 g·kg-1、马尾松483.46 g·kg-1、麻栎544.54 g-kg-1、梓木547.71g-kg-1、刺槐521.21 g·kg1、亮叶桦549.07 g-kg-1、意杨553.43 g-kg-1、红枫492.54 g·kg-1、日本晚樱524.94 g·kg-1。
     林下灌木层碳平均含量分别为:樟树林538.80 g-kg-1、杨树林528.08g·kg-1、马尾松林519.55 g-kg-1、刺槐+梓木林516.44 g·kg-1、麻栎林520.27g·kg-1、亮叶桦+意杨林522.90 g-kg-1、灌木林512.31 g·kg-1。
     林下草本层碳平均含量分别为:樟树林388.07 g·kg-1、杨树林335.14g·kg-1、马尾松林432.09 g·kg-1、麻栎林451.63 g·kg-1、刺槐+梓木林408.84g·kg-1、亮叶桦+意杨444.06 g·kg-1、灌木林465.59 g-kg-1。
     林下死地被物层碳平均含量为:樟树林、杨树林、马尾松林、麻栎林、刺槐+梓木林、亮叶桦+意杨林、灌木林,分别为518.98、562.17、410.78、376.26、451.67、394.97、370.43 g·kg-1。
     6.8种林分乔木层的碳贮量樟树林8.94 t·hm-2、杨树林59.84 t·hm-2、马尾松林1.27 t·hm-2、麻栎林71.60 t·hm-2、刺槐+梓木林46.36 t·hm-2、亮叶桦+意杨林2.26 t·hm-2、红枫林2.47 t·hm-2、日本晚樱林6.78 t·hm-2。
     7种林分林下灌木层碳贮量樟树林、杨树林、马尾松林、麻栎林、刺槐+梓木林、亮叶桦+意杨林、灌木林分别为0.72、3.93、0.79、1.06、2.41、3.11、6.37 t·hm-2。
     林下草本层碳贮量樟树林、杨树林、马尾松林、麻栎林、刺槐+梓木林、亮叶桦+意杨林、灌木林分别为0.32、0.19、1.26、1.07、4.32、1.59、1.73 t·hm-2。
     林下死地被物层和土壤层碳贮量。死地被物层碳贮量,杨树林为3.27t·hm-2、樟树林0.50 t·hm-2、马尾松林3.90 t·hm-2、麻栎林1.96 t·hm-2、刺槐+梓木林1.15 t·hm-2、亮叶桦+意杨林1.05 t·hm-2、灌木林2.56 t·hm-2。
     土壤层碳贮量中杨树林、樟树林、马尾松林、麻栎林、灌木林、刺槐+梓木林、亮叶桦+意杨林分别为121.26、115.37、122.69、74.91、77.68、111.00、112.15t·hm-2。
     7.7种森林生态系统碳贮量为:樟树林125.85 t·hm-2、杨树林188.49t·hm-2、马尾松林129.91 t·hm-2、麻栎林150.60 t·hm-2、刺槐+梓木林165.24t·hm-2、亮叶桦+意杨林120.16 t·hm-2、灌木林88.34 t·hm-2。
     各森林生态系统中碳贮量主要由植被层、死地被物层和土壤层组成,按各组成层的碳贮量大小排序均为:土壤层>植被层>死地被物层。
     贵阳市8种森林的年净固碳量为23.866 t·hm-2·a-1、其中樟树林为1.676 t·hm-2·a-1、占7.02%,杨树林6.473 t·hm-2·a-1、占27.12%,马尾松林0.157 t·hm-2·a-1、占0.66%,麻栎林5.107 t·hm-2·a-1、占21.40%,红枫林0.835 t·hm-2.a-1、占3.50%,日本晚樱林2.901 t·hm-2·a-1、占12.16%,刺槐+梓木林6.172 t·hm-2·a-1、占25.86%,亮叶桦+意杨林0.545 t·hm-2·a-1、占2.28%。森林年净固碳量与林分年龄、生产力及生物学特性紧密相关。
     8.喀斯特贵阳市森林面积据不完全统计约187228.80 hm2(不含经济果品类面积)总碳储量为2243.59万t,其中樟树林为10.31万t,占0.46%,杨树林20.53万t,占0.92%,马尾松林1073.03万t,占47.82%,麻栎林91.06万t,占4.06%,刺槐+梓木林371.59万t,占16.5%,亮叶桦+意杨林81.93万t,占3.65%,灌木林595.14万t,占26.53%。表明在喀斯特地区典型的城市森林地段,碳吸存功能在维持和改善当地的生态环境中发挥了极大的作用。
A city is a relatively large, central and densely populated urban area and is also an important place of human activities. Being "lungs of the city", urban forests play a significant functioning role in sustainable development of cities. Urban forests provide beautiful living environments, recreational areas for people and moderate local microclimates for human habitats. They purify air, sunlight and water, while they reduce stormwater runoff, energy costs and unhealthful substances. As a result, there has been a growing and wide-ranging demand for better understandings of the structure, function and services provided by urban forests in the past years.
     Guizhou Province in China is located in the center of the Southeast Asian karst region where karst landform is most developed in the world. The karst area within Guiyang, the capital city of Guizhou Province, accounts for 85% of the total urban area of the city. The Guiyang city, the first forested city in China, is also one of the best vegetated cities in karst areas across over the world, and is so-called a'wonder of green" in karst landform. In this study, the physical and chemical properties of soils, biomass production, stand productivity and carbon storage were investigated in main nine forest types in Guiyang city. The overall objective of the project is to study the basic structural characteristics of selected nine urban forest types developed in karst areas and provide scientific references for sustainable management of the unban forests.The main results showed:
     1. The soil in the study sites was acid and belongs to yellow earth with pH values of 4.68-5.33. The bulk density of soil ranged 0.92-1.16 g·cm-3; soil water content 22.9-40.9%; total soil porosity 56.2-65.2%, and soil organic matter content 25.1-33.0 g.kg-1. Overall, the forest soils in Guiyang city are characteristics of appropriate acid-basic scale, better structure and aggregation, adequate moisture and high organic matter content, which provide a suitable medium for vegetation growth.
     2. The species richness index was 2.140 in Poplar forests,1.528 in Black Locust (Robinia pseudoacacia L.) and Ovate Catalpa (Catalpa ovata G.Don.) mixed-forests and 1.905 in Scrub forests. The Shannon-Wiener diversity index was 2.361,2.285 and 1.118, simpson's Diversity Index 0.839, 0.888 and 1.000, evenness index 0.802,0.920 and 0.042, ecological dominance 0.161,0.111 and 0.086 for the three forest types, respectively.β-diversity index was in an order as Black Locust and Ovate Catalpa mixed-forests and Scrub forests (0.345)> Poplar forests and Scrub forests (0.286)> Poplar forests and Black Locust and Ovate Catalpa mixed-forests (0.200). In Poplar forests and Black Locust and Ovate Catalpa mixed-forests, a relative simple structure was found in tree layer with distinct dominate species, while high species diversity and evenness index and no apparent dominate species were found in understory (the shrub and herb) layer within these forests. In Scrub forests, woody vegetation species were richness with high diversity indexes, but there were less herb vegetation species with even distribution.β-diversity index was relative low in all studied forests, meaning there was a relative high special heterogeneity among different urban forest types.
     3. Average biomass of individual trees was 7.99 kg in Camphor trees (Cinnamomum camphora (L.) Presl) (16 year-old),189.49 kg in Poplar trees (25 year-old),43.97 kg in Ovate Catalpa trees (38 year-old),58.82 kg in Black Locust trees (38 year-old),9.54 kg in Betula luminifera trees (Betula luminifera H. Winkl.) (10 year-old),7.03 kg in Italian Poplar trees (Populus euramevicana cv.'I-214') (10 year-old),5.56 kg in Masson pine trees (Pinus massoniana Lamb) (8 year-old),173.21 kg in Sawtooth Oak trees (Quercus acutissima Carr.) (38 year-old),1.98 kg in Red Maple trees(Acer rubrum L.) (11 year-old), and 5.13 kg in Cherry Blossom trees (Prunus yedoensis Matsum.) (5 year-old).
     The mean stand biomass was 15.15 t·hm-2 in Camphor forests,105.36 t-hm"2 in Poplar forests,83.65 t·hm-2 in Black Locust and Ovate Catalpa mixed-forests,4.03 t·hm-2 in Betula luminifera and Italian Poplar mixed-forests,2.60 t·hm-2 in Masson pine forests,129.04 t·hm-2 in Sawtooth Oak forests,4.95 t·hm-2 in Red Maple forests, and 12.82 t·hm-2 in Cherry Blossom forests. Within the six forest types, biomass in shrub layer ranged 1288.56-7264.14 kg·hm-2, of which aboveground biomass accounted for 54.8-83.5% and belowground for 16.5-39.7% of the total biomass. Biomass was 556.49-9494.98 kg·hm-2 and 946.17-9672.29 kg·hm-2 in herbivorous layer and dead litter layer, respectively.
     Stand productivity was 2.86 t·hm-2·a-1 in Camphor forests,12.12 t·hm-2·a-1 in Poplar forests,11.55 t·hm-2·a-1 in Black Locust and Ovate Catalpa mixed-forests,0.99 t·hm-2·a-1 in Betula luminifera and Italian Poplar mixed-forests,0.33 t·hm-2·a-1 in Masson pine forests,9.38 t·hm-2·a-1 in Sawtooth Oak forests,1.70 t·hm-2·a-1 in Red Maple forests, and 5.53 t·hm-2·a-1 in Cherry Blossom forests.
     4. The mean biomass in the Scrub forests was 12461.00 kg·hm-2, of which aboveground biomass accounted for 67.6%(8420.27 kg·hm-2) and belowground biomass accounted for 32.4%(4040.74 kg·hm-2). Only six herbivorous species were found with the Scrub forests with a mean biomass of 3745.14 kg·hm-2, which accounted for 23.1% of the total biomass in the forests. The Scrub forest was a specific forest type in the karst regions.
     5. The mean concentration of carbon in the main tree species in the karst urban forests was 585.72 g·kg-1 in Camphor trees,533.90 g·kg-1 in Poplar trees,483.46 g·kg-1 in Masson pine trees,544.54 g·kg-1 in Sawtooth Oak trees,547.71 g·kg-1 in Ovate Catalpa trees,521.21 g·kg-1 in Black Locust trees,549.07 g-kg"1 in Betula luminifera trees,553.43 g·kg-1 in Italian Poplar trees,492.54 g·kg-1 in Red Maple trees, and 524.94 g·kg-1 in Cherry Blossom trees.
     On average, the concentration of carbon in the shrub layer was 538.80 g·kg-1 in Camphor forests,528.08 g·kg-1 in Poplar forests,519.55 g·kg-1 in Masson pine forests,516.44 g·kg-1 in Black Locust and Ovate Catalpa mixed-forests,520.27 g·kg-1 in Sawtooth Oak forests,522.90 g·kg-1 in Betula luminifera and Italian Poplar mixed-forests, and 512.31 g·kg-1 in Scrub forests.
     The mean concentration of carbon in the herbivorous layer was 388.07 g·kg-1 in Camphor forests,335.14 g·kg-1 in Poplar forests,432.09 g·kg-1 in Masson pine forests,451.63 g·kg-1 in Sawtooth Oak forests,408.84 g·kg-1 in Black Locust and Ovate Catalpa mixed-forests,444.06 g·kg-1 in Betula luminifera and Italian Poplar mixed-forests, and 465.59 g·kg-1 in Scrub forests.
     The average concentration of carbon in dead litter layer was 518.98, 562.17,410.78,376.26,451.67,394.97, and 370.43 g·kg-1 in the Camphor forests, Poplar forests, Masson pine forests, Sawtooth Oak forests, Black Locust and Ovate Catalpa mixed-forests, Betula luminifera and Italian Poplar mixed-forests, and Scrub forests, respectively.
     6. Carbon storage in the tree layer was 8.94 C t·hm-2 in Camphor forests,59.84 C t·hm-2 in Poplar forests,1.27 C t·hm-2 in Masson pine forests,71.60 C t-hm-2 in Sawtooth Oak forests,46.36 C t·hm-2 in Black Locust and Ovate Catalpa mixed-forests,2.26 C t·hm-2 in Betula luminifera and Italian Poplar mixed-forests,2.47 C t·hm-2 in Red Maple forests, and 6.78 C t·hm-2 in Cherry Blossom forests.
     Carbon storage in the shrub layer was 0.72,3.93,0.79,1.06,2.41,3.11, and 6.37 C t·hm-2 in the Camphor forests, Poplar forests, Masson pine forests, Sawtooth Oak forests, Black Locust and Ovate Catalpa mixed-forests, Betula luminifera and Italian Poplar mixed-forests, and Scrub forests, respectively.
     Carbon storage in the herbivorous layer was 0.32,0.19,1.26,1.07, 4.32,1.59, and 1.73 C t·hm-2 in the Camphor forests, Poplar forests, Masson pine forests, Sawtooth Oak forests, Black Locust and Ovate Catalpa mixed-forests, Betula luminifera and Italian Poplar mixed-forests, and Scrub forests, respectively.
     Carbon storage in the dead litter layer was 3.27,0.50,3.90,1.96,1.15, 1.05, and 2.56 C t·hm-2 in in the Camphor forests, Poplar forests, Masson pine forests, Sawtooth Oak forests, Black Locust and Ovate Catalpa mixed-forests, Betula luminifera and Italian Poplar mixed-forests, and Scrub forests, respectively.
     Carbon storage in the soils was 121.26,115.37,122.69,74.91,77.68, 111.00, and 112.15 C t·hm-2 in the Camphor forests, Poplar forests, Masson pine forests, Sawtooth Oak forests, Scrub forests, Black Locust and Ovate Catalpa mixed-forests, Betula luminifera and Italian Poplar mixed-forests, respectively.
     7. At ecosystem levels, carbon storage was 125.85,188.49,129.91, 150.60,165.24,120.168, and 8.34 C t·hm-2 in the Camphor forests, Poplar forests, Masson pine forests, Sawtooth Oak forests, Black Locust and Ovate Catalpa mixed-forests, Betula luminifera and Italian Poplar mixed-forests, and Scrub forests ecosystems, respectively.
     Carbon storage was mainly accumulated in the vegetation, dead litter and soil components in the forest ecosystems. The carbon storage in different components was in an order soil> vegetation> dead litter.
     Annual carbon sequestration in the eight forest types in the Guiyang city was 23.866 C t·hm-2·a-1, of which 7.02% was in Camphor forests (1.676 C t·hm-2·a-1),27.12% in Poplar forests (6.473 C t·hm-2·a-1),0.66% in Masson pine forests (0.157 C t·hm-2·a-1),21.40% in Sawtooth Oak forests (5.107 C t·hm-2·a-1),3.50% in Red Maple forests (0.835 C t·hm-2·a-1), 12.16% in Cherry Blossom forests (2.901 C t·hm-2·a-1),25.86% in Black Locust and Ovate Catalpa mixed-forests (6.172 C t·hm-2·a-1) and 2.28% in Betula luminifera and Italian Poplar mixed-forests (0.545 C t·hm-2·a-1). Annual carbon sequestration capacity was closely related to stand ages, stand productivities and the biological features of the tree species.
     8. The forested area was estimated to be about 187228.80 hm2 in the karst areas in the Guiyang city (excluding economic and fruit orchards in the karst areas). Therefore, the total carbon storage in the forested area was estimated to be 2243.59×10-4 C t, of which 10.31×10-4 C t was in Camphor forests (accounting for 0.46% of the total carbon storage),20.53×10-4 C t in Poplar forests (0.92%),1073.03×10-4 C t in Masson pine forests (47.82%),91.06×10-4 C t in Sawtooth Oak forests (4.06%),371.59×10-4 C t in Black Locust and Ovate Catalpa mixed-forests (16.5%),81.93×10-4 C t in Betula luminifera and Italian Poplar mixed-forests (3.65%), and 595.14×10-4 C t in Scrub forests (26.53%).
     The results from the study indicated that the afforestation projects had been successful in the karst areas in Guiyang city. Our results also demonstrate that urban forests in the karst regions play an important role in terms of carbon sequestration and improvement of local environments.
引文
[1]马世骏,王如松.社会-经济-自然复合生态系统[J].生态学报,1984,4(1):1-9.
    [2]国家统计局.国际统计年鉴2008.北京:中国统计出版社,2008,23-35.
    [3]世界银行.迈进21世纪1999-2000年世界发展报告.北京:中国财政经济出版社,2000,5-78.
    [4]张敦富.城市经济学原理[M].北京:中国轻工业出版社,2005,19-30
    [5]Rudi Drigo and Fabio Salbitano. Analysis of Wood Energy and Urbanization Using. WISDOM Methodology,2008,26.
    [6]彭镇华,王成.我国城市林业发展总体规划的研究.中国城市森林建设理论与实践.北京:中国林业出版社,2006,510-514.
    [7]张庆费,徐绒娣.城市森林建设的意义和途径探讨[J].大自然探索,1999,18(2):82-86.
    [8]李锋,刘旭升,王如松.城市森林研究进展与发展战略[J],生态学杂志,2003,22(4):55-59.
    [9]俞孔坚,李迪华,李伟.论大运河区域生态基础设施战略和实施途径[J],地理科学进展,2004,23:117.
    [10]张庆费,徐绒娣.城市森林建设的意义和途径探讨[J],大自然探索,1999,18(2):82-86.
    [11]Melvin J. Banghman.The Role of Government in Urban Forestry in the S. Town Mceting Forestry[M].1980.
    [12]库恩.科学革命的结构[M].李宝恒等译.上海:上海科学技术出版社,1980.
    [13]樊宝敏,李智勇.中国古代的城市森林与人居生态建设[J].中国城市林业,2005,3(1):57-61
    [14]Johnston M. The early development of urban forestry in Britain:Part 1[J]. Arboricultural Journal,1997,21:107-126.
    [15]Konijnendijk C.C, Randrup T.B., Nilsson K.Urban Forestry Research in Europe: An Overview. Journal of Arboriculture,2000,26(3):152-161.
    [16]彭镇华.中国城市森林[M].北京:中国林业出版社,2003:18-23.
    [17]孙冰,粟娟,谢左章.城市林业的研究现状与前景[J].南京林业大学学报,1997,21(2):83-88.
    [18]王术林.城市林业的研究与发展[J].林业科学,1995,31(5):46.
    [19]张庆费.城市绿地系统生物多样性保护的策略探讨[J].城市环境与城市生态,1999,12(3):36-38.
    [20]刘殿芳.现代城市承需城市森林一城市环境畅想曲(二).1999.环境,(9).9.
    [21]张鼎华.城市林业[M].中国环境科学出版社.2001,
    [22]朱文泉,何兴元,陈玮城市森林研究进展[J].生态学杂志,2001,20(5)
    [23]王义文.城市森林理论与指标体系的研究.见:何兴元等.城市森林研究进展.北京:中国林业出版社,2002,9-30.
    [24]张建国.城市森林的经营管理.城市林业,2003,1(2):29-33.
    [25]刘殿芳.城市森林初探.国土与自然资源研究.1997,(3):47-50.
    [26]曾晓阳.成都市城市森林的近自然植物群落配置模式研究[D].2009.
    [27]朱守谦.喀斯特森林生态研究[M].贵阳:贵州省科技出版社,1993.1-2.
    [28]张洪江.土壤侵蚀原理[M].北京:中国林业出版社,2000.140-141.
    [29]张喜,薛建辉,生原喜久雄,等.黔中山地喀斯特森林的水文学过程和养分动态[J].植物生态学报,2007,31(5):757-768.
    [30]袁道先,蒋忠诚IGCP397“岩溶作用与碳循环”在中国的研究进展[J].水文地质工程地质,2000,(1):49-51.
    [31]袁道先.全球岩溶生态系统对比:科学目标和执行计划[J].地球科学进展,2001,16(4):461-466.
    [32]王世杰.喀斯特石漠化—中国西南最严重的生态地质环境问题[J].矿物岩石地球化学通报,2003,22(2):120-126.
    [33]Sweeting M M. Reflections on the development of Karst geomorphology in Europe and a comparison with its development in China[J]. Z. Ceomoph.1993, 37:127-136.
    [34]刘元生.贵州喀斯特生态脆弱区土地资源评价[A].迈向21世纪的土壤科学.贵州省卷[C].北京:科学出版社,1995.181-183.
    [35]王德炉,朱守谦,黄宝龙.石漠化过程中土壤理化性质变化的初步研究[J].山地农业生物学报,2003,22(3):204-207.
    [36]张殿发,王世杰,周德全,等.贵州省喀斯特地区土地石漠化的内动力作用机制[J].水土保持通报,2001,21(4):1-5.
    [37]龙健,江新荣,邓启琼,等.贵州喀斯特地区土壤石漠化的本质特征研究[J].土壤学报,2005,42(3):419-427.
    [38]杨成华,王进,戴晓勇,等.贵州喀斯特石漠化地段的植被类型[J].贵州林业科技,2007,35(4):7-12.
    [39]朱守谦.喀斯特森林生态研究[J].喀斯特森林生态研究(Ⅱ)[M].贵阳:科技出版社,1997:1-8.
    [40]袁道先.论岩溶环境系统[J].中国岩溶,1988,7(3):179-186.
    [41]屠玉麟.贵州喀斯特森林的初步研究[J].中国岩溶,1989,8(4):282-290.
    [42]周政贤.茂兰喀斯特森林科学考察集.贵阳:贵州人民出版社,1987.
    [43]蔡桂鸿.南方岩溶农业生态环境初步探讨[J].中国岩溶,1988,7(1):1-8.
    [44]彭少麟.南亚热带森林群落动态学.北京:科学出版社,1996.84-99.
    [45]徐樵利.中国南方石灰岩荒山开发利用新探.自然资源学报,1993,8(2):115-121.
    [46]喻理飞,朱守谦,叶镜中,等.人为干扰与喀斯特森林群落退化及评价研究[J].朱守谦.喀斯特森林生态研究(Ⅲ).贵阳:贵州科技出版社,2003:205-211.
    [47]朱守谦,喻理飞.喀斯特森林生态研究框架.朱守谦.喀斯特森林生态研究(Ⅲ).贵阳:贵州科技出版社,2003:3-10.
    [48]陈训.贵阳市第二环城林带建设与研究[M].贵阳:贵州科技出版社,2007:272-303.
    [49]胡志斌等.沈阳市城市森林结构与效益分析[J].应用生态学报,2003,14(12),2108-2112.
    [50]Leith H.R.H, Whittaker. Primary Productivity of Biosphere[M]. Berlin:Springer Verlag,1975.
    [51]方精云.全球生态学—气候变化与生态响应[M].北京:高等教育出版社2000.
    [52]潘维俦,李利村,高正衡.两个不同地域类型杉木林的生物产量和营养元素分布[J].湖南林业科技,1979,9(4):1-14.
    [53]冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J).林业科学,1982,18(2):127-134.
    [54]田大伦,潘维俦.马尾松林干材阶段生物产量和径阶分化及密度效应初探[J].植物生态学与地植物学丛刊,1986,10(4):294-301.
    [55]叶镜中,姜志林.苏南岳陵杉木人工林的生物量结构[J].生态学报,1983,3(1):7-14.
    [56]余新妥,陈存及,林思祖.福建杉木人工林生态系统生物量的初步研究.林业科技资料(Ⅰ),福建林学院,1979,46-65.
    [57]朱守谦,杨世逸.杉木生产结构及生物量的初步研究.林业科技资料,贵州林学院,1978,1-14.
    [58]李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究[J].森林生态系统研究(试刊),1981,34-50.
    [59]冯林.内蒙古地区油松、白桦、山杨生物量的研究.内蒙古林学院学报,1981, (3):1-17.
    [60]陈灵芝,陈清朗,鲍显诚.北京山区的侧柏林及其生物量研究.植物生态学与地植物学学报,1986,10(1):17-24.
    [61]徐振邦.长白山阔叶林红松林生物生产量的研究.中国科学院长白山森林生态系统定位站主编.森林生态系统研究,1988.
    [62]吴刚,冯宗炜.中国油松林群落特征及生物量的研究[J].生态学报,199414(4):415-422.
    [63]韩有志,李玉娥,等.华北落叶松人工林林木生物量的研究[J].山西农业大学学报,1997,17(3):278-283.
    [64]杨东,杨秀琴.甘肃武都五凤山林区油松人工林的生物量和生产力研究[J].西北师范大学学报(自然科学版),2004,40(1):70-75.
    [65]索安宁,巨天珍,张俊华,等.甘肃小陇山锐齿栋群落生物量动态研究[J].生态学杂志,2005,24(4):377-381.
    [66]党承林,吴兆录.季风长绿阔叶林短刺拷群落的生物量研究[J].云南大学学报(自然科学版),1992,14(2):95-107.
    [67]俞益武,施德法,蒋秋怡,等.杭州木荷次生林生物量的研究.浙江林学院学报,1993,10(2):157-161.
    [68]吴兆录,党承林,和兆荣.滇西北黄背栋林生物量和净第一性生产力的初步研究.云南大学学报(自然科学版),1994,16(3):245-249.
    [69]彭少麟,张祝平.鼎湖山地带性植被生物量生产力和光能利用率.中国科学((B辑),1994,24(5):497-502.
    [70]温达志,魏平,孔国辉,等.鼎湖山锥栗+黄果厚壳桂+荷木群落生物量及其特征.生态学报,1997,17(5):497-504.
    [71]蚁伟民,张祝平,丁明慰,等.鼎湖山格木群落的生物量和光能利用效率[J].生态学报,2000,20(2):397-403.
    [72]张光富,宋永昌.浙江天童苦储+白栋灌丛群落的生物量研究.武汉植物学研究,2001,19(2):101-106.
    [73]冯志立,郑征,张建侯,等.西双版纳热带湿性季节雨林生物量及其分配规律研究.植物生态学报,1995,22(6):481-455.
    [74]郑征,冯志立,曹敏,等.西双版纳原始热带湿性季节雨林生物量及净初级生产[J].植物生态学报,2000,24(2):197-203.
    [75]郑蓉,吴新才,翁金珊,等.黄甜竹林生长量和鲜笋营养成分的研究[J].福建林学院学报,1999,19(1):65-68.
    [76]董文渊,黄宝龙,谢泽轩,等.笨竹无性系种群生物量结构与动态研究[J].林 业科学研究,2002,15(4):416-420.
    [77]陈礼光,郑郁善,姚庆端,等.沿海沙地造绿竹林生物量结构[[J].福建林学院学报,2002,22(3):249-252.
    [78]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    [79]周剑芬.基于生物量的城市森林生态系统服务功能价值评估——以白云山为例[D].中山大学,2007.
    [80]吴泽民,黄成林,白林波,等.合肥城市森林结构分析研究[J].林业科学,2002(4):7-13.
    [81]杨义波,安太国.长春市主要广场城市森林结构的研究[J].长春大学学报,2005 15(6).
    [82]IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle: implication for the Koyoto Protocol[J]. Science,1998,280:1393-1394.
    [83]国家林业局西北森林资源监测中心.甘肃省森林资源连续清查第四次复查成果资料(2005年修订)[M].兰州:甘肃省林业厅,2005
    [84]潘维俦,田大伦;李利村,等.杉木人工林养分循环的研究(一)不同生育阶段杉木林的产量结构和养分动态[J].中南林学院学报,1981(1):1-21.
    [85]林文鹏,王臣立,赵敏,等.基于森林清查和遥感的城市森林净初级生产力估算[J].生态环境,2008,17(2):766-770.
    [86]Kirschbaum, M. U. F. Cen W. A forest growth model with linked carbon, energy, nutrient and water cycles. Ecological Modelling,1999,118:17-59.
    [87]蒋有绪.中国森林生态系统结构与功能规律[M].北京:中国林业出版社,1996.
    [88]张新时.研究全球变化的植被-气候分类系统[J].第四纪研究,1993,157-169.
    [89]Landsberg, J.J, S.T. Gower. Applications of physiological ecology to forest management. Academic Press,1997,125-160.
    [90]CRAMER W, FIELD C B. Comparing global models of terrestrial net primary productivity (NPP):Introduction[J]. Global Change Biology,1999a,5(Suppl.1): in-iv.
    [91]CRAMER W, KICKLIGHTER D W, BONDEAU A. Comparing global models of terrestrial net primary productivity (NPP):overview and key results[J]. Global Change Biology,1999b,5(Suppl.1):1-15.
    [92]Rowantree R A. Ecology of the urban forest. Introduction to part II.Urban.
    [93]李海梅,刘常富,何兴元.沈阳市行道树树种的选择与配置[J].生态学杂 志.2003,22(5):157-160.
    [94]柳林.秦巴山区中小城市绿化树种资源现状及生态绿化对策[J].内蒙古大学学报(自然科学版).2005,35(5):586-590.
    [95]卢俊培,吴仲民.尖峰岭热带林的植物化学特征[J].林业科学研究,1991,4(1):1-9
    [96]沈善敏.中国土壤肥料.北京:中国农业出版社,1998
    [97]陶其骧.机肥和化肥配比研究.土壤通报,1986,17(2):57-61
    [98]张璐.施肥对作物养分浓度及分布的影响.应用生态学报,2000,11(增刊):8-12
    [99]Lodhiyal Neelu, Lodhiyal L S. Aspects of nutrient cycling nutrient use pattern of Bhaba Shisham forests in central Himalaya, India. Forest Ecology and Management,2003,176(1-3):237-252
    [100]聂道平.森林生态系统营养元素的生物循环[J].林业科学研究,1993,30(1):34-42
    [101]沈作奎,杨新光,徐伟声.中国主要森林群落营养元素循环的区域分异[J].湖北民族学院学报(自然科学版),1999,17(2):44-46
    [102]刘广全,土小宁,倪文进.锐齿栋森林生态系统主要营养元素的层次分布[J].西北植物学报,2001,21(2):237-246
    [103]邹春静,徐文铎,侯凤莲.长白松人工林生态系统营养元素的分配格局和积累规律[J].应用生态学报,1996,7(1):6-10
    [104]莫江明,SandraBrown,孔国辉,等.鼎湖山马尾松林营养元素的分布和生物循环特征[J].生态学报,1999,19(5):635-640
    [105]曾曙才,苏志尧,古炎坤,等.广州白云山风景名胜区主要林分类型凋落物的研究[J].应用生态学报,2003,14(1):154-156
    [106]田大伦,项文化,康文星.马尾松人工林微量元素生物循环的研究[J].林业科学,2003,39(4):1-8.
    [107]张希彪,上官周平.黄土丘陵区油松人工林与天然林养分分布和生物循环比较[J].生态学报,2006,26(2):373-382.
    [108]Kimmins J P. Forest Ecology. New York:Macmillan Publishing Company, 1987.85-92.
    [109]刘增文,李雅素.黄土残塬沟壑区刺槐人工林生态系统的养分循环通量与平衡分析[J].生态学报,1999,19(5):630-634.
    [110]王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力[J].生态学杂志,2000,19(4):72-74.
    [111]校现周,罗世巧,许闻献,等.微割对橡胶无性系PR107产量及生理状况的影响[J].热带作物学报,1999,20(1):9-13.
    [112]刘实忠,许闻献,蔡世英,等.橡胶树导胶后引起的生理生化变化研究[J].热带作物学报,2000,21(1):8-14.
    [113]White JG, Zas oski RJ. Mapping soilmicr onutrients. Field Crops Research, 1999,60:11-26.
    [114]Jiang Y, LiangW-J, Wen D-Z. Middle and Microelements in Cultivated Soils of Shenyang Suburbs[M]. Beijing:China Agricultural Science and Technology Press,2003.
    [115]刘广全,土小宁,倪文进.锐齿栋森林生态系统主要营养元素的层次分布[J].西北植物学报,2001,21(2):237-246.
    [116]邹春静,徐文铎,侯凤莲.长白松人工林生态系统营养元素的分配格局和积累规律[J].应用生态学报,1996,7(1):6-10.
    [117]曾曙才,苏志尧,古炎坤,等.广州白云山风景名胜区主要林分类型凋落物的研究[J].应用生态学报,2003,14(1):154-156.
    [118]丁宝永.红松人工林调落物营养元素分析[J].植物研究,1986,6(4):161-175.
    [119]甘健民,薛敬意,谢寿昌.云南哀牢山常绿阔叶林土壤渗漏水养分研究[J].地理科学,1997,17(3):237-242.
    [120]辛学兵,王景生,翟明普.西藏色季拉山冷杉林生态系统养分的淋溶输出研究[J].林业科学研究,2004,17(1):6-11.
    [121]Wetselaar R, Farquhar G D. Nitrogen losses from tops of plants[J]. Advances in Agronomy,1980,33:263-302.
    [122]程伯容,张金.长白山北坡针叶林下土壤淋洗液及土壤性质的初步研究[J].土壤学报,1991,28(4)::372-381.
    [123]张万儒.我国森林土壤研究的进展[J].土壤,1991,23(4):214-217.
    [124]何园球,王明珠,赵其国,等.我国热带亚热带森林土壤的水热动态[J].土壤,1988,20(5):225-231.
    [125]姜勇.森林生态系统微量元素循环及其影响因素[J].应用生态学报,2009,20(1):197-204.
    [126]曹建华,李小波,赵春梅.森林生态系统养分循环研究进展[J].热带农业科学,2007,27(6):68-79.
    [127]Regina IS, Tarazona T. Nutrient return to the soil through litterfall and through fall under beech and pine stands of Sierra de la Demanda, Spain[J]. Arid Land Research and Management,2000,14:239-252.
    [128]Hagen Thorn A, Varnagiryte I, Nihlga B, et al. Autumn nutrient resorption and losses in four deciduous forest trees pecies[J]. Forest Ecology and Management,2006, (228):33-39.
    [129]杨烨.森林生态系统养分循环的研究[J].林业建设,2008,(2):55-58.
    [130]Wardle D A, Bardgett R D, Klironomos J N, et al. Ecological linkages between aboveground and belowground biota[J]. Science,2004,304:1629-1633.
    [131]陈东立,余新晓,廖邦洪.中国森林生态系统水源涵养功能分析[J].世界林业研究,2005,18(1):56-60.
    [132]Rengel Z. Cycling of micronutrients in terrestrial ecosystems//Marschner P, Rengel Z, eds. Nutrient Cyc2ling in Terrestrial Ecosystems. Berlin:Sp ringer2 Verlag,2007:93-121
    [133]Yin X-Q, Li J-X, DongW-H. Microelement contents of litter, soil faunaand soil in Pinus koraiensis and broadleaved mixed forest[J]. Chinese Journal of Applied Ecology,2007,18 (2):277-282.
    [134]方精云,任梦华.北极陆地生态系统的碳循环与全球温暖化[J].环境科学学报,1998,18(2):113-118.
    [135]Marschner H, Kirkby E A, Engels C. Importance of cycling and recycling of mineral nutrients within plants for growth and development. Botanica Acta, 1997,110:265-273.
    [136]于恩娜,王金贵,初宝顺.凋落物及其在森林生态中的作用[J].现代农业科技,2009,1:286-288.
    [137]Vogt K A, Grier C C, Vogt D J, et al. Production, turnover, and nutrient dynamics of above- and below-ground detritus of world forests. Advances in Ecological Research,1986,15:303-377.
    [138]李凌浩,林鹏,邢雪荣.武夷山甜槠林细根生物量和生长量研究[J].应用生态学报,1998,9(4):337-340.
    [139]杨玉盛,陈光水,谢锦升,等.杉木—观光木混交林群落N、P养分循环的研究[J].植物生态学报,2002,26(4):473-480.
    [140]Tobon C, Sevink J, Verstraten J M. Solute fluxes in throughfall and stemflow in four forest ecosystems in northwest Amazonia[J]. Biogeochemistry,2004, (70):1-25.
    [141]唐万鹏,刘学军,张新叶,等.宜昌市城市森林生态系统建设技术[J].东北林业大学学报,2002,30(3):135-140.
    [142]吴志英.江苏下蜀城市森林生态系统定位研究成果通过鉴定[J].林业科技开发,2004,18(4):9.
    [143]俞元春,阮宏华,费世民.苏南丘陵森林凋落物量及养分归量[A].见:姜志林主编.下蜀森林生态系统定位研究论文集[C].北京:中国林业出版社1992,50-55.
    [144]Dale V H. Terrestrial CO2 Flux:The challenge of interdisciplinary research. In: Dale V Hed. Effects of land-use change on atmospheric CO2 concentrations. New York:Springer-Verlag,1994,1-14.
    [145]Houghton J T, Meira Filho L g, Callander B A, et al. eds. Climate Change 1995: The Science of Climate Change. Cambridge University Press,1996,444-481.
    [146]Woodwell G D, Mackrnzie F T, Houghton R A, et al. Biotic feedbacks in the warming of the earth. Climate Change,1998,40:495-518.
    [147]Tans P P, Fung I Y and Takahashi T. Observational constraints on the global atmospheric CO2 budget. Science,1990,247:1431-1438.
    [148]Cao M K and Woodward F I. Dynamics responses of terrestrial ecosystem carbon cycling to global climate change. Nature,1998,393:249-252.
    [149]Woodwell G D, Mackrnzie F T, Houghton R A, et al. Biotic feedbacks in the warming of the earth. Climate Change,1998,40:495-518.
    [150]Valentini R, Matteucii G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests. Nature,2000,404:861-864.
    [151]Waring R.H, Running S.W. Forest Ecosystem, Analysis at Multiple Scales.2nd edition, Academic Press, San Diego,1998.
    [152]Kurz W A, Apps M J. Contribution of northern forest to the global carbon cycle:Canada as a case study, Water. Air and Soil Pollution,1993,70:163-176.
    [153]Kimble, J M, Heath, L S, Birdsey, R A, et al.2002. The potential of U. S. Forest soils to sequester carbon and mitigate the greenhouse effect. CRC /Lewis, Boca Raton,FL.429 PP.
    [154]Holmen K. The global carbon cycle[A]. In:Butcher et al (eds.). Global Biogeochemical Cycles[C]. San Diego:Academic Press,1992.239-262.
    [155]Houghton R A, Skole D L. Carbon[A]. In:The earth as transformed by human action. In:Turner et al (eds.). The Global Carbon Cycles[C].New York:John Wiley,1979:129-181.
    [156]Olson J S, Carbon in live vegetation of major World Ecosystem, Report ORNT.5862.Oak Ridge National Laboratory.1983.
    [157]Daily, G.C.eds. Nature's Sevrices:Societal Dependence on Natural Ecosystems[M]. Island Press, washingtonD.C1997,1-10.
    [158]孙刚,盛连喜,周道玮.生态系统服务及其保护策略[J].应用生态学报,1999,10(3):365-368.
    [159]肖英,刘思华,王光军.湖南4种森林生态系统碳汇功能研究[J].湖南师范大学学报自然科学版,2010,3(33):124-128
    [160]Sedjo R A. The carbon and global forest ecosystem[J].Water, Air and Soil Pollution,1993,70:295-307.
    [161]Dixon R K, Brown S, Houghton R A, et al.Carbon pools and flux of global forest ecosystems[J]. Science,1994,263,185-190.
    [162]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    [163]李克让,王绍强,曹明奎.中国植被和土壤碳贮量.中国科学[D辑],2003,33(1):72-80.
    [164]方精云,刘国华.中国陆地生态系统碳库[M].中国科学技术出版社,1996,251-267.
    [165]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16.
    [166]于贵瑞.全球变化与陆地生态系统碳循环与碳蓄积[M].北京:气象出版社2003,199-123.
    [167]赵敏,丁慧勇,高峻.城市森林固C02价值评估[J].生态经济,2007(8):143-145.
    [168]应天玉,李明泽,范文义.哈尔滨城市森林碳储量的估算[J].东北林业大学学报,2009(37):33-35.
    [169]Brown S, Pearson T. Methods Manual for Measuring Terrestrial Carbon[M]. Winrock International.2005
    [170]金峰,杨浩,蔡祖聪等.土壤有机碳密度及储量的统计研究[J].土壤学报,2001,38:522-528
    [171]中国科学院南京土壤研究所.土壤理化分析[M].上海:科学技术出版社,1978.
    [172]康永祥,康博文,刘建军,等.陕北黄土高原文冠果群落结构及物种多样性.生态学报,2010,30(16):4328-4339.
    [173]马克平,刘玉明.生物群落多样性的测度方法α多样性测度方法(下)[J].生物多样性,1994,2(4):231-239.
    [174]马克平.生物群落多样性的测定方法Ⅰ.α多样性的测度方法(上)[J].生物多样性,1994,2(3):162-168.
    [175]Magurran A E. Ecological Diversity and Its Measurement[M]. New Jersey: Princeton University Press,1988.
    [176]UNEP. The State of World Population in 1999[M]. New York:United Nations Publications,1999:76.
    [177]崔晓阳,方怀龙.城市绿地土壤及管理[M].北京:中国林业出版社,2001:64-65.
    [178]管东升,何坤志,陈玉娟.广州城市绿地土壤特征及其对树木生长的影响[J].环境科学研究,1998,11(4):51-54.
    [179]JIM C Y. Physical and Chemical properties of a Hong Kong roadside soil in relation to urban tree growth[J]. Urban Ecosyst,1998,2:171-181.
    [180]张喜,薛建辉,生原喜久雄,等.几种主要元素在黔中山地喀斯特森林内的流动和分配[J].东北林业大学学报,2007,35(7):22-26.
    [181]张明,张凤海.茂兰喀斯特森林下的土壤[J].周正贤.茂兰喀斯特森林科学考察集[M].贵阳:贵州人民出版社,1987:111-123.
    [182]刘为华,张桂莲,徐飞,等.上海城市森林土壤理化性质[J].浙江林学院学报,2009,26(2):155-163.
    [183]高述超,田大伦,闫文德,等.长沙城市森林土壤理化性质及碳贮量特征[J].中南林业科技大学学报,2010,30(9):16-22.
    [184]李志洪,赵兰波,窦森.土壤学[M].北京:化学工业出版社,2005.80-86.
    [185]BRADY N C. The Nature and Properties of soils(10 ed)[M]. New York:Mac Millan,1990.
    [186]JIM C Y. Soil characteristics and management in an urban in Hong Kong[J]. Environ Manage,1998,22(5):683-695.
    [187]黄金国.洞庭湖区湿地退化现状及保护对策[J].水土保持研究,2005,12(4)261-263.
    [188]Czech B, Krausman PR, Devers PK. Economic associations among causes of species endangerment in the United States[J]. Biology Science,2000,50:593-260.
    [189]李意德,方洪,罗文,等.海南尖峰岭国家级保护区青皮林资源与乔木层群落学特征[J].林业科学,2006,42(1):1-6.
    [190]许涵,李意德,骆土寿,等.尖峰岭热带山地雨林不同更新林的群落特征[J].林业科学,2009,45(1):14-20.
    [191]游水生.不同人为干扰强度对米槠林乔木层组成和物种多样性的影响[J].林业科学,2001,37(sp.1):106-110.
    [192]郑元润.森林群落稳定性研究方法初探[J].林业科学,2000,36(5):28-32.
    [193]陈廷贵,张金屯.山西关帝山神尾沟植物群落物种多样性与环境关系的研究[J].应用与环境生物学报,2000,6(5):406-411.
    [194]董希斌,姜帆.帽儿山不同森林类型生物多样性恢复效果分析[J].林业科学,2008,(12):77-82.
    [195]兰思仁.武夷山国家级自然保护区植物物种多样性研究[J].林业科学,2003,39(01):36-43.
    [196]张丽霞,张峰.上官铁梁.芦芽山植物群落的多样性研究[J].生物多样性,2000,8(4):361-369.
    [197]马克平.试论生物多样性的概念[J].生物多样性,1993,1(1):20-22.
    [198]石登红,曾亚军,彭惠蓉,等.贵阳二环林带生物多样性现状及展望.贵州科学,2007,25(3):64-68.
    [199]陈亮,王绪高.生物多样性与森林生态系统健康的几个关键问题生态学杂志2008,27(5):816-820.
    [200]王雪梅,曲建升,李延梅,等.生物多样性国际研究态势分析.生态学报2010,30(4):1066-1073.
    [201]陈灵芝.生物多样性保护对策[A].生物多样性研究的原理和方法[C].北京:中国科学技术出版社,1994.13-15
    [202]汪永华,陈北光,苏志尧.物种多样性研究的进展.生态科学,2009,19(3):50-54.
    [203]王世雄,王孝安,李国庆,等.陕西子午岭植物群落演替过程中物种多样性变化与环境解释.生态学报,2010,30(6):1638-1647.
    [204]董希斌,姜帆.帽儿山不同森林类型生物多样性恢复效果分析[J].林业科学,2008,(12):77-82.
    [205]兰思仁.武夷山国家级自然保护区植物物种多样性研究[J].林业科学,2003,39(01):36-43.
    [206]陈攀,慎佳泓,胡广,等.西湖风景名胜区不同类型森林群落的空间分布及β多样性.生态学报,2009,29(6):2930-2937
    [207]陈志辉,王克林,陈洪松,何寻.喀斯特环境移民迁出区植物多样性研究[J].中国生态农业学报,2008,16(3):723-727.
    [208]方精云,沈泽昊,唐志尧,等.“中国山地植物物种多样性调查计划”及若干技术规范[J].生物多样性,2004,12(1):5-9.
    [209]毛志宏,朱教君,谭辉.辽东山区次生林植物物种组成及多样性分析[J].林业科学,2007,43(10):1-7.
    [210]Bai F, Sang W G, Li G Q, et al. Long-term protection effects of national reserve to forest vegetation in 4 decades:biodiversity change analysis of major forest types in Changbai Mountain Nature Reserve, China. Science in China Series C:Life Sciences,2008,51(10):948-958.
    [211]Masashi O. Species richness of Cerambycidae in larch plantations and natural broad-leaved forests of the central mountainous region of Japan[J]. Forest Ecology and Management,2004,189(1-3):375-385.
    [212]Phillips OL, Hall P, Gentry A H, et al. Dynamic and species richness of tropical rain forests[J]. Proceedings of the National Academy Sciences,1994, 91:2805-2809.
    [213]SAnchez O, Islebe G A. Tropical forest communities in southeastern Mexico[J]. Plant Ecology,2002,158:183-200.
    [214]Zheng Z, Feng Z L, Cao M, et al. Forest structure and biomass of a tropical seasonal rain forest in Xishuangbanna, Southwest China[J]. Biotropica,2006, 38 (3):318-327.
    [215]Magurran AE. Ecological Diversity and Its Measurement[M]. New Jersey: Princeton University Press.1988.
    [216]郭正刚,刘慧霞,孙学刚,等.白龙江上游地区森林植物群落物种多样性的研究[J].植物生态学报,2003,27(3):388-395.
    [217]周本智,傅懋毅,李正才,等.浙西北天然次生林群落物种多样性研究[J].林业科学研究,2005,18(4):406-411.
    [218]李春义,马履一,徐昕.抚育间伐对森林生物多样性的影响研究进展[J].世界林业研究,2006,19(6):27-32.
    [219]马履一,李春义,王希群,等.不同强度间伐对北京山区油松生长及其林下植物多样性的影响[J].林业科学,2007,43(5):1-9.
    [220]张继义,赵哈林,张铜会,等.科尔沁沙地植被恢复系列上群落演替与物种样性的恢复动态[J].植物生态学报,2004,28(1):86-92.
    [221]周择福,王延平,张光灿.五台山林区典型人工林群落物种多样性研究[J].西北植物学报,2005,25(2):321-3271.
    [222]杨汉奎,程任泽.贵州茂兰喀斯特森林群落生物量研究[J].生态学报,1991,11(4):307-312.
    [223]喻理飞,朱守谦,叶镜中,魏鲁明,陈正仁.退化喀斯特森林自然恢复评价研究 [J].林业科学,2000,36(6):12-19.
    [224]李援越,祝小科,朱守谦.退化喀斯特群落自然恢复程度评价[J].南京林业大学学报,2003,27(4):31-34.
    [225]王德炉,朱守谦,黄宝龙.贵州喀斯特区石漠化过程中植被特征的变化[J].南京林业大学学报,自然科学版,2003,27(3):26-30.
    [226]龙翠玲.喀斯特森林林隙梯度物种多样性变化规律[J].广西植物,2008,28(1):57-61.
    [227]司彬,姚小华,任华东,李生,何丙辉,黔中喀斯特植被自然演替过程中物种组成及多样性研究———以贵州省普定县为例,林业科学研究,2008,21(5):669-674
    [228]陈坤浩,谢永贵,沈有信,余刚国.黔西北喀斯特区植被自然恢复演替过程中物种多样性研究安徽农业科学,2009,37(23):11076-11078,11083
    [229]马克平,黄建辉,于顺利,等.北京东灵山地区植物群落多样性的研究[J].生态学报,1995,15(3):269-277.
    [230]张丽霞,张峰.上官铁梁芦山植物群落的多样性研究[J].生物多样性,2000,8(4):361-369.
    [231]张峰,张金屯,上官铁梁.历山自然保护区猪尾沟森林群落植物多样性研究.植物生态学报,2006,30(3):392-402
    [232]李先琨;吕仕洪;蒋忠诚;何成新;陆树华;向悟生;欧祖兰;.喀斯特峰丛区复合农林系统优化与植被恢复试验[J].自然资源学报,2005,20(1):92-98
    [233]WANG Xunming, LI JiJun, DONG GuangRong, etal. Responses of desertification to variations in wind activity over the past five decades in arid and semiarid areas in China[J]. Chinese Science Bulletin,2008,53(3):426-433
    [234]Etienne Tedonkeng Pamo. Community Production Practices And Desertification In The Sahelo-Sudanian Region of Cameroon At The Turn of The Millennium[J]. Environmental Monitoring and Assessment,2004,99: 197-210.
    [235]Zhou Guangsheng, WANG Yuhui. Global change and climate-vegetation classification. Chinese Science Bulletin,2000,45(7):577-585.
    [236]XU Xingkui, CHEN Hong. Influence of vegetations and snow cover on sand-dust events in the west of China. Chinese Science Bulletin,2006,51 (3): 331-340.
    [237]阳小成,陈章和,周先叶.黑石顶山区植被恢复过程中物种多样性的变化成都理工大学学报(自然科学版),2008,35(2):220-223.
    [238]李文华.森林生物生产量的概念及其研究的基本途径[J].自然资源,1980,(1):71-92.
    [239]潘维俦,李利林,高正衡,等.杉木人工林生态系统中的生物产量及其生产力的研究[J].中南林科技,1978,(2):2-14.
    [240]冯宗炜,张家武,邓仕坚.我国亚热带湖南桃源杉木人工林生态系统生物量的研究[A].见:中国科学院林业土壤研究所主编.杉木人工林生态学研究论文集[C].北京:科学出版社,1980:173-188.
    [241]朱守谦,杨世逸.杉木生产结构及生物量初步研究[J].贵州农学院农业科技资料,林业报告专辑(一),1978,(5):1-9.
    [242]冯宗炜,陈楚莹,张家武,等.不同自然地带杉木林的生物生产力[J].植物生态学与地植物学丛刊,1984,8(2):93-100.
    [243]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    [244]崔浪军,梁宗锁,韩蕊莲,等.沙棘—杨树混交林生物量、林地土壤特性及其根系分布特征研究[J].林业科学,2003,39(6):1-7.
    [245]魏媛,喻理飞,张金池.喀斯特地区不同干扰条件下构树种群生物量构成[J].南京林业大学学报(自然科学版),2007,31(1):123-127.
    [246]刘琪璟.嵌套式回归建立树木生物量模型[J].植物生态学报,2009,33(2):331-337.
    [247]康冰,刘世荣,蔡道雄,等.南亚热带杉木林生态系统生物量和碳素积累及其空间分布特征[J].林业科学,2009,45(8):147-153.
    [248]刘其霞,常杰,江波,等.浙江省常绿阔叶林生态公益林生物量[J].生态学报,2005,25(9):2139-2144.
    [249]潘维俦,田大伦.森林生态系统第一性生产量的测定技术与方法[J].湖南林业科学,1981,(2):1-12.
    [250]谌小勇,项文化,钟建德.湿地松人工林生物产量的密度效应[J].森林生态系统定位研究(刘煊章主编).北京:中国林业出版社,1993.53-59.
    [251]谌小勇,彭元英,康文星.亚热带常绿阔叶林黄杞木荷群落生物量和生产力的研究[J].森林生态系统定位研究(刘煊章主编).北京:中国林业出版社.1993.68-72.
    [252]侯学煜.中国植被地理及优势植物化学成分[M].北京:科学出版社,1982.
    [253]谷向生,牛广忠,闫永玲.高效灌木林可持续发展对策[J].防护林科技,2005,(1):67-68.
    [254]何方.中国中亚热带荒漠化及其防治[J].中国水土保持,2003,(5):12-14.
    [255]向艳辉.万峰山自然保护区灌木林特点及保护开发意见[J].林业调查规划,2004,29(2):57-60.
    [256]Lieth H, Whittaker R H. Primary productivity of the biosphere[M]. New York: Springer Verlag,1975.
    [257]郑绍伟,唐敏,邹俊辉,等.灌木群落及生物量综述[J].成都大学学报(自然科学版).2007,26(3):189-192.
    [258]溥发鼎.岷江上游生态学现状及生物多样性保护[J].资源科学,2000,22(5):83-85.
    [259]王恩苓.加快干旱、半干旱地区灌木林发展[J].防护林科技,2004,(1):22-24.
    [260]宁杨翠,郑小坚,孔令红.北京市八达岭林场灌木林结构分析[J].林业资源管理,2009,(6):54-58.
    [261]俞海生,李宝年,张宝文,等.灌木林主要生态作用的探讨[J].内蒙古林业科技,2003,(4):15-18.
    [262]吕文,王春峰,王国盛,等.中国林木生物质能源发展潜力研究(2)[J].中国能源,2005,(12):29-33.
    [263]尹伟伦,翟明普.开发西部能源灌木资源实现生态能源双赢战略[J].科学中国人,2007,(4):36-37.
    [264]陈遐林,马钦彦,康峰峰,等.山西太岳山典型灌木林生物量及生产力研究[J].林业科学研究,2002,(3):304-309.
    [265]曾慧卿,刘琪璟,马泽清,等.千烟洲灌木生物量模型研究[J].浙江林业科技,2006,(1):13-17.
    [266]李清河,江泽平,张景坡,等.灌木的生态特征与生态效能的研究与进展[J].干旱区资源与环境,2006,(2):159-164.
    [267]高晋东.黄土丘陵区生态经济型灌木林营造模式[J].林业科技开发,2008,(2):101-102.
    [268]赵中华,袁士云,惠刚盈,等.甘肃小龙山5种不同灌木林改造模式对比分析[J].林业科学研究,2008,(2):262-267.
    [269]闫文德,田大伦,何功秀.湖南会同第二代杉木人工林乔木层生物量的分布格局[J].林业资源管理,2003,(2):5-6,12.
    [270]吴鹏飞,朱波,桤柏混交林林下植被结构及生物量动态[J].水土保持通报,2008,28(3):44-48.
    [271]Chapin F S Ⅲ. Nitrogen and Phosphorus nutrition and nutrition cycling by evergreen and deciduous understory shrubs in an Alaskan black spruce forests. Canadian Journal of Forest Research,1983,13(5):773-781.
    [272]Chastain R A Jr, Currie W S, Townsend P A. Carbon sequestration and nutrient cycling implications of the evergreen understory layer in Appalachian forests. Forest Ecology and Management,2006,231(1-3):63-77.
    [273]褚建民,卢琦,崔向慧,等.人工林林下植被多样性研究进展.世界林业研究,2007,20(3):9-13
    [274]袁正科,田育新,李锡泉,等.缓坡梯土幼林林下植被覆盖与水土流失.中南林学院学报,2002,22(2):21-24
    [275]刘苑秋,罗良兴,杨国平,等.退化红壤重建森林林下植被恢复及其环境影响分析.江西农业大学学报,2004,26(5):695-699
    [276]Fabiao A, Martins M C, Cerveira C, et al. Influence of soil and organic residue management on biomass and in a Eucalyptus globules Labill. plantation. Forest Ecology and Management,2002,171(1-2):87-100.
    [277]Kume A, Satomura T, Tsuboi N, et al. Effects of understory vegetation on the ecophysiological characteristics of and overstory pine, Pinus densiflora. Forest Ecology and Management,2003,176(1-3):195-203.
    [278]Taylor A H, Jang S W, Zhao L J, et al. Regeneration patterns and tree species coexistence in old-growth Abies-Picca forests in southwestern China. Forest Ecology and Management,2006,223(1-3):303-317.
    [279]李春义,马履一,王希群,等.抚育间伐对北京山区侧柏人工林林下植物多样性的短期影响.北京林业大学学报,2007,29(3):60-66
    [280]段劫,马履一,贾黎明,等.抚育间伐对侧柏人工林及林下植被生长的影响.生态学报,2010,30(6):1431-1441
    [281]冯宗炜,陈楚莹,王开平,等.亚热带杉木纯林生态系统中营养元素的积累、分配和循环的研究.植物生态学与地植物学丛刊,1985,9(4):245-255
    [282]方升佐,徐锡增,吕士行.杨树定向培育[M].合肥:安徽科学技术出版社,2004.
    [283]吴泽民,孙启祥,陈美工.安徽长沙滩地杨树人工林生物量和养分积累[J].应用生态学报,2001,12(6):806-810.
    [284]方精云,刘国华,徐嵩龄.中国陆地生态系统碳循环.见:王庚晨,温玉璞主编.温室气体浓度和排放监测及相关过程.北京:中国环境科学出版社,1996:109-128.
    [285]Fang J Y, Chen A P. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science,2001,262:2320-2323.
    [286]Marland G. The prospect of solving the carbon dioxide problem forestation. U.S. Department of Energy. DOE/NBB-0082, OaK Ridge National caboratory. TN,1998.
    [287]Kokhugina. Tatyana P, Ted S. Vinson. Comparison of two methods to assess the carbon budget biomass in the former soviet Union[J]. Water. air. And soil pollution,1993,70:207-221.
    [288]阮宏华,姜志林,高苏铭.苏南丘陵区主要森林类型碳循环研究—含量与分布规律[J].生态学杂志,1997,16(6):17-21.
    [289]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    [290]王效科,冯宗炜.中国森林生态系统中植被固定大气碳的潜力[J].生态学杂志,2000,19(4):72-74.
    [291]方精云,陈安平.中国森林植被碳库的动态变化及意义[J].植物学报,2001,43(9):967-973.
    [292]方晰,田大伦,项文化.速生杉木人工林碳素含量、贮量和分布[J].林业科学,2002,38(3):14-19.
    [293]Ambient M. Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes[J]. Agricultural and Forest Meteorology,2001,108(4): 293-315.
    [294]毛子军.森林生态系统碳平衡估测方法及其研究进展[J].植物生态学报,2002,26(6):731-738.
    [295]莫江明,方运霆,彭少麟,等.鼎湖山南亚热带常绿阔叶林碳素积累和分配特征[J].生态学报,2003,23(10):1970-1976.
    [296]赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,24(1):50-54.
    [297]焦秀梅,项文化,田大伦.湖南省森林植被的碳贮量及其地理分布规律[J].中南林学院学报,2005,25(1):4-8.
    [298]孙玉军,张俊,韩爱惠,等.兴安落叶松(Iarixgmelini)幼中龄林的生物量与碳汇功能[J].生态学报,2005,27(5):1756-1761.
    [299]肖复明,张群,范少辉.中国森林生态系统碳平衡研究[J].植物生态学报,2002,26(6):731-738.
    [300]沈文德,马钦彦,刘允芬.森林生态系统碳收支状况研究进展[J].江西农业大学学报,2006,28(2):312-317.
    [301]郑金兴,刘小飞,高人,等.福建南平35a生楠木林生态系统碳库及分配[J].亚热带资源与环境学报,2009,4(4):59-65.
    [302]黄从德,张健,杨万勤,等.四川人工林生态系统碳储量特征[J].应用生态学报,2008,19(8):1644-1650.
    [303]田大伦,方晰.湖南会同杉木人工林生态系统的碳素含量[J].中南林学院学报,2004,24(2):1-5.
    [304]田大伦,方晰,项文化.湖南会同杉木人工林生态系统的碳素含量[J].生态学报,2004,24(11):2382-2386.
    [305]张国庆,黄从德,郭恒,等.不同密度马尾松人工林生态系统碳储量空间分布格局[J].浙江林学院学报,2007,27(6):10-14.
    [306]Dixon R K, Brown S, Houghton RA, et al. Carbon pools and flux of global forest ecosystems[J]. science,1994,263:185-190.
    [307]Silver WL, Ostertang R, Lugo AE. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands[J]. Restoration Ecology.2000,8:394-407.
    [308]Christopher S G, Robert B J. Risks to forest carbon offset projects in a changing climate[J]. Forest Ecology and Management,2009,257:2209-2216.
    [309]康冰,刘世荣,蔡道雄,等.南亚热带杉木林生态系统生物量和碳素积累及空间分布特征[J].林业科学,2009,45(8):147-153.
    [310]徐飞,刘为华,任文玲,等.上海城市森林群落结构对固碳能力的影响[J].生态学杂志,2010,29(3):439-447.
    [311]管东生,陈玉娟,黄芬芳.广州城市绿地系统碳的贮存、分布及其在碳氧平衡中的作用[J].中国环境科学,1998,18(5):437-441.
    [312]刘常富,赵爽,李玲,等.沈阳城市森林固碳和污染物净化效益初探[J].西北林学院学报,2008,23(4):56-61.
    [313]彭立华,陈爽,刘云霞,等.Citygreen模型在南京城市绿地固碳与削减径流效益评估中的应用[J].应用生态学报,2007,18(6):1293-1298.
    [314]Brack CL. Pollution mitigation and carbon sequestration by an urban forest[J]. Environmental Pollution,2002,116:195-200.
    [315]Nowak DJ, Crane DE. Carbon storage and sequestration by urban tree in the USA[J]. Environmental pollution,2002,116:381-389.
    [316]康文星,赵仲辉,田大伦,等.广州市红树林和滩涂湿地生态系统与大气二氧化碳交换[J].应用生态学报,2008,19(12):2605-2610.
    [317]雷丕锋,项文化,田大伦,等.樟树人工林生态系统碳素贮量与分布研究[J].生态学杂志,2004,23(4):25-30.
    [318]李晓曼,康文星.广州市城市森林生态系统碳汇功能研究[J].中南林业科技 大学学报,2008,28(1):9-13.
    [319]苏继申,庄家尧,顾叶,等.南京城市森林固碳制氧效益研究[J].林业科林开发,2010,24(3):49-52.
    [320]彭镇华.林网化与水网化—中国城市森林建设理念[J].中国城市林业,2003,2:4-5.
    [321]吴际友,叶道碧,王旭军.长沙市城郊森林土壤酶活性及其与土壤理化性质的相关性[J].东北林业大学学报,2010,38(3):97-99.
    [322]黄从德,张健,杨万勤,等.四川森林土壤有机碳储量的空间分布特征[J].生态学报,2009,29(3):1217-1225.
    [323]La I R. Soil carbon sequestration inpacts on global climate change and food security[J]. Science.2004,304:1623-1627.
    [324]王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,18(4):349-356.
    [325]La I R. Forest soils and carbon sequestration[J]. Forest Ecology and Management,2005,220:242-258.
    [326]Baties NH. Total carbon and nitrogen in the soils of the World[J]. European Journal of soil science.1996,47:151-163.
    [327]徐飞,刘为华,任文玲,等.上海城市森林群落结构对固碳能力的影响.生态学杂志,2010,29(3):439-447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700