用户名: 密码: 验证码:
自动化驼峰纵断面优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着铁路快速发展,路网上编组站需重新布局规划,作为编组站的核心调车设备,驼峰的设计是首先涉及的问题。驼峰设计的合理与否对于提高驼峰解体能力,调车作业安全,减少工程投资,运营费用乃至提高编组站整体作业效率都有着十分重要的作用。
     驼峰纵断面设计是驼峰设计中的一项主要内容。本文针对目前传统驼峰纵断面设计中存在的问题,以采用“减速器+减速顶”点连式调速系统自动化驼峰为研究对象,在传统驼峰设计理论以及现有研究成果的基础上,运用系统科学,最优化理论,综合评价技术等方法从优化设计方面对驼峰的各组成部分纵断面设计进行了研究。
     (1)通过分析推送部分的作业特点以及工程和运营要求,从保证驼峰解体效率、作业安全以及减少工程费用出发,建立了推送部分纵断面多目标优化模型。结合模型的特点运用NSGA-Ⅱ多目标遗传算法进行求解,得到了问题的Pareto解集合。
     (2)分析了溜放部分的作业特点和钩车溜行状态对各坡段设计的要求,以及设计的工程和运营要求,综合考虑能力、效率、费用和安全,建立了溜放部分纵断面多目标优化模型。同样地,运用NSGA-Ⅱ多目标遗传算法进行求解,得到了问题的Pareto解集合。
     (3)分析了连挂区纵断面不同于溜放部分纵断面的设计特点,根据钩车在该部分溜行状态的要求,考虑效率及投资,建立了连挂区纵断面多目标优化模型。根据模型的特点,提出采用方案比选法对备选的坡度组合方案以及坡长匹配比例关系进行分析计算,确定出了最优坡度组合方案以及最佳坡长匹配比例关系方案。
     (4)分析了驼峰调车作业中超速连挂、追钩撞车及侧面冲突两类主要调车事故的影响因素。根据驼峰系统的特点以及贝叶斯网络的优点,分别建立了超速连挂事故和追钩撞车及侧面冲突的贝叶斯网络模型。运用贝叶斯网络模型的推理法则求得各影响因素的后验概率,找出影响事故的主要因素。鉴于超速连挂事故是最常发生的调车事故以及目前新型重载车辆的使用,本文进一步对新型重载车辆所引起的超速连挂共因失效问题进行了分析,建立了共因失效混合贝叶斯网络模型,计算分析了新型重载车辆对超速连挂事故的影响程度以及对既有驼峰的适应性。
Along with railway's rapidly developing, the distribution of the marshalling stations on the railway network should be re-planed. As their key shunting equipment, hump design is the critical part firstly involved. It plays an important role in enhancing the hump's wagon stock disintegrating capacity, ensuring the shunting operation safety, reducing the project investment, cutting the railway operation costs, and promoting the comprehensive operational efficiency.
     Vertical section design of hump is a main task for the hump design. Therefore, this thesis takes the methods to reasonably design the whole hump vertical section as its research objective on the conditions of the point-continued speed control system with reducers and retarders. To do so, based on the conventional design theory and the existing research results, the thesis takes the deficiency of the conventional design method into account, uses the system science, optimization theory, and comprehensive evaluation techniques.
     (1) A multi-objective optimizing model for designing the hump pushing section has been established according to the results analyzing the operational characteristics, the construction and operation requirements to the section in order to maintain the higher hump disintegrating efficiency, to ensure the operation safety, to reduce the constructing costs. Furthermore, a Pareto solution set is obtained with NSGA-ⅡMulti-objective genetic algorithm.
     (2) A multi-objective optimizing model for designing the humping section has been established according to the results analyzing the operational characteristics of the section, the requirements for the car group's running to the different slope segments of the section, the requirements of the construction and operations, with its humping capacity, operational efficiency, costs and safety taken into account. Also, its Pareto solution set is achieved with the NSGA-ⅡMulti-objective genetic algorithm.
     (3) A multi-objective optimization model for designing the coupling section has been established according to the results analyzing the different characteristics between the coupling section and the humping section of hump, the requirements for the car group humping status to the section, with the operational efficiency it will have and the construction costs taken into account. Based on the characteristics of the model, the thesis puts forward a scheme comparison method on analyzing and calculating the candidate schemes on grade combination and slope length combination to select the best matched slope length proportion.
     (4) The effecting factors of two kinds of shunting accidents:over-speed coupling accidents, the rear-end collision and side collision accidents, are analyzed, and the Bayesian network models on the two accidents are established respectively in line with hump-system's characteristics and the merits of Bayesian network. Then with the inference rule of the Bayesian network model, the posterior probabilities of the main factors are obtained. Since the over-speed coupling is the common accidents, and more and more newly-built heavy-haul cars are put into operation, the thesis also puts one of its research emphases on the over-speed coupling caused by the heavy-loaded cars, and a Bayesian mixture network of common cause failures is set up to calculate and analyze the impact degree of the heavy-haul cars to the over-speed coupling accidents and the adaptability to the existing hump.
引文
[1]吴芳.铁路运输设备[M].北京:中国铁道出版社,2006.
    [2]刘其斌,马桂贞.铁路车站及枢纽设计[M].北京:中国铁道出版社,2002.
    [3]刘彦邦,曹宏宁,王能豪.现代化驼峰设计[M].北京:中国铁道出版社,1995.
    [4]吴家豪.国外铁路编组站[M].北京:中国铁道出版社,1982.
    [5]吴岳南.世界主要国家铁路驼峰现代化的发展近况及趋向[J].世界铁路,1992,2:1-5.
    [6]朱明瑞.我国铁路驼峰编组站调速自动化发展概况[J].减速顶与调速技术,1993,1:2-6.
    [7]伶立本.国内外铁路编组站调车设备的发展[J].铁道知识,1982,2:24-25.
    [8]Zoran Z. Avrarnovic. Method for evaluating the strength of retarding steps on a marshalling yard hump[J]. European Journal of Operational Research,1995,3 (85):504-514.
    [9]H.Kong.Control Algorithms for Rail retarders and Closing-up Devices in Marshalling Yard[J]. Monthly bulletin of the International Railway Congress Association,1969,12.
    [10]P.J.Wong, M.Sakasita, W.A.Stock, C.V.Elliott, M.A.Hackworth. Railroad Classification Yard Technology Manual Volunel Yard Design Methods[J]. SRI international 333 Ravenswood Avenue Menlo Park,CA94025.1981,5.
    [11]James A. W. Innovation in Classification yard Technology[J] proceedings of the Third Railroad Classification yard Workshop. Transportation Research Board.D,20418.1983.
    [12]X-Y Long, Q-C Wei, F-Y Zheng.Dynamic analysis of railway transition curves. Proceedings of the Institution of Mechanical Engineers Part F, Journal of rail and rapid transit,2010,1(224):1-14.
    [13]Knothe K L,Grassic S L.Modelling of Railway Track and Vehicle/Track Interaction at High Frequencies[J].Vehicle System Dynamics,1993,22(3-4):209-262.
    [14]Tanabe,M.,Wakui,H.,Matsumoto,N.,Okuda,H.,Sogabe,M.,Komiya,S.Computational model of a Shinkansen train running on the railway structure and the industrial applications[J].Journal of Material Processing Technology,2003,140(1-3):705-710.
    [15]G.M.Gibreel etc. Prediction of operating speed on three-dimensional highway alignments[J]. Journal of transportation engineering,2001.
    [16]Y.Hassan etc.Establishing practical approach for design consistency evaluation[J]. Journal of transportation engineering,2001.
    [17]Fwa,T.F.,Chan,W.T.,and Sim,Y.P.Optimal Vertical Alignment Analysis for Highway Design[J]. Journal of transportation engineering,2002.
    [18]吴家豪.中国铁路车辆减速顶调速系统设计优化[M].北京:中国铁道出版社,2008.
    [19]杜旭升.滚动轴承车辆溜放阻力的测试及研究(1)[J].减速顶与调速技术,2003,2:11-29.
    [20]杜旭升,高树允.滚动轴承车辆溜放阻力的测试及研究(2)[J].减速顶与调速技术,2003,3:1-26.
    [21]杜旭升,高树允.滚动轴承车辆溜放阻力的测试及研究(3)[J].减速顶与调速技术,2003,4:1-9.
    [22]崔立言.我国驼峰调速系统方案探讨[J].铁道运输与经济,1983,9:5-7.
    [23]吴家豪.我国减速顶调速系统发展的十年回顾[J].减速顶与调速技术,1985,1.2:3-10.
    [24]仲崇本,徐正利.驼峰调速系统点连式式方案的研究[J].减速顶与调速技术,1985,1.2:11-20.
    [25]吴岳南.减速器-减速顶点连式调速系统在我国的发展和应用[J].铁道学报,1987,2:29-37.
    [26]曹宏宁.功效系数在驼峰调速方式决策中的应用[J].减速顶与调速技术,1995,2:8-12.
    [27]高建南.试论小能力驼峰的现代化[J].减速顶与调速技术,2001,2:17-24.
    [28]王峰.中小驼峰现代化调速制式初探[J].长沙铁道学院学报,1994.1(12):45-51.
    [29]敖云碧.小能力驼峰调速制式及其工程经济述评[J].减速顶与调速技术,1994,1:20-24.
    [30]周宇冠.区段站驼峰设计之浅见[J].铁道勘测与设计,2002,4:19-21.
    [31]曾祥根.小能力驼峰调速系统方案合理选择的探讨[J].减速顶与调速技术,1996,2:14-19.
    [32]陈卓.小能力驼峰调速系统的选择与分析[J].铁道运输与经济,2005,10(27):72-74.
    [33]郑乃明.连点连式调速系统在中小能力驼峰运用的探讨[J].铁道运输与经济,2007,10(29):79-80.
    [34]朱泉绍.减速器与减速顶结合的点连式调速系统在株洲北站的应用[J].减速顶与调速技术,1986,1:40-45.
    [35]扬恩久,尚世文,王旭强.沈阳西站下行编组站目的制动由小车方案改为点连式调速方案的研究[J].减速顶与调速技术,1990,1:9-11.
    [36]杨浩春.关于南仓驼峰车辆溜放调速系统的方案研究[J].减速顶与调速技术,1991,2:27-29.
    [37]马金龙,王继廉.牡丹江站点连式调速系统的应用与研究[J].减速顶与调速技术,1994,1:18-19.
    [38]王勇.赶水站可控顶调速系统的运用与探讨[J].减速顶与调速技术,1999,4:23-24.
    [39]曹文平.用模糊评价法对六里坪站调速系统改造方案进行比选[J].减速顶与调速技术,2002,4:10-13.
    [40]赵明.免渡河站驼峰改造可行性探讨[J].减速顶与调速技术,2004,2:7-9.
    [41]吕佰铨.发展重载运输对编组站既有调速设备提出的新要求[J].减速顶与调速技术,2005,3:5-7.
    [42]胡伟.自动化驼峰调速系统对新型货车溜放速度控制的测试分析[J].铁道运输与经济,2006,11(28):87-88.
    [43]宫振冲.23吨轴重新型货车与既有驼峰的适应性研究[D].北京交通大学,2007.
    [44]茅金官.重载运输条件下减速顶调速系统肋应用研究[J].上海铁道科技,2008,3:5-6.
    [45]杨金福,耿增朝.三开道岔在自动化驼峰中存在的问题及解决办法[J].铁道通信信号设计,1998,1:4]-42.
    [46]周淑嫒,耿颖,张开治.对驼峰峰顶距第一分路道岔距离的研究[J].铁道标准设计,1998,7:23-26.
    [47]陈杰,周丽艳.驼峰平面系统设计初探[J].减速项与调速技术,1997,3:1-3.
    [48]吴家豪.小驼峰线路平面优化设计[J].减速顶与调速技术,1998,2:10-14.
    [49]唐为民.点连式调速系统机械化驼峰溜放纵断面优化设计[J].铁道运输与经济,1995,8:23-24.
    [50]吴家豪.关于自动化驼峰纵断面的设计问题[J].铁道学报,1980,2:23-24.
    [51]刘彦邦.点连式驼峰溜放部分纵断面设计[J].北方交通大学学报,1994,4(18):492-498.
    [52]吴家豪.小驼峰线路纵断面优化设计[J].减速顶与调速技术,1998,3:3-11.
    [53]吴家豪.编组站创新型改编系统的探索[J].减速顶与调速技术,2007,1:1-5.
    [54]吴家豪.驼峰马鞍形溜放纵断面及其调速设备系统设计[J].铁道运输与经济,1987,9:6-10.
    [55]吴家豪.铁路编组站系统设计优化[M].北京:中国铁道出版社,1994.
    [56]秦作睿.现代化驼峰纵断面设计方法的优化[J].北方交通大学学报,1985,1:62-70.
    [57]刘彦邦.驼峰溜放部分纵断面设计程序[J].北方交通大学学报,1982,1:16-29.
    [58]祝庆增,向劲松.点连式驼峰优化设计[J].铁道学报,1990.3(12):16-27.
    [59]张超.中型驼峰制动位合理级数的确定[J].北方交通大学学报,1993,3:12-27.
    [60]张超,李海鹰,刘彦邦.点连式驼峰三级制动位能高计算与分配[J].北方交通大学学报,1997,6(21):632-636.
    [61]陶德高.合理的驼峰方向和峰高的研究[J].铁道学报,1984,4(6):52-67.
    [62]董武,吴若玉.大型编组站驼峰峰高计算参数取值的探讨[J].铁路通信信号工程技术,2007,3(4):40-42.
    [63]周建喜.运用车辆负溜放动态模拟方法确定驼峰峰高[J].减速顶与调速技术,19977,4:16-18.
    [64]张超,刘彦邦,王能豪.点连式驼峰峰高计算中难行车溜放速度的确定[J].铁道学报,1992,3(14):118-120.
    [65]黄宣镌.驼峰溜放部分平均溜放速度的确定[J].铁道运输与经济,1992,7:38-39.
    [66]徐玲.驼峰系统能量及溜车速度理论分析[J].铁道运输与经济,1998,11:37-38.
    [67]吴家豪.驼峰加速坡推送坡及峰顶竖曲线半径的极限值研究[J].铁道运输与经济,1979,1:12-27.
    [68]陈昌鉴.摆线原理与驼峰设计的理论和方法[J].铁道运输与经济,2005,10(27):72-74.
    [69]黄家厚,叶怀珍,高世廉.点式控制小型自动化驼峯纵断面设计理论的研究[J].西南交通大学学报,1979,2:43-51.
    [70]中华人民共和国行业标准编写组..TB10062-99铁路驼峰及调车场设计规范[M].北京:中国铁道出版社,1999.
    [71]张汝熊.也谈驼峰推送部分平均坡度[J].铁道运输与经济,1990,1:35-37
    [72]许升弟.驼峰推送坡计算公式探讨[J].减速顶与调速技术,1993,1:20-22.
    [73]张觉印.驼峰平均推送坡的计算值为什么比实际允许值小很多?[J].铁道运输与经济,1990,5:36-38.
    [74]田红旗.解体重载车列的驼峰推送部分纵断面优化[J].长沙铁道学院学报,1992,3(10):33-39.
    [75]张觉印.脱钩点位置的计算方法及驼峰净平台长度的合理取值范围的探讨[J].中国铁道科学,1991,2(12):88-99.
    [76]阮宏博.基于遗传算法的工程多目标优化研究[D].大连理工大学,2007.
    [77]王鲁.基于遗传算法的多目标优化算法研究[D].武汉理工大学,2006.
    [78]林锉云,董加礼.多目标优化的方法与理论[M].长春:吉林教育出版社,1992.
    [79]傅英定,成孝予,唐应辉.最优化理论与方法[M].北京:国防工业出版社,2008.
    [80]崔逊学多目标优化进化算法及其应用[M].北京:国防工业出版社,2006.
    [81]赵瑞.多目标遗传算法应用的研究[D].天津大学理学院,2005.
    [82]玄光男,程润伟.遗传算法与工程优化[M].北京:清华出版社,2004.
    [83]李引珍,何瑞春,郭耀煌,刘斌.多目标网络相异路径的Pareto解及其遗传算法[J].系统工程学报,2008,3(23):264-268.
    [84]Sehaffer,J. Multiple objective optimization with vector evaluated genetic algorithms[J].Proceedings of the 1st International Conference on Genetic Algorithms, Lawrence Erlbaum,1985:93-100.
    [85]Ishibuchi,H.and T.Murata,A multiobjective gentic local search algorithm and its application to flowshop scheduling.IEEE Transactions on System,Man and Cybernetics,1998,28(3):392-403.
    [86]Murata,T.,H. Ishibuchi,Multiobjective genetic algorithm and its application to flowshop scheduling.Computers and Industeial Engineering,1996,30(4):957-968.
    [87]Srinivas N,DebK.Multi objective Optimization Using Nondominated Sorting in Genetic Algorithms[J].Evolutionary Computation,1994,2(3):221-248.
    [88]Deb K, Agrawal S,Pratap A,Meyarivan T.A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization[J].NAGAII. KanGAL Report No.2000001.Kanpur,lndia:Indian Institute of Teehnology,2000.
    [89]Deb K,Aarawal S,Pratap A,etal.A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA—Ⅱ. Proeeeding of the Parallel Problem Solving from Nature VI Conf,Paria.2000:849-858.
    [90]Minqiang Li,Dan Lin,Shouyang Wang.Solving a type of biobjective bilevel programming problem using NSGA-Ⅱ [J].Computers & Mathematics with Applications.2010,2(59):706-716.
    [91]S. Favuzza,M.G. Ippolito,E. Riva Sanseverino.Crowded comparison operators for constraints handling in NSGA-Ⅱ for optimal design of the compensation system in electrical distribution networks[J].Advanced Engineering Informatics.2006,2(20):201-211.
    [92]Yogendra Kumar.Biswarup Das.Jaydev Sharma.Service restoration in distribution system using non-dominated sorting genetic algorithm[J].Electric Power Systems Research.2006,9(76):768-777.
    [93]黄孝章.编组站计算机辅助设计理论研究及系统实现[D].北方交通大学,1998.
    [94]刘其斌,马桂贞.铁路车站及枢纽(第二版)[M].北京:中国铁道出版社,2002.
    [95]杨献波.基于遗传算法的公路纵断面优化研究[D].东南大学,2006.
    [96]潘登.遗传算法及多目标决策方法在铁路线路整体优化设计中的应用研究[D].中南大学,2007.
    [97]陶德高.驼峰点连式减速顶调速系统的某些设计理论和方法的研究[J].中国铁道学,1987,1(8):34-47.
    [98]侥志明.点连式调速三部位后车辆运动状态分析及优化设计[J].减速顶及调速技术,1992,1:17-22.
    [99]高玺华.关于驼峰调车场合理坡度及减速器控制长度的初探[J].减速顶及调速技术,2001,1:6-8.
    [100]张开治,李群.关于驼峰调速控制中钩车溜行过程几个特殊现象的理论分析[J].减速顶及调速技术,1999,4:10-15.
    [101]邹怀国.点连式调速系统减速顶控制线路纵断面及设备布置设计的思考[J].减速顶与调速技术,2007,4:18-20.
    [102]徐玲.驼峰系统能量及溜车速度理论分析[J].铁道运输与经济,1998,11:37-38.
    [103]卢渝,陶德高.从驼峰系统运营综合测试看驼峰自动化存在的问题[J].减速顶与调速技术,2002,4:1-3.
    [104]黄韧刚.三间房站点连式调速系统事故技术分析[J].减速顶与调速技术,2005,2:23-27.
    [105]赵锟.沈阳铁路局自动化驼峰作业安全性问题研究[D].成都:西南交通大学,2008.
    [106]吕思静,林耀培.柳州南车站驼峰安全连挂分析_减速顶调速部分[J].减速顶与调速技术,2004,2:19-21.
    [107]孟凡峰.徐州北站驼峰解决撞车问题的对策[J].铁道运输与经济,2006,9(28):80-82.
    [108]陈文芳.编组站驼峰解体作业撞车原因分析及对策[J].铁道运输与经济,2007,3(29):31-32.
    [109]张超,宫振冲.23t轴重新型货车对驼峰运营及设计的影响分析[J].减速顶与调速技术,2007,4:12-14.
    [110]刘文涛,张红亮.大轴重货车驼峰溜放超速原因分析与对策[J].铁道运输与经济,2010,3(32):88-90.
    [111]李增瀛.驼峰解体空重混编列车的安全与效率[J].铁道运输与经济,1996,7:25-26.
    [112]虞桂海.提高驼峰空车解体[J].铁道运输与经济,2003,3(25):34-40.
    [113]李少龙.驼峰作业安全与效率关系的探索与实践[J].上海铁道科技,2004,6:13-14.
    [114]谢芝林,谭其敏.加强设备维护管理减少编组站驼峰撞车事故[J].2004年自动化驼峰研讨会论文集,2004:218-220.
    [115]胡敏.向塘西编组站设备性能比较及运营分析[J].铁道运输与经济,2006,4(28):52-53.
    [116]张连文,郭海鹏.贝叶斯网引论[M].北京:科学出版社,2006.
    [117]周忠宝.基于贝叶斯网络的概率安全评估方法及应用研究[D].国防科学技术大学,2006.
    [118]俞树荣,杨慧来.基于贝叶斯网络的长输管道故障树分析[J].石油化工设备,2009,2(38):47-50.
    [119]张仕新,刘昊东.基于故障树的贝叶斯网络模型在装甲车辆中的应用研究[J].车辆与动力技术,2008,3.40-43.
    [120]王广彦,马志军,胡起伟.基于贝叶斯网络的故障树分析[J].系统工程理论与实践,2004,6:78-83.
    [121]赵春华,严新平,赵新泽.基于贝叶斯网络的内燃机故障诊断研究[J].武汉理工大学学报(交通科学与工程版),2005,3(29):335-338.
    [122]杨善林,胡小建.复杂决策任务的建模与求解方法[M].北京:科学出版社,2007.
    [123]A. Bobbio, L. Portinale, M. Minichino, E. Ciancamerla.Improving the analysis of dependable systems by mapping fault trees into Bayesian networks[J]. Reliability Engineering and System Safety 2001,71: 249-260.
    [124]周建方,唐椿炎,许智勇.事件树、故障树、决策树与贝叶斯网络[J].河海大学学报(自然科学版),2009,3(37):351-355.
    [125]I. Maglogiannis, E. Zafiropoulos, A. Platis, C. Lambrinoudakis. Risk analysis of a patient monitoring system using Bayesian Network modeling [J].Journal of Biomedical Informatics 2006,39:637-647.
    [126]Hsien-Chung Wu.Fuzzy reliability estimation using Bayesian approach[J].Computers & Industrial Engineering.2004,46:467-493.
    [127]Heckerman D. Bayesian Network for Data Mining. Data Mining and Knowledge Discovery. 1997,1(1):79-119.
    []28]Antonio Salmeron, Andres Cano, Serafin Moral. Importance sampling in Bayesian networks using probability trees[J]. Computational Statistics & Data Analysis.2000,34:387-413.
    [129]宫振冲.23t轴重新型货车与既有驼峰的适应性研究[D].北京:北京交通大学.2007.
    [130]吕思静.提高驼峰减速器控制精度的方法及建议[J].减速顶与调速技术,2005,1:18-20.
    [131]李岱峰等T.JK T.JY系列车辆减速器[M].北京:中国铁道出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700