用户名: 密码: 验证码:
公路膨胀土路堑边坡的破坏特征及勘察技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调研表明路堑边坡滑坡破坏是我国膨胀土地区公路修筑目前面临主要工程问题,本文选取宁明盆地残积型膨胀土作为研究对象,重点研究了路堑边坡胀縮活动带的变形活动特性及滑坡破坏规律。
     (1)边坡表层的干湿循环影响区其土体含水量常低于塑限,此时蒙脱石以晶格胀缩为主,造成干湿循环影响区土体的严重胀缩变形。对残积型膨胀土的土质微观分析表明,干湿循环影响区土体的蒙脱石矿物含量、比表面积大小、ESP值等呈现随风化深度加大而衰减的总体变化规律,使其具有较高含水量、孔隙比及较低的干密度特征,加之独特的宏微观统一定向组构特征,使得边坡变形及滑坡破坏受到浅层的风化带界面、层理等地质结构面的控制。
     (2)通过对路堑边坡中层理状、节理状胀缩结构面形态要素的统计测量分析及对滑坡面与自然坡面优势坡角赤平投影统计结果的对比分析,基于结构面控制理论建立了残积型膨胀土胀缩活动带的双层活动模型。该模型突破了传统的均匀风化带理论,首次提出了该类边坡存在上部土层和下部风化岩层两个活动带、上部带受A层和B层土分界面控制、下部带受土岩界面及(强、弱)风化带界面控制、下限受上层滞水底界面控制的新认识。
     (3)对开挖边坡坡体侧向变形近一年的跟踪观测,首次非常清晰的观察到了膨胀土边坡侧向变形为一个从“逐渐增大—突变—回缩或暂时稳定”的随季节性气候而演化的过程。突变是在整个雨季边坡累积变形的基础上由一次持续的强降雨过程诱发的。经两次滑坡调查统计建立了台阶式滑坡破坏模式,结合边坡变形观测资料、温度、含水量资料分析及滑坡体与胀缩结构面形态要素的类比分析,建立了残积型膨胀土开挖边坡的双层滑动破坏模型。该模型首次提出并以观测结果验证了残积型膨胀土滑坡破坏受双层胀缩活动控制并具有浅层、渐进、双层滑动和逐次发展的演化规律。这一新认识为解决在广西南宁、百色、宁明、上思等地长期存在的残积型膨胀土路堑边坡滑坡破坏难题及开展柔性支护结构新方法的研究提供了必不可少的地质理论。
     (4)首次通过在浅井中埋入位移传感器对宁明湖相泥岩残积型膨胀土开挖坡表1.0m范围内不同深度土层的相对胀缩变形进行了精确监测,并运用本文提出的时间效应统计分析方法得到了残积型膨胀土开挖斜坡两个不同新生胀縮活动带的深度(即上部土层2.34m,下部风化岩层1.21m)和建立了双层活动带的时效模型。该模型与结构面统计得到的双层活动模型互相印证,直接揭示了有效深度低于1米的边坡传统防护结构在膨胀土路堑边坡防护中失效的原因,并为同类膨胀土路堑边坡的防护设计提供了可靠的宝贵参数。
     (5)用吸力法计算得到的土层及岩层活动带深度(2.12m、1.21m)分别与浅井位移计法观测得到的开挖路堑边坡土层及岩层新生活动带深度对应,印证了双层活动带时效模型的科学性,也说明吸力法得到的就是干湿循环显著影响区深度,是边坡表层土体对短期气候干湿循环作用的响应。浅井位移计法为活动带深度观测提供了一种新的实用方法。
     (6)本文提出的干湿循环显著影响区深度快速勘测新方法,其测试结果具有可重复再现性,并与由湿度系数法、胀缩结构面地质标志法所得结果接近,同时得到了跟踪观测结果的验证,因此,是一种科学方法。由于其比现有方法具有快速、可靠、经济、简便等优点,因而具有极大的推广应用前景。用该法测试结果进行边坡的加固设计将更为经济。
A great number of studies showed that failure of cutting slope is the major problem during the highway construction in the expansive soil area in China at present. The behavior of the residual expansive soil found in Ningming basin has been studied and the deformation characteristics of swell-shrink zone and failure behavior of landslide in this region were investigated by the author.
     Firstly, in slope surface drought-wet cycle affect region the soil water content is often less than the plastic limit, montmorillonite in lattice swell-shrink primarily, causing its serious swell-shrink deformation. Some characteristics of the residual type expansive soil in drought-wet cycle affect region such as microstructure, montmorillonite mineral content, specific surface area size, ESP values, etc had been found will be overall increase decay varied with the weathering depth, make its high moisture content, porosity ratio, low dry density characteristics, coupled with directional fabric in macro and microscopic characteristics, slope deformation and destruction of the zone finally are controlled by such geologic structure as shallow weathered zone interface, bedding and so on.
     Secondly, Through statistical measuring analysis of the bedding-like and joint-like structural surface morphology elements in the cutting slope, and comparative analysis the Stereographic projection statistical results about the edge slope angle between landslide slope and natural slope, the double activity model of residual type of expansive soil is established based on structure surface control theory. This model break through the traditional uniform weathered zone theory, propose a new theory that is this type of slope have two activities layer, the upper soil layer and the underneath rock layer, and the upper layer controlled by the interface between A soil layer and B soil layer, and the underneath layer controlled by the interface between soil interface and (strong and weak) weathered zone interface, the lower limit controlled by the bottom interface of the perched water.
     Thirdly, The step landslide failure mode is established through two surveys, considering the slope deformation observational data, temperature data, moisture data and the form factors of landslide and expansion and contraction structural surface, the double sliding failure model of residual type of expansive soil is established. This model proposed and verified a new view that the landslide of residual type of expansive soil controlled by the double expansion and contraction activities, and has a development regular of shallow, gradual, double slide and successive evolution. This new view provides essential geological theory to solve the long-standing problem of residual type of expansive soil cut slope exist in Nanning, Baise, Ningming, Shangsi ect. in Guangxi province always landslide, and this new view also provides essential geologic theory to develop the new method of flexible support structure.
     Fourthly, To accurately monitor the relative expansion and contraction deformation of the mudstone residual type of expansive soil in different depths within 1.0m from the excavation slope table by embedded displacement sensor in the shallow well, and to get two different depths of new expansion and contraction active zone when excavation ( that is the depth of upper soil layer is 2.34m, and the depth of lower Weathered rock is 1.21m) by using the time effect statistical analysis method proposed by this paper and established the aging model of double active zone. This model and the double active model which get from the Structure surface statistics confirmed each other, directly reveal the reasons for traditional slope protection structures which the effective depth less than 1m failure protect in the expansive soil slope, and give valuable and reliable parameters to similar expansive soil slope protection design.
     Fifths, The depth of soil and rock activities zone(2.12m、1.21m)calculated by suction method correspondence with the depth measured by shallow well displacement meter respectively, this conclusion confirmed the double active zone time effective model, and prove the depth obtained by suction method is exactly the depth of the wet and dry cycles significantly affected zone, also is the surface soil of slope responding to the dry-wet cycles on short-term climate. Shallow well displacement method provides a new practical method to observe the depth of the active zone.
     Sixths, This paper proposed a new method that can measure the depth of wet and dry cycles significantly affected zone fast, the test results is repeatability and close to the result which is got by the humidity coefficient method and expansion and contraction structural surface geological notation method, and verified by the tracking observations at the same time, so, it is a scientific method. Because it is more rapid, reliable, economical, convenient, etc. than existing methods, it has great application prospect. Using the test results of this method to design the slope reinforcement will be more economic.
引文
[1]廖世文.膨胀土与铁路工程[M].北京:中国铁道出版社,1984.11.
    [2]肖荣久.陕南膨胀土及其灾害地质研究[M].西安:陕西科学技术出版社,1995.2.
    [3]李生林等.中国膨胀土工程地质研究[M].南京:江苏科学技术出版社,1992.7.
    [4]陈孚华.膨胀土上的基础[M].北京:中国建筑工业出版社.1979.1-9.
    [5]郑健龙.杨和平.膨胀土处治技术、理论与实践[M].北京:人民交通出版社.2004.12.
    [6] Fredlund D G. Chen ZY. China-Canada cooperative research program on expansive soil[R].[IDRC],1988.
    [7]杨和平,曲永新,郑健龙等.中国西部公路建设中膨胀土工程地质问题的初步研究[J].长沙交通学院学报.2003. (1): 19-24.
    [8]第二届全国非饱和土学术研讨会论文集[C].杭州:浙江大学.2005.4.
    [9] Fredlund D G, Rahardjo H.非饱和土力学[M].北京:中国建筑工业出版社,1997.6.
    [10]廖世文,曲永新,朱永林.全国首届膨胀土科学研讨会论文集[C].成都:西南交通出版社,1990.
    [11] Charles D.Shackelford, Sandra L.Houston and Nien-Yin Chang. Advances in Unsaturated Geotechnics[J]. Proceedings of Sessions of Geo-Denver, 2000,ASCE.
    [12]曲永新.石油天然气长输管道工程膨胀土地质灾害及其机理研究[R].中国科学院地质与地球物理研究所地质工程中心,2001.
    [13]刘龙武,郑健龙.膨胀土路基防排水设计技术研究[R],长沙理工大学,交通部西部科技项目,2007
    [14] Li, Y.-G.; Liu, J.-C. Chin. Mod. Chem. Ind. 2001, 21(7), 10 (in Chinese).
    [15] Boek, E. S.; Coveney, P. V.; Skipper, N. T. Langmuir 1995, 11, 4629.
    [16] Boek, E. S.; Coveney, P. V.; Skipper, N. T. J. Am. Chem. Soc. 1995, 117, 12608.
    [17] Chou Chang, F.-R.; Skipper, N. T.; Sposito, G. Langmuir 1995, 11, 2734.
    [18] Chou Chang, F.-R.; Skipper, N. T.; Sposito, G. Langmuir 1998, 14, 1201.
    [19] Chou Chang, F.-R.; Skipper, N. T.; Sposito, G. Langmuir 1997, 13, 2074.
    [20] Smith, D. E. Langmuir 1998, 14, 5959.
    [21] Young, D. A.; Smith, D. E. J. Phys. Chem. B 2000, 104, 9163.
    [22] Pablo, L.; Chávez, M. L.; Sum, A. K.; Pablo, J. J. J. Chem. Phys. 2004, 120, 939.
    [23] Odriozola, G.; de Guevara-Rodríguez, F. Langmuir 2004, 20, 2010.
    [24]王进等.锂-,钠-,钾水化蒙脱石层间结构的分子动力学模拟.化学学报[J].2006,64,1654~1658
    [25] Hensen, E. J. M.; Smit, B.J. Phys. Chem. B2002,106, 12664.
    [26] Young, D. A.; Smith, D. E.J. Phys. Chem. B2000,104, 9163.
    [27] Greathouse, J. A.; Refson, K.; Sposito, G.J. Am. Chem. Soc.2000,122, 11459.
    [28] Henson, E. J. M.; Tambach, T. J.; Bliek, A.; Smit, B.J. Chem. Phys.2001,115, 3322.
    [29] Arab, M.; Bougeard, D.; Smirnov, K. S.Phys. Chem. Chem. Phys.2003,5, 4699.
    [30]方沁华等.水化镁基蒙脱石的分子动力学模拟.化学学报[J].2004,(24),1654~1658
    [31]柏立懂,崔可锐,胡文奎.合徐高速公路南段膨胀土矿物成分及微结构[J].水文地质工程地质,2005,32(4):13-16.
    [32]柏立懂,罗志华,崔可锐.合徐高速北段膨胀土的物质组分及微结构研究[J].合肥工业大学学报:自然科学版,2006,29(1):31-36
    [33]施斌.粘性土击实过程中微观结构的定量评价[J].岩土工程学报,1996 (4): 57-62.
    [34]谭罗荣,张梅英.灾害性膨胀土的微结构特征及其工程性质[J].岩土工程学报,1994,16(2):48-57.
    [35]张梅英,谭罗荣.南方膨胀土的微结构特性与工程性质研究[J].岩土力学,1993,14(1):67-81.
    [36]高国瑞.膨胀土微结构和膨胀势[J].岩土工程学报.1984 (2):40-48.
    [37]李生林,施斌,杜延军.中国膨胀土工程地质研究[J].自然杂志.1997. 19(2):82-86
    [38]王宝军.基于GIS的新近土微观结构的分形研究.岩土工程学报[J].2004.3
    [39]谭罗荣等.灾害性膨胀土的微结构特征及工程性质.岩土工程学报[J].1994.3
    [40]李晓军.路基填土单轴受压细观结构cT监测分析.岩土工程学报[J].2000.3
    [41]白晓红.强化定向法在黏土微观结构分析中的应用.太原工业大学学报[J].1996.12
    [42]查甫生,刘松玉等.基于电阻率法的膨胀土吸水膨胀过程中结构变化定量研究[J].岩土工程学报,2008,30(12):1832-1839.
    [43] Gens and Alonso.A framework for the behavior of unsaturated expansive clays[J].Canadian Geotechnique Journa1,1992,Vo1.19:1013-1032.
    [44]黄兴周,阮永芬.膨胀土的微结构特性研究[J].路基工程,2007(4):57-59.
    [45]查甫生,崔可锐,刘松玉.膨胀土的循环胀缩特性试验研究[J].合肥工业大学学报:自然科学版,2009,32(3):399-402.
    [46]谢仁军,吴庆令,.用环境扫描电子显微镜研究膨胀土在不同含水量下微观结构的变化[J].中外公路,2009,(5).
    [47]刘松玉,方磊.击实膨胀土的循环膨胀特性研究[J].岩土工程学报,1999,21(1):9-13.
    [48]胡昕,洪宝宁,周宇泉,.三轴应力下黏性土的微结构及其演化规律[J].中国铁道科学,2007,(3).
    [49]陈正汉,方祥位,朱元青,.膨胀土和黄土的细观结构及其演化规律研究[J].岩土力学,2009,(1).
    [50]林鸿州,李广信,于玉贞,等.基质吸力对非饱和土抗剪强度的影响[J].岩土力学,2007,28(9):1931-1936.
    [51]翟聚云,鲁洁,.非饱和膨胀土水分迁移的试验研究[J].土木建筑与环境工程,2010,(2).
    [52]邢义川,李京爽,杜秀文,.膨胀土地基增湿变形的离心模型试验研究[J]西北农林科技大学学报(自然科学版),2010,(9).
    [53]翟聚云,符明娟,.考虑压力和密度影响的膨胀土增湿变形研究[J].地下空间与工程学报,2010,(2).
    [54]鲁洁,王铁行,.膨胀土增湿变形特性的试验研究[J].西安建筑科技大学学报(自然科学版),2009,(6).
    [55]姚志华,陈正汉,朱元青,汪时机,.膨胀土在湿干循环和三轴浸水过程中细观结构变化的试验研究[J].岩土工程学报,2010,(1).
    [56]周维垣.高等岩石力学[M].北京:水利电力出版社,1990
    [57]孙广忠.岩体结构力学[M].北京:科学出版社,1988.23-204
    [58]孙广忠.论岩体结构力学原理[G]//中国科学院地质研究所.工程地质力学研究.北京:地质出版社, 1985.29-47
    [59]王思敬.地下工程岩体稳定分析[M].北京:科学出版社,1984
    [60]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979
    [61]孙广忠.工程地质与地质工程[M].北京:地震出版社,1993.14-23
    [62]陈昌彦.工程岩体断裂结构系统复杂性研究及在边坡工程中的应用[D].北京:中国科学院地质研究所, 1997
    [63]谢和平,彭苏萍,何满潮.深部开采基础理论与工程实践[M].北京:科学出版社, 2006
    [64]张爱敏.采区高分辨率三维地震勘探研究与应用[J].煤炭学报,1996,21(4):348-352
    [65] Beacher G B, Statistical analysis of rock mass fractures [J].Mathematical Geology,1983.5, ( 3 ):329-348
    [66] Wu TH, Ali E M, Statistical representation of joint roughness [J].International Journal of Rock Mechanics & Mining Sciences & Geomech.Abstra.,1978,15(5):259-262
    [67]陶振宇,唐方福,张黎明,等.节理与断层岩石力学[M].武汉:中国地质大学出版社,1991.152-233
    [68]徐光黎,潘别桐,唐辉明等.岩体结构模型与应用[M].武汉:中国地质大学出版社,1993.21-69
    [69]黄国明,黄润秋.复杂岩体结构的几何描述[J].成都理工学院学报,1998, 25(4):552-558
    [70] Priest S D, Hudson J A. Discontinuity spacing in rock[J]. International Journal of Rock Mechanics & Mining Sciences,1976,13:135-145
    [71] Priest S D, Hudson J A. Estimation of discontinuity spacing and trace length using scan line surveys[J].International Journal of Rock Mechanics & Mining Sciences.,1951,18:183-197[J].
    [72] Goodman R E, Smith H R. RQD and fracture spacing[J].Journal of Geotechnical Division American Society of Civil Engineering,1980,106:191-193
    [73]杜时贵.岩体结构面的工程性质[M].北京:地震出版社,1999
    [74]伍法权.统计岩体力学原理[M].武汉:中国地质大学出版社,1993.56-58
    [75]谢和平,陈至达.岩石连续损伤力学模型[J]..煤炭学报,1989,(1):56-60
    [76] Brown S R. A note on the description of surface roughness using fractal dimension [J].Geophysical Research Letters,1987,14(11),1095-1098
    [77] Carr J C. Fractal characterization of joint surface roughness in Welded Tuff at Yucca[D].RockMech. as a Guide for Efficient Utilization of Natural Resource. Rotterdam: A.A.Balkema, 1989.193-200
    [78] Turk N, Grieg M J, Dearman W R, et al. Characterization of rock joint surfaces by fractal dimensions[C]//Proc.28th U.S.Symp. Rock Mech. Rotterdam: A.A.Balkema, 1987.1225-1256
    [79] Lee Y H. The fractal dimension as a measure of the roughness of rock discontinuity[J]. International Journal of Rock Mechnics & Mining Sciences & Geomech. Abstr., 1990,27(6): 543-564
    [80] Carr J R, Warriner J B. Relationship between the fractal dimension and joint roughness coefficient[J].Bulletin of the Association of Engineering Geologists,1989 , XX IV(2):255-265
    [81] Boadu F K, Long L T. The fractal character of facture spacing and RQD [J].International Journal of Rock Mechanics & Mining Sciences & Geomech.Abstr.,1994,31(2):127-134
    [82]谢和平.分形-岩石力学与分形节理力学行为研究[C]//杨卫,郑泉水,靳征漠.走向21世纪的中国力学:中国科协第九次“青年科学家论坛”报告文集.北京:清华大学出版社,1996. 22-39
    [83] Gerard C M. Elastic models of rock masses having one, two and three sets of joints[J].International Journal of Rock Mechanics & Mining Sciences & Geomech.Abstr., 1952,19:15-25
    [84] Ju J W,Chen T M. Effective elastic modulus of two dimensional brittle solids with interacting micro-cracks[J]. J.Appl.Mech,1994,62:549-557
    [85] Carvalho F S. Labuz J F. Experiments on effective elastic modulus of two-dimensional solids with cracks and holes[J].Int.J. Solids Structures, 1996,33:4119-4130
    [86]杨延毅.层状裂隙岩体塑性-脆性损伤藕合模型与岩质高边坡稳定分析[C]//葛修润.计算机方法在岩石力学及工程中应用国际学术讨论会论文集.武汉:武汉测绘科技大学出版社,1994.311-316
    [87] Terzaghi K. Stability of Slopes of Natural Clay[C]. Proc 1st Intl Conf Soil Mech Found Eng Harvad[A]. 1936.1
    [88] Skempton AW. Long-term Stability of Clay Slopes[J]. Geotechnique, 1964, 14(2): 77-102.
    [89]谷德振,曲永新.土体结构对土体变形破坏的影响[J] .工程勘察,1981,(4):6-9.
    [90]肖荣久.汉中盆地膨胀土研究[J].水文地质工程地质.1987.2(1)
    [91]邓京萍,张惠英.成都粘土的裂隙性对力学性能的控制作用[J].水文地质工程地质,1988,(2):42-46.
    [92]王桢.裂土边坡坍滑稳定性分析[J] .岩土工程学报,1992,14(4):25-31.
    [93]胡卸文,李群丰,赵泽三,等.裂隙性粘土的力学特性[J].岩土工程学报. 1994(1): 81-88.
    [94]仲晓晨,殷宗泽.膨胀土边坡的稳定性分析研究[J].水利水电科技进展,1998,18(增刊):1-5.
    [95]袁俊平,殷宗泽.考虑裂隙非饱和膨胀土边坡入渗模型与数值模拟[J].岩土力学,2004,25(10):1581-1586.
    [96]赵旻,阳云华,冯建伟,.南水北调中线工程南阳膨胀土裂隙的再认识[J].资源环境与工程,2009,(S2).
    [97]罗国煜.岩坡优势面分析理论方法[M].北京:地质出版社,1991
    [98]孙广忠.论“岩体结构控制论”[J].工程地质学报,1993,(01) .
    [99]冯光愈,王湘凡.南水北调总干渠中线工程膨胀土边坡稳定问题.人民长江.1993,21(3):9-14.
    [100]孔德坊等著.裂隙性粘土[M].北京:地质出版社,1994
    [101]蒋忠信,秦小林等.南昆铁路膨胀岩土及其防治的研究进展[J].中国地质灾害与防治报.1995,(6):1-8
    [102]蒋忠信,秦小林等.百色盆地膨胀岩特性的实验研究[J].中国地质灾害与防治学报.1995,(6):25-34
    [103]刘特洪.工程中的膨胀土问题[M].北京:中国建筑工业出版社,1996.4.
    [104] C.G.Bao, B.W.Gong & L.T.Zhan. Properties of Unsaturated Soils and Slope Stability of Expansive Soils, Keynote Lecture, Proc. of 2nd Inter. Conf. on Unsaturated Soils, Bejing, 1998.
    [105]肖凯成.自动化统计分析膨胀土裂隙分维特征的研究[J].路基工程,2008(6):96-97.
    [106]李雄威,冯欣,张勇.膨胀土裂隙的平面描述分析[J].水文地质工程地质,2009,36(1):96-99.
    [107]袁俊平,殷宗泽,包承纲.膨胀土裂隙的量化手段与度量指标研究[J].长江科学院院报,2003,20(6):27-30.
    [108]易顺民,黎志恒,张延中.膨胀土裂隙结构的分形特征及其意义[J].岩土工程学报,1999,21(3):294-298.
    [109]冯玉勇曲永新徐卫亚.南阳膨胀土的宏观结构与路堑边坡病害治理[J].工程地质学报,2005,13(2)
    [110]冯光愈,王湘凡.总干渠膨胀土边坡稳定问题[ J].人民长江, 1993, 24(3): 9-14
    [111]赵旻,阳云华等.南水北调中线工程南阳膨胀土裂隙的再认识[J].资源环境与工程,2009,23(08):72-74.
    [112]艾传井,尹镇龙,吴怀义等.荆门变电站膨胀土裂隙带发育深度及成因研究[J].人民长江,2010(1):61-63.
    [113]张北瑞.膨胀岩地段路基病害整治原则.路基工程.1999. 84 ( 3):22-25
    [114]李广城等主编.堤防工程地质勘察与评价[M].北京:中国水利水电出版社,2003,P88-95
    [115]卢才金.考虑结构面效应的路堑类土质高边坡及其稳定性分析[J].岩土工程界,2004,7(10):29-32.
    [116]朱姣利.类土质边坡的基本特性的探讨[J].广东输电与变电技术,2010(1):31-34.
    [117]张家发,刘晓明,焦赳赳.膨胀土渠坡兼有排水功能的双层结构防护方案[J].长江科学院院报,2009,26(11):37-41.
    [118]姚志华,陈正汉.重塑膨胀土干湿过程中细观结构变化试验研究[J].地下空间与工程学报,2009,5(3):429-434.
    [119]姚志华,陈正汉.膨胀土增湿和干燥过程中的细观结构变化研究[J].水利与建筑工程学报,2009,7(3): 169-173.
    [120]刘龙武,郑健龙,周桂成.膨胀土台阶式滑坡破坏模型及处治措施[C].第二届全国非饱和土学术研讨会论文集(657—662),杭州,2005年4月
    [121]孙英勋.滑坡的处治分类与治理模式探讨.地质与勘探.2006. 42(1):85-88
    [122]康卫东,杨小荟等.安康罗家梁膨胀土滑坡特征与成因分析.西北大学学报(自然科学版). 2007,37(1):91-94
    [123]龚壁卫,李青云,谭峰屹等膨胀岩渠坡变形和破坏特征研究[J].长江科学院院报,2009,(11)
    [124]柴波,殷坤龙,简文星等.红层水岩作用特征及库岸失稳过程分析[J].中南大学学报(自然科学版),2009,(4).
    [125]柯尊敬.常运煌.膨胀土路堤边坡的稳定坡度[J].路基工程.1988(2):3 -17.
    [126]吴肖茗,卢肇钧.裂土路堤稳定和填筑标准研究报告[J].路基工程,1989,(1):11-22
    [127]刘光代.浅谈滑坡稳定性评价[J].路基工程,1988,(4):1-9
    [128]李妥德.裂隙粘土堑坡设计方法[J].岩土工程学报.1990(2):47-55.
    [129]牛怀俊.铁路裂土路基研究综述[J].路基工程.1993,(2): 1-8.
    [130]牛怀俊,王小军.考虑水平膨胀力后两个膨胀土地堑的稳定性分析[C].全国首届膨胀土科学研讨会论文集.成都:西南交通大学出版社,1990.
    [131]刘祖德,孔官瑞.膨胀土挖方渠坡有限元分析[J].武汉水利电力大学,1993,(3).
    [132]包承纲等.土坡在非常条件下稳定性分析的概率方法[J].岩土工程学报,1987, (3).
    [133]张俊.土体渐进破坏概念分析探讨[C].岩土力学新方法讨论会论文集.上海,1992.
    [134]涂帆,李少毅.土坡逐渐破坏的概率分析[C].岩土力学新方法讨论会论文集.上海,1992.
    [135]秦禄生,郑健龙.膨胀土路堑边坡雨季表层滑坍稳定性分析[J].长沙交通学院院报Vol.15 No.1.1995.5
    [136]秦禄生,郑健龙.膨胀土路基边坡雨季失稳破坏机理的应力应变分析[J].中国公路学报,2001,14(1):-25-30
    [137]吴宏伟,陈守义,庞宇威.雨水入渗对非饱和土坡稳定性影响的参数研究[J].岩土力学.1999,20(1): 1-14.
    [138]陈守义.考虑入渗和蒸发影响的土坡稳定性分析方法[J].岩土力学.1997, 18 (2 ): 8~12, 22.
    [139] Alonso.E.,Gens.A. Delahaye.C, Effect of rain infiltration on the stability of slopes. Alonso & Delage(eds).Unsaturated Soils, 1995,Vol 1,241-249.
    [140] Sun Y.Nishigaki.M. & Kchno.I. A study on stability analysis of shallow lager slope due to rainning permeation . Unsaturated Soils, 1995, Vol 1, 315-320。
    [141]谭波,郑健龙,余文成,.降雨条件下膨胀土路堑边坡渗流分析[J].中外公路,2009,(2).
    [142]郑勇,.膨胀土边坡失稳成因机制及其演化过程分析[J].中国水运(下半月),2009,(12).
    [143]膨胀土地区建筑技术规范[S] GBJ112—87
    [144]余飞,陈善雄等.合肥地区膨胀土路基处置深度问题探讨[J].岩土力学,2006,(11).
    [145]石庆华.许年金膨胀土活动带及其运动规律[C].第一届全国膨胀土会议论文集.1990
    [146]廖济川.开挖边坡中膨胀土的工程地质特征[C].非饱和土理论与实践学术研讨会论文集,北京, 1992.
    [147]中国科学院地质与地球物理研究所.石油天然气长输管道工程膨胀土地质灾害及其防治研究[R]. 2001,6.
    [148]秦小林,蒋忠信,李敏,冯升龙.广西膨胀岩土气候影响层的研究及其应用[J]中国地质灾害与防治学报,1994,(02) .
    [149]黄绍铿,柯尊敬,范秋雁等.天然膨胀土边坡现场气象、吸力、含水量、土层变形综合观测[C]∥中加非饱和土学术研讨会论文集,武汉:中国土木工程学会土力学与基础工程分,1994.
    [150]黄绍铿.柯尊敬等.膨胀土工程性质的研究附件二(R)天然膨胀土场地基质吸力和土层变形综合观测研究报告,1995.5
    [151]王钊,龚壁卫,包承纲.鄂北膨胀土坡基质吸力的量测[J].岩土工程学报.2001,23(1): 64-67.
    [152]龚壁卫,包承纲,刘艳华,王钊.膨胀土边坡的现场吸力量测[J]土木工程学报.1999,32 (1): 9-13.
    [153]黄润秋,戚国庆.滑坡基质吸力观测研究.岩土工程学报[J].2004, 26 (2): 216-219.
    [154] A.asserat de silans,L. Bruchler,J. L. Thong and M.Vauclin. Numerical modeling of coupled heat and water flows during drying in a stratified bare soil-comparison with field observations [J]. Journal of Hydrology, 1989, 105:109-138
    [155] M. O'Kane, G. W. Wilson, and S. L. Barbour. Instrumentation and monitoring of an engineered soil cover system for mine waster rock [J]. Canadian Geotechnical Journal, 1998,35:828-846
    [156] D.A Swanson et al. Soil-atmosphere modeling of an engineered soil cover for acid generating mine waste in a humid, alpine climate[J].Can. Geotech. J., 2003, 40:276-292
    [157] J. Gasmo, K.J. Hrizuk, H. Rahardjo, and E.C. Leong. Instrumentation of an unsaturated residual
    [158] H. Rahardjo, T. T. Lee, E.C. Leong, and R.B.Rezaur. Response of a residual soil slope to rainfall [J]. Can. Geotech. J., 2005, 42:340-351
    [159]詹良通,吴宏伟,包承纲,龚壁卫.降雨入渗条件下非饱和膨胀土边坡原位监测[J]岩土力学,2003,(02)151-158 .
    [160]李爱国,岳中琦等.香港某边坡综合自动监测系统的设计和安装[J].岩石力学与工程学报,2003,(05) . 104-110
    [161]李爱国,岳中琦等.土体含水率和吸力量测及其对边坡稳定性的影响[J]岩土工程学报, 2003,(03) : 278-282
    [162]陈建斌.大气作用下膨胀土边坡的响应试验与灾变机理研究[D]中国科学院研究生院(武汉岩土力学研究所).2006.
    [163]姚海林,郑少河,葛修润等.裂隙膨胀土边坡稳定性评价[J].岩石力学与工程学报,2002,(S2)
    [164]潘宗俊,谢永利等.膨胀土地区边坡活动带深度确定的吸力法[J].长安大学学报(自然科学版),2006,(3).
    [165]郑健龙,缪伟.膨胀土路基温度现场观测分析与研究[J].长沙理工大学学报:自然科学版,2007,4(4):-12-15
    [166]李培勇,杨庆,栾茂田等.非饱和膨胀土裂隙开展深度影响因素研究[J].岩石力学与工程学报,2008,(S1).
    [167]王小军等.西南地区膨胀土(岩)堑坡湿化层厚度的确定[J].铁道工程学报,2003,(04).
    [168]张昆,郭菊彬.花岗岩残积土及全风化土标贯击数的概率分布[J].铁道工程学报,2008,(02).
    [169]谭罗荣.孔令伟.特殊岩土工程土质学.科学出版社[M]. 2006.9
    [170]姚海林.膨胀土标准吸湿含水率试验研究[J].岩石力学与工程学报23(17):3009~3013
    [171] Gens A,Alonso E E. A framework for the behaviour of unsaturated expansive clays[J]. Canadian Geotechnique Journal. 1992, 29: 1013–1032
    [172]徐永福,刘松玉.非饱和土强度理论及工程应用[M].南京:东南大学出版社.1999.
    [173] Tessier D. Behavior and microstructure of clay minerals[A]. In:de Boodt M F,Hayes M H B,Herbillon A ed. Soil Colloids and Their Associations in Aggregates[C]. New York:PlenumPress,1990. 10–15.
    [174]孟召平,苏永华.沉积岩体力学理论与方法[M].北京:科学出版社, 2006
    [175]潘宗俊.膨胀土公路路堑边坡工程性状研究[D]长安大学,2006 .
    [176] Jian-Long Zheng, Rui Zhang, He-Ping Yang. Highway Subgrade Construction in Expansive Soil Areas[A]. Dol: 10.1061/(ASCE)0899-1561(2009)21:4(154)
    [177] Jian-Long Zheng, Rui Zhang, He-Ping Yang. Validation of a swelling potential index for expansive soils[A]. Toll et al. (eds): Unsaturated Soils: Advances in Geo-Engineering[C], Durham U.K., 2008.7, 397-401
    [178]刘龙武,郑健龙.膨胀土干湿循环显著影响区及其勘察方法研究[R],长沙理工大学,交通部西部科技项目,2007
    [179]刘龙武,郑健龙.膨胀土地区公路防排水设计研究[R],长沙理工大学,交通部西部科技项目,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700