用户名: 密码: 验证码:
强度衰减路基稳定性及其路面结构力学响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对粉土路基,通过现场调研、室内试验、现场检测、模型试验及数值模拟等方法进行了强度衰减规律的探讨,揭示了路基强度衰减对路基稳定性、力学特征、变形特征的影响及路面结构的力学响应,提出了有效的路基加固技术及基于破坏接近度的路面结构受力平衡评价方法。主要研究内容及结论如下:
     (1)基于现场取样测量路基土的含水量,揭示路基含水量的分布特征;通过室内试验,针对路基土的压实特性及不同含水量下路基的强度变化规律进行了较为系统的试验研究。渗透试验及毛细水上升试验表明:粉土具有渗透系数较大、毛细水作用强烈等特征,路基含水量的增大造成了路基强度的衰减。压实粉土三轴试验(UU)及回弹模量试验结果表明,当ω?ωopt时,含水量的增大,路基土回弹模量及内摩擦角相对稳定,但粘聚力及变形模量逐渐增大;当ω?ωopt后,含水量的增大,路基土粘聚力、回弹模量及变形模量均降低显著,内摩擦角在接近饱和状态时才急剧降低,揭示出粉土路基含水量增大后强度低、变形大的特点。
     (2)现场调查了粉土路基边坡稳定性的破坏形式,通过强度折减法对强度衰减路基及注浆微型桩加固路基的稳定性分别进行了数值模拟分析。现场调查表明,实际粉土路基易发生浅层滑坡、边坡坍塌、路基滑移等病害。计算结果表明,路基含水量增大,边坡稳定性降低。注浆微型桩加固路基后,不仅边坡稳定性提高,而且能够有效的抑制路基不均匀沉降,对路面结构的受力非常有利。
     (3)基于路基强度衰减对高速公路典型路面结构在标准荷载及超载作用下的力学响应进行了计算分析;针对等级公路路面结构进行了弹塑性分析,计算了新建及路基强度衰减后路面各结构层的破坏接近度并据此评判路面结构的平衡性,揭示了路基强度衰减对路面结构平衡性的影响。计算结果表明,路面弯沉及应力随路基强度的衰减呈非线性加速增大,随荷载增大呈线性增大;车轮荷载作用下,半刚性基层受拉,处于受力最不利状态;基层的寿命随轴载的增加或路基强度的衰减呈指数性衰减趋势;等级公路路面结构的弹塑性分析表明,路基强度衰减后,路面结构层的受力明显增大,路面结构层受力不平衡,半刚性基层的下基层的FAI>2,处于塑性破坏状态,即半刚性基层成为整个路面结构层的薄弱层。
     (4)针对新建路基、强度衰减路基及注浆微型桩加固的路基进行了模型试验研究,试验结果表明:实际压实粉土路基毛细作用非常显著,路基采用注浆微型桩加固后桩间土含水量比强度衰减路基下降3.7%,桩间土的密实度和弹性模量比新建路基分别提高1.35%、9.46MPa。路基强度衰减后,其竖向应力发生重分布现象,路基顶部受力比新建路基增大16%左右;浆微型桩加固后的路基竖向应力明显减小(减小约50%)。随着路基强度的衰减,相同荷载作用下,路基所受的侧向应力明显增加;注浆微型桩加固后的路基,侧向水平力显著降低,其减小幅度大约是强度衰减路基的2倍。路基强度衰减程度越大,路基表面及内部个点的竖向变形越大,路基顶部越容易发生不均匀沉降。但注浆微型桩加固后,路基的竖向变形明显减小,基本达到新建路基的情况。新建及加固后路基的变形主要表现为弹性,塑性变形很小,路基强度衰减后,其塑性变形明显增大。强度衰减后路基的整体刚度降低,注浆微型桩加固路基后其整体刚度显著增加。随着路基强度的衰减,路基侧向水平位移增大;路基通过注浆微型桩加固后,仅在路基顶部发生微小的水平侧移。因此,注浆微型桩加固技术是一种有效的病害路基加固方法,路基采用此技术加固后,其不仅能够提高路基桩间土的抗剪强度,而且能够提高其压实度和整体刚度,致使路基整体承载能力及稳定性明显提高。
     (5)根据模型试验分析了注浆微型桩加固路基的工作机理:即分层压实的路基采用袖管劈裂注浆加固时容易沿路基分层之间发生横向劈裂,在路基土的分层之间形成水平水泥浆硬化夹层,阻隔了毛细水的上升,能够避免路基含水量的继续增大而造成其强度衰减;凝固体微型钢管柱对加固路基起到螺栓连接及骨架作用。注浆微型桩的工作状态大致分三个阶段:微型桩加速受力阶段;桩土协调工作阶段;注浆凝固体断裂、整个路基趋于塑性破坏工作阶段。实际路基加固工程应用表明,路基注浆微型桩加固技术对提高路基的竖向承载力、防止不均匀沉降以及提高边坡的稳定具有良好的效果。
The strength attenuation of silt subgrade was discussed by the way of the on-site investigation, laboratory testing, field testing. The stability of the attenuated strength subgrade and its mechanical response of pavement structure were analyzed by the numerical simulation. The mechanical and deformation characteristics of subgrade were tested by the model experiment of the new subgrade, the attenuated strength subgrade, and the strengthed subgrade with the grouting mini-pile technology. The effective reinforcement technology was proposed and the evaluation methed of the pavement structure based on the index of failure approach was proposed. The main contents and conclusions are as follows:
     (1)The moisture content of subgrade was described on the base of field testing. The systematic experimental study on penetration and capillary rise was conducted to reveal the strength law of the silt subgrade under the different water content and compactedness. The results show that the silt has the bigger permeability coefficient and the stronger capillary water action. The increase of water content results in the strength attenuation of the subgrade. The tests of the resilient modulus and the triaxial test (UU) results under the different soil moisture on the compacted silt showed that the resilient modulus and the internal friction angle changed a little and the cohesion and modulus of deformation gradually increased when the water content was less than the best moisture content. The resilient modulus, cohesion and deformation modulus of the subgrade soil decreased significantly with the increase of the water content when the water content was above and beyond the best moisture content. But the internal friction angle reduced drastically when the water content reached to the saturation state.These revealed that the sucking water silt had a large deformation, low strength.
     (2)The on-site investigations had been finished about the failure modes of the slope stability, and the numerical simulations were conducted to analyze the stability of the attenuated strength subgrade and the subgrade strengthened with grouting micro-pile by ABAQUS / Standard. Field surveys show that the failure modes of the actual silt embankment had shallow landslide, slope collapse, embankment slipslip. The computed results showed the slope stability decreased with the increase of moisture content. But the slope stability of the embankment strengthened with the grouting mini-pile increased observably.
     (3)Based on the attenuation of subgrade strength, the mechanical response of pavement structure on the typical highway was computed and analyzed under the action of the Standard load and overload. And based on the elasto-plastic analysis of the pavement structue, the failure approach index of the pavement structure was computed on the new subgrade and the attenuated strength subgrade to judge and analyze the force balance of the pavement structural layer. The results showed that the stress and the surface deflection increased nonlinearly with the attenuation of subgrade strength and increased linearly with the loads. Under the action of the wheel loads, the bottom of the semi-rigid basement layer was tensed and was in the most unfavorable stress state.The computed results also showed that the fatigue life of the semi-rigid basement layer reduced exponentially with the increase load or the decay of subgrade strength. The elastic-plastic analysis of the grade road showed that the stress of pavement structure layer increased significantly after the attenuation of subgrade strength. The computed results of the failure approach index of the pavement structure showed that the pavement structural layer was in danger of the unbalance state, resulting in the plastic failure of the semi-rigid basement layer, FAI> 2.
     (4)The model experiment study was conducted on the new subgrade, the attenuated strength subgrade and the subgrade strengthened with grouting micro-pile. The test results showed that the capillary action was very observable. The moisture content of subgrade strengthened with the grouting micro-pile decreased 3.7% to one of the attenuated strength subgrade, and the compactedness and the elastic modulus of subgrade increased 1.35% and 9.46MPa to the original subgrade. When the subgrade strength decreased, the redistribution of its vertical stress happened so that the stress at the top of the subgrade increased about 16% than the new embankment. The vertical stress of subgrade strengthened with the grouting micro-pile stress (especially in roadbed) reduced approximately 50%. The lateral force of subgrade increased significantly with the attenuation of subgrade strength under the action of the same loads. While the lateral force of subgrade strengthened with the grouting micro-pile lowered significantly, and the ratio of lateral force of attenuated strength subgrade and subgrade strengthened with the grouting micro-pile is about 2:1. The differential settlement increased rapidly with the attenuation of subgrade strength. But the differential settlement of subgrade strengthened with the grouting micro-pile reduced observably to reach the state of the original subgrade. The deformations of original subgrade and strengthened subgrade were almost elasticity, and the plastic deformation is very small. The plastic deformation of attenuated strength subgrade increased rapidly with the attenuation of subgrade strength. The whole stiffness decreased with the attenuation of subgrade strength and increased observably with the subgrade strengthened. With the attenuation of subgrade strength, the lateral horizontal displacement of subgrade increased. But after the reinforcement of subgrade with grouting micro-pile, only minimal horizontal displacement occurred in subgrade top. Therefore, the grouting mini-pile technology is an effective method to strengthen the attenuated strength subgrade. It can not only improve the shear strength of soil between piles, but also increase its degree of compaction and compressive strength, resulting in a remarkable increase of the overall bearing capacity and the slope stability.
     (5) The work mechanism of the grouting mini-pile technology was analyzed on the basis of the model test. The subgrade that had been compacted according to layers would be easily split between layers when the subgrade was strengthened with the grouting mini-pile technology, resulting in the horizontal hardening layer of cement paste between the compacted soil layers. The horizontal hardening layer of cement paste would become the horizontal curtain to block capillary water up and avoid the continuing increase of the moisture content, which could prevent the subgrade strength from continuing the reduction. The cement paste column surrounded with steel pipe played the role of the bolt connection and the skeleton to the soil of subgrade. The model load test indicated that the work process of subgrade strengthened with grouting micro-pile could be divided into three phases under the action of loads. That is the acceleration loadcarrying of grouting mini-pile, the coordination work of pile-soil together, and the fracture of grouting solidification body resulting in the entire failure of subrade. The practical application of the grouting mini-pile technology showed that it is a very effective to improve the vertical bearing capacity of subgrade, prevent uneven settlement, and improve the stability of slope.
引文
[1] Li J P, Sheng Y, Zhang J. Study on diseases of cement concrete pavement in permafrost regions[J]. Cold Regions Science and Technology. 2010, 60(1): 57-62.
    [2]何小玲.包头市城市沥青道路病害研究[J].包头钢铁学院学报. 2002, 21(1): 80-82.
    [3]李治平.多年冻土地区道路病害及其防治对策[J].东北公路. 2003, 26(4): 69-70.
    [4]李春满.道路的病害与防治[J].东北公路. 1997, 20(2): 49-53.
    [5]孙振武,刘庆洁,赵岩.冬季道路病害的防治[J].公路. 1993(3): 39-41.
    [6]金江,张志清,胡江碧, et al.用土工合成材料处治黄土地区道路病害[J].公路. 2005(11): 117-120.
    [7]吴刚,刘干斌,开前正.软土地区道路病害原因分析及防治措施[J].公路交通技术. 2009(4): 11-14.
    [8]徐玉峰.道路病害及其防治技术研究[J].公路交通科技(应用技术版). 2010(11): 48-50.
    [9]王斌,赵伟,杨含.拓宽道路工后差异沉降的危害性及防治措施[J].交通标准化. 2006(10): 116-118.
    [10]朱光宇,冮凯.辽西季节性冻土地区道路冻害及其防治[J].辽宁工程技术大学学报. 2006, 25(S1): 118-120.
    [11]张京锋,周新涛.沥青路面易损路段病害分析及防治[J].钦州学院学报. 2007, 22(3): 77-80.
    [12]杨坤,马东涛,崔鹏.新藏公路(新疆境内)沿线道路病害[J].山地学报. 2002, 20(1): 53-58.
    [13]葛文昌.劈裂注浆法在城市道路病害治理中的应用[J].探矿工程(岩土钻掘工程). 2008, 35(6): 67-68.
    [14]王小生,章洪庆,薛明, et al.盐渍土地区道路病害与防治[J].同济大学学报(自然科学版). 2003, 31(10): 1178-1182.
    [15]田耀刚,韩庆,田世亮, et al.半刚性基层沥青路面层间病害调查与研究[J].武汉理工大学学报. 2010, 32(4): 169-172.
    [16]郭术铭.连徐高速公路沥青路面裂缝的成因及处治[J].徐州建筑职业技术学院学报. 2008, 8(4): 19-22.
    [17]喻文兵,赖远明,张学富, et al.多年冻土区抛石护坡路基室内试验研究[J].岩土工程学报. 2005, 27(10): 1233-1236.
    [18]王丽红,鲁安新,贾志裕, et al.川藏公路西藏境道路病害遥感调查研究[J].遥感技术与应用. 2006(6): 512-516.
    [19]张蓓,方宏远,钟燕辉, et al. GPR与FWD在旧路性能综合评价中的应用[J].中外公路.2008, 28(5): 89-93.
    [20]马东涛,崔鹏,杨坤, et al.新藏公路(新疆段)沿线道路病害及成因初析[J].自然灾害学报. 2003, 12(3): 93-98.
    [21]宋修广,张宏博,王松根, et al.黄河冲积平原区粉土路基吸水特性及强度衰减规律试验研究[J].岩土工程学报. 2010, 32(10):1594-1602.
    [22]唐芬,叶四桥,陈洪凯.新疆翻浆路基土吸水抗剪强度衰减非线性分析[J].地下空间与工程学报. 2006, 2(2): 335-339.
    [23]李兆平,张弥,赵慧丽.含水量的变化对非饱和土强度影响的试验研究[J].西部探矿工程. 2001, 13(4):1-3.
    [24]刘海霞,王莉,邢姣秀.重塑非饱和土抗剪强度指标与含水状态变化的关系[J].黑龙江工程学院学报. 2006, 20(1): 29-31.
    [25]熊承仁,刘宝琛,张家生, et al.重塑非饱和粘土抗剪强度参数与饱和度的关系研究[J].岩土力学. 2003,24(S2): 195-198.
    [26]彭丽云,刘建坤,肖军华, et al.京九线路基压实粉土力学特性的试验[J].北京交通大学学报. 2007, 31(4): 56-60.
    [27]刘熙媛,樊申,窦远明, et al.河北省非饱和土含水量与抗剪强度参数关系的试验研究[J].河北工业大学学报. 2006, 35(3): 96-99.
    [28]陈海明,班凤其,刘小伟.非饱和土抗剪强度指标c、Ф值与含水量ω的关系[J].合肥工业大学学报(自然科学版). 2006, 29(6): 736-738.
    [29]王建华,高玉琴.干湿循环过程导致水泥改良土强度衰减机理的研究[J].中国铁道科学. 2006, 27(5): 23-27.
    [30]冉武平,阿肯江·托呼提,李玲.含水量对路基土回弹模量影响分析[J].路基工程. 2009(6): 21-23.
    [31]李云峰,胡瑞宁.路基不均匀沉降的原因及处理措施[J].重庆交通学院学报. 2006: 85-88.
    [32]张嘉凡,张慧梅.软土地基路基不均匀沉降引起路面结构附加应力[J].长安大学学报:自然科学版. 2003, 23(3): 21-25.
    [33]周志刚,郑健龙,等.土工格网处理填挖交界路基非均匀沉降的机理分析[J].岩土工程学报. 2002, 24(5): 576-579.
    [34]邓卫东,张兴强,陈波, et al.路基不均匀沉降对沥青路面受力变形影响的有限元分析[J].中国公路学报. 2004, 17(1): 12-15.
    [35]李金明,周育名,原喜忠.气温升高对多年冻土地区路基稳定性影响[J].重庆交通大学学报:自然科学版. 2011, 30(2): 263-265.
    [36]苏永华,谢志勇,徐能雄, et al.半填半挖路基交接面稳定性分析[J].岩土力学. 2010,31(2): 497-502.
    [37]颜可珍,廖华容.基于突变理论的路基边坡冲刷稳定性评价[J].长安大学学报:自然科学版. 2011, 31(2): 29-32.
    [38]刘建坤,肖军华,杨献永, et al.提速条件下粉土铁路路基动态稳定性研究[J].岩土力学. 2009, 30(2):399-405.
    [39] Lam L, Fredlund D G, Barbour S L. TRANSIENT SEEPAGE MODEL FOR SATURATED-UNSATURATED SOIL SYSTEMS: A GEOTECHNICAL ENGINEERING APPROACH. [J]. Canadian geotechnical journal. 1987, 24(4): 565-580.
    [40] Alonso E, Gens A, Lloret A, Delahaye C. Effect of rain infiltration on the stability of slopes [J]. Unsaturated Soils. 1995(1):241-249.
    [41] Ng C W W, Shi Q. A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage [J]. Computers and Geotechnics. 1998, 22(1): 1-28.
    [42]李亮,刘兴旺,赵炼恒, et al.降雨入渗对路基稳定性影响因素分析[J].铁道科学与工程学报. 2007, 4(2): 19-23.
    [43]赵占彪,申向东.高速公路边坡滑动失稳机理分析与加固研究[J].内蒙古农业大学学报(自然科学版). 2007, 28(4): 159-162.
    [44]陈守义.考虑入渗和蒸发影响的土坡稳定性分析方法[J].岩土力学. 1997, 18(2): 8-12.
    [45]陈善雄,陈守义.考虑降雨的非饱和土边坡稳定性分析方法[J].岩土力学. 2001, 22(4): 447-450.
    [46]王瑞钢,闫澍旺,邓卫东.降雨作用下高填土质路堤边坡的渗流稳定分析[J].中国公路学报. 2004, 17(4): 25-30.
    [47] Jin M S, Lee K W, Kovacs W D. Seasonal variation of resilient modulus of subgrade soils [J]. Journal of Transportation Engineering. 1994, 120(4): 603-616.
    [48] Ping W V, Yang Z. Effect of moisture on resilient characteristics of compacted granular subgrades[C]. 77th Annual Meeting of Transportation Research Board (CD ROM), 1998.
    [49] Gehling W Y Y, Ceratti J A, Nunez W P, RODRIGUES, M R. A study of the influence of suction on the resilient modulus of pavement subgrade soils [C]. INTERNATIONAL SYMPOSIUM ON SUBDRAINAGE IN ROADWAY PAVEMENTS AND SUBGRADES, HELD GRANADA, SPAIN, 11-13 NOVEMBER 1998.
    [50]刘晓佳,何兆益,孔祥臣.西部地区县乡公路沥青路面结构设计参数研究[J].重庆交通学院学报. 2005,24(3): 80-83.
    [51]张九香.路基强度稳定技术研究[J].福建工程学院学报. 2009, 7(4): 307-312.
    [52]凌建明,谢经保,郑悦锋, et al.基于地下水变位的路基顶面当量回弹模量预估[J].同济大学学报(自然科学版). 2005, 33(2): 162-165.
    [53]王松根,宋修广编著.公路路基维修与加固[M].北京:人民交通出版社, 2010: 286.
    [54]叶恒鑫,刘建荣,吴晓伟. 340省道面层结构优化设计[J].现代交通技术. 2009(2): 11-13.
    [55]劳剑铭,高辉,杜善启.半刚性基层沥青路面结构优化设计[J].西部交通科技. 2009(2): 41-45.
    [56]赵明华,刘小平,陈安.非饱和土路基毛细作用分析[J].公路交通科技. 2008, 25(8): 26-30.
    [57]刘小平,赵明华.降雨对非饱和土路基含水量的影响分析[J].湖南大学学报(自然科学版). 2008, 35(8): 9-13.
    [58]凌建明,谢经保,郑悦锋, et al.基于地下水变位的路基顶面当量回弹模量预估[J].同济大学学报(自然科学版). 2005, 33(2): 162-165.
    [59]王铁行,岳彩坤,鲁洁, et al.连续降雨条件下黄土路基水分场数值分析[J].西安建筑科技大学学报(自然科学版). 2007, 39(5): 593-597.
    [60]文高原,姚鹏运,曾宪明, et al.降雨前、后夯实填土边坡破坏模式试验研究[J].岩石力学与工程学报. 2005, 24(5): 747-754.
    [61]路基路面在降雨条件下渗流分析及边坡稳定性研究[D].昆明理工大学, 2005.
    [62]王家斌.粉土的工程地质特征及承载力特征值的确定[J].西部探矿工程. 2004, 16(11): 8-9.
    [63] Fellenius W. Erdstatische Berechnungen mit Reibung und Kohasion (Adhasion) und unter Annahme kreiszylindrischer Gleitflachen[M]. Berlin: Ernst, 1927.
    [64] Bishop A W. The use of the slip circle in the stability analysis of slopes[J]. Geotechnique. 1955, 5(1): 7-17.
    [65] Morgenstern N R, Price V E. The analysis of the stability of general slip surfaces[J]. Geotechnique. 1965, 15(1): 79-93.
    [66] Spencer E. A method of analysis of the stability of embankments assuming parallel inter-slice forces [J]. Geotechnique. 1967, 17(1): 11-26.
    [67] Janbu N.Slope Stability Computations,Embankment Dam Engineering[M].New York:John Wiley and Sons,1973,47~86.
    [68] Sarma S K. Stability analysis of embankments and slopes [J]. Journal of the Geotechnical Engineering Division. 1979, 105(12): 1511-1524.
    [69] van Nguyen U. DETERMINATION OF CRITICAL SLOPE FAILURE SURFACES [J]. Journal of Geotechnical Engineering. 1985, 111(2): 238-250.
    [70]陈祖煜,邵长明.最优化方法在确定边坡最小安全系数方面的应用[J].岩土工程学报. 1988, 10(4): 1-13.
    [71] Cao J, Zaman M M. Analytical method for analysis of slope stability [J]. International Journal for Numerical and Analytical Methods in Geomechanics. 1999, 23(5): 439-449.
    [72]蒋斌松,吕爱钟,蔡美峰.纯粘土边坡稳定性的解析计算[J].工程力学. 2003, 20(5): 204-208.
    [73]蒋斌松,蔡美峰,吕爱钟.边坡稳定性的解析计算[J].岩石力学与工程学报. 2004, 23(16): 2726-2729.
    [74] Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics [J]. Geotechnique. 1975, 25(4): 671-689.
    [75] Ugai K. A method of calculation of total safety factor of slopes by elastoplastic FEM [J]. Soils and Foundations. 1989, 29(2): 190-195.
    [76] Griffiths D V, Lane P A. Slope stability analysis by finite elements [J]. Geotechnique. 1999, 49(3): 387-403.
    [77] Shang-Yi Z, Zheng Y, Zhang Y. Study on slope failure criterion in strength reduction finite element method [J]. Rock and Soil Mechanics. 2005, 26(2):332-336.
    [78] Ting-Kai N, Shao-Shi W, Jiang J, et al. Finite element analysis of slope stability under drawdown conditions by strength reduction technique [J]. Rock and Soil Mechanics. 2010, 31(7): 2264-2269.
    [79]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报. 1997, 19(2): 4-10.
    [80]张鲁渝,郑颖人,赵尚毅, et al.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报. 2003(1): 21-27.
    [81]赵尚毅,郑颖人,时卫民, et al.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报. 2002, 24(3): 343-346.
    [82]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报. 2003, 23(3): 1-8.
    [83] Sankar B V, Kim N H. Introduction to finite element analysis and design [M]. New York: Wiley, 2009: 419.
    [84] Simulia D S. Abaqus/CAE User's Manual2007/2007-01-01.
    [85]沈金安.国外沥青路面设计方法总汇[M].北京:人民交通出版社, 2004: 345.
    [86]中华人民共和国交通部.公路沥青路面设计规范[S].北京, 2007.
    [87]刘福明.长寿命沥青路面损伤行为及其结构寿命合理匹配研究[D].华南理工大学, 2010.
    [88]宋若原,钱振东.组合式基层长寿命路面结构优化[J].交通运输工程与信息学报. 2011(01): 102-106.
    [89] Fairhurst C H M P. Estimation of the mechanical properties of rock masses: 22T,154R US BUR.MINES,FINAL TECHNICAL REPORT[J]. International Journal of Rock Mechanics andMining Sciences & Geomechanics Abstracts. 1974, 11(3): 48-260.
    [90]杜丽惠,黄丽清.考虑围岩蠕变特性的轴对称有限元非线性分析[J].水利学报. 2001(01):85-89.
    [91]周辉,张传庆,冯夏庭, et al.隧道及地下工程围岩的屈服接近度分析[J].岩石力学与工程学报. 2005, 24(17):3083-3087.
    [92]张传庆,周辉,冯夏庭.基于破坏接近度的岩土工程稳定性评价[J].岩土力学. 2007, 28(5):888-894.
    [93] ZHANG CQ, ZHOU H, FENG XT. An Index for Estimating the Stability of Brittle Surrounding Rock Mass: FAI and its Engineering Application [J]. Rock Mechanics and Rock Engineering, 44:401-414.
    [94] Theyse H, De Beer M, Rust F. Overview of South African mechanistic pavement design method [J]. Transportation Research Record: Journal of the Transportation Research Board. 1996, 1539(1): 6-17.
    [95]贾侃,沙爱民,陆剑卿.半刚性基层材料的有效模量值[J].长安大学学报(自然科学版). 2009, 29(1): 15-19.
    [96]姚祖康,刘伯莹.沥青路面新设计指标和参数体系研究[J].公路交通科技(应用技术版). 2008(S1): 1-9.
    [97]姚占勇,李运恒,商庆森, et al.平原水网区等级公路若干问题的研究[J].山东大学学报(工学版). 2008, 38(1): 70-73.
    [98]刘怡林,黄茂松,杜佐龙, et al.公路路基地基承载力的离心模型试验与分析[J].岩土力学. 2010, 31(11):3499-3504.
    [99]陈园明.电渗法处治过湿土路基填料现场模型试验[J].交通标准化. 2010(21):71-74.
    [100]张中云,蒋关鲁.客运专线无碴轨道红层泥岩改良土路基离心模型试验研究[J].铁道科学与工程学报. 2010, 7(5)41-46.
    [101]方明,张泽丰.井采诱使加筋板处治拓宽路基路面变形破坏模型试验[J].公路工程. 2010, 35(3):32-35.
    [102]翁效林,李林涛,张留俊.拓宽黄土路基湿化破坏机制模型试验研究[J].岩石力学与工程学报. 2010, 29(5):1075-1080.
    [103]杨果林,刘义虎.膨胀土路基含水量在不同气候条件下的变化规律模型试验研究[J].岩石力学与工程学报. 2005, 24(24):4524-4533.
    [104]钟鑑方,杨隽.高速公路红砂岩路基自落式强夯填筑技术及缺陷处理措施[J].交通标准化. 2010(23):171-174.
    [105]黄伟锋.高压喷射注浆技术在路基加固中的应用[J].科技资讯. 2010(21):109-109.
    [106]骆行文,张华,杨明亮.真空联合堆载预压法处理软土关键技术与评价[J].土工基础.2010, 24(3):10-13.
    [107]崔齐飞.利用注浆技术处理湿陷性黄土路基下沉[J].西铁科技. 2009(3):32-33.
    [108]陈勇智.注浆技术在铁路路基病害整治中的应用[J].隧道建设. 2005(S1):79-81.
    [109]马丽娜,严松宏.劈裂注浆模拟试验设计及工程应用[J].路基工程. 2010(5): 67-69.
    [110]何永华,李治国.钢花管劈裂注浆施工技术[J].施工技术. 2008(S1): 254-256.
    [111]曹少谦.劈裂注浆在太祁跨线桥地基加固工程中的应用[J].山西交通科技. 2002(S1): 85-88.
    [112]刘长生.袖阀管注浆法在公路路基病害处治中的应用[J].山西建筑. 2008, 34(13): 308-309.
    [113]许岩.袖阀管劈裂注浆在道路工程软基处理中的应用[J].山西建筑. 2011, 37(20): 156-157.
    [114]张忠苗,邹健.桩底劈裂注浆扩散半径和注浆压力研究[J].岩土工程学报. 2008, 30(2): 181-184.
    [115]孙锋,张顶立,陈铁林, et al.土体劈裂注浆过程的细观模拟研究[J].岩土工程学报. 2010, 32(3): 474-480.
    [116]白云,侯学渊.软土地基劈裂注浆加固的机理和应用[J].岩土工程学报. 1991, 13(2): 89-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700