用户名: 密码: 验证码:
基于小范围屈服断裂的连杆胀断参数研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连杆胀断技术(也称裂解)突破传统的机械切削分离加工及配合定位理念,采用定向控制断裂实现连杆体和盖的分离加工,并利用胀断后的自然断裂面实现胀断连杆体和盖的精确定位合装,可减少加工工序、节省精加工设备、节材节能、降低生产成本,并能提高连杆体和盖的定位精度、装配质量及工作中的连杆承载能力,对提高发动机生产技术水平和整机性能具有重要作用。
     由于连杆胀断后要实现杆和盖的精确合装,保证连杆胀断后续精加工,满足胀断连杆在发动机运行中杆和盖结合面的承载及定位要求,因此连杆胀断加工的关键是限制胀断过程中连杆大头孔的塑性变形和确保胀断后断裂面较好的三维凹凸形态。但连杆胀断是弹塑性缺口构件在冲击加载下的三维动态断裂过程,断裂过程复杂,影响因素众多,且用于研究连杆胀断的弹塑性断裂力学理论本身还并不十分完善,以至于在实际生产中连杆胀断的力学参数及预制应力槽参数等还主要靠经验来确定,为此,本文结合国家自然科学基金项目(50375066)等课题的研究内容,从连杆胀断断裂本质分析入手,建立相关理论模型,对连杆胀断参数选择进行了相关理论分析和有限元数值模拟研究,并进行了相关试验验证,主要取得了如下研究成果:
     1.通过试验确定胀断前连杆材料的机械和断裂性能参数,分析连杆胀断加工的大头孔塑性变形公差限制,根据连杆胀断加载条件,依据断裂力学相关理论确定连杆胀断的断裂本质为——韧性材料具有双侧预制应力槽构件在动态冲击加载下的小范围屈服后的弹塑性I型断裂。
     2.分析弹塑性断裂特点,定义弹塑性断裂的裂纹体概念,给出弹塑性断裂裂纹体J积分的物理意义为流入裂纹体的总能量,即为驱动裂纹体弹塑性变形及断裂的总驱动能。提出弹塑性断裂后的裂纹体局部弹性能耗散概念。定义发生弹塑性断裂时的弹塑性裂纹体临界J积分为裂纹体的临界线弹性J积分和临界塑性J积分之和,在断裂后,临界塑性J积分转化为裂纹体的塑性变形能,临界弹性J积分转化为形成裂纹新表面的裂纹能以及断裂后的裂纹体弹性耗散能。据此可统一线弹性和非线性断裂问题的临界J积分概念及其物理意义。提出了可作为弹塑性断裂时裂纹体屈服范围大小度量的裂纹体相对塑性概念,定义其为临界塑性J积分与临界弹性J积分之比。参考裂纹体相对塑性,通过理论计算分析确定了小范围屈服断裂的载荷极限,以此为参考确定了连杆胀断设计载荷为连杆胀断有效承载截面整体屈服载荷的1/2,并通过捷达轿车EA113发动机连杆胀断拉伸试验进行了验证。
     3.依据弗里特曼联合强度理论提出大范围或整体屈服后断裂的Mises等效应力断裂判据和小范围屈服后正断的最大拉应力断裂判据,并通过单边U型和V型缺口板拉伸试验、捷达轿车胀断连杆拉伸试验、以及有限元数值模拟计算进行了验证。依据小范围屈服后正断的最大拉应力判据,在连杆胀断设计载荷的基础上,根据拉削和线切割加工特点建立拉削和线切割预制应力槽的胀断连杆有限元模型,通过有限元数值模拟计算确定了拉削加工预制应力槽的根部圆角半径公差和线切割加工预制应力槽的深度公差。
     4.在研究激光加工预制应力槽断面微观特征,槽周围局部重铸层特征及槽周围局部显微硬度特征的基础上,分析了激光加工预制应力槽的断裂本质,提出了激光加工预制应力槽的简化理想裂纹模型以及激光加工预制应力槽的等效临界应力强度因子和等效临界J积分概念,并用连杆激光预制应力槽加工参数加工单边槽进行了板拉伸试验,通过试验数据估计了激光加工预制应力槽的等效临界J积分,以此为判据确定了激光加工预制应力槽的深度公差。
     5.分析了连杆胀断两侧预制应力槽深度差与斜连杆的两侧不对称结构对连杆胀断两侧断裂同步性的影响,即随着两侧断裂时间延迟的增加,后断裂侧发生弯曲变形增大,连杆胀断中的大头孔塑性变形增大。通过有限元数值模拟分析了连杆胀断的盖端锁紧对减小连杆胀断大头孔变形的作用。在直、斜连杆的不对称槽深胀断数值模拟及连杆胀断应变电测试验基础上,定量研究了不对称槽深对直、斜连杆胀断的影响。对直连杆,可通过限制两侧预制应力槽的差深比来保证连杆胀断后的大头孔变形要求。对斜连杆,可通过优化两侧槽深差来改善由于斜连杆设计先天而来的两侧不对称结构对两侧胀断同步性的影响。
     6.确定楔形机械自锁机构实现连杆胀断盖端锁紧。选择楔入式胀断的连杆胀断加载方式,分析确定了楔入式胀断的设备载荷和连杆胀断设计载荷的计算关系,确定了楔入式胀断的设备设计载荷计算方法,并分别针对捷达轿车EA113发动机(1.6升排量)用连杆、卡车8.6升排量柴油机用36D连杆和重卡及特种车13升排量柴油机用53D连杆,计算了需要的相应胀断设备设计载荷,在此基础上设计了轿车、卡车和重卡及特种车发动机用连杆的小、中、重型连杆胀断设备,并在相关连杆生产企业获得应用,取得良好效果。
The fracture splitting of connecting rod, which broke through the traditional design idea of separating by machining process、positioning and assembling parts, can make the cap separate from the connecting rod by the controlled directional fracture with fewer procedures and equipment investment, lower costs, better-quality products, etc. The fracture surface of the connecting rod and cap after fracture splitting can provide the higher assembly precision and the stronger loading capacity, as a result, it can improve the engine performance. The fracture splitting processing of connecting rod has advantage over the other traditional methods.
     During fracture splitting connecting rod, the most important thing is to make the cap brittle fracture split from the connecting rod with little or no plastic deformation and achieve appropriate three-dimensional fracture face. Because plastic deformation can alter the fracture surface topography and lead to deformation and distortion of the inner bore so that it can not make the connecting rod and the cap after fracture splitting contiguously and accurately fit together to achieve subsequent finishing processes. As a result it would affect assembly precision and loading capacity of connecting rod in the engine. Fracture splitting connecting rod is a complicated and instantaneous three-dimensional crack propagation course and is influenced by many factors. The elastic-plastic fracture mechanics theory which could be used to study fracture splitting connecting rod is now developing. Therefore the parameters of fracture splitting were always determined by experiences from the past. So supported by the national natural science foundation(50375066) and based on the fracture nature of fracture splitting connecting rod, the relevant theoretical models of fracture splitting connecting rod were established and by these models, the theoretical analysis and FEA numerical simulations were carried out and the relevant parameters of fracture splitting were determined. And testes were done to validate these parameters. The major research is summarized as follows:
     1. The mechanics and fracture properties of the connecting rod material before fracture splitting were determined by the uniaxial tensile and the linear-elastic plane-strain fracture toughness tests. The effect of the bearing hole plastic deformation after fracture splitting of the connecting rod on roundness accuracy、assembly precision、subsequent finish machining and engine working were analyzed. Based on these testing data and analysis, according to the related theories of line-elastic fracture mechanics and elastic-plastic fracture mechanics, this paper concluded that connecting rod before fracture splitting is a elastic-plastic structure with two side starting-notches, that the load for fracture splitting is dynamic and impactive, and that the nature of fracture splitting connecting rod is a mode I fracture course after small scale yielding.
     2. Elastic-plastic fracture characteristics were analyzed. The crack body of elastic-plastic fracture was defined. J-integral of the non-linear crack body is equal to the total energy flowing into the crack body, which drives the crack body elastic-plastic deformation and fracture. The elastic energy dissipation of elastic-plastic crack body after fracture is defined. When the fracture is in the critical point, the critical J-integral of the non-linear crack body is equal to the total critical energy driving the crack body fracture after elastic-plastic deformation. Because J-integral of elastic-plastic crack body is sum of linear-elastic J-integral and plastic J-integral, so when the fracture happen, the critical linear-elastic J-integral is converted to the energy for forming the new crack surfaces and the crack body elastic energy dissipation, and the critical plastic J-integral is converted to plastic deformation energy of the crack body. According to this, the physical meaning of J-integral of linear elastic and elastic-plastic fracture can be consistent. When the fracture of the elastic-plastic crack body was starting, the elastic-plastic crack body relatively plastic was defined, which could be used as a measure of the scale of crack body yielding. Based on the crack body relatively plastic, the limit of load for fracture after small scale yield was calculated by fracture mechanics theory. As a reference and by FEA numerical simulations of fracture splitting connecting rod, the theory design load of fracture splitting connecting rod was identified as half of the overall yield load of the effective cross-section of bearing load. The theory design load was verified by the tensile test of Jetta EA113 engine connecting rod with V-starting-notches.
     3. According to Freterman's theory on joint strength, the fracture mechanism after the large-scale or overall yielding is different from after small scale yielding. So Mises equivalent stress fracture criterion after the large-scale fracture and the overall yield fracture and the maximum tensile stress fracture criterion after the small scale yielding fracture were presented and verified by the experiment and finite element calculations. Referring to the design load of fracture splitting and by reasonably simplifying the V-notch by broaching and the U-notch by wire cut electrical discharge and establishing the connecting rod geometric models for fracture splitting, the fracture finite element numerical simulation were carried out. The parameters and tolerances of the V-notch root radius and the U-notch depth were determined by the maximum tensile stress fracture criterion after the small scale yielding fracture.
     4. As for the starting-notch by laser processing, the microscopic geometric, the composition and the micro-hardness distribution of local metal structure surrounding the notch were analyzed. Referring to the energy method of linear elastic fracture mechanics and to avoid dealing with the complex geometry of the starting-notch by laser, the paper defined the equivalent critical stress intensity factor and the equivalent critical J-integral for the starting-notch by laser and estimated the equivalent critical J-integral, which provided a reference to determine the depth parameter and the tolerance of the starting-notch by laser for fracture splitting connecting rod.
     5. There is the different depth of starting-notches at both sides of connecting rod. And the structure of oblique incision connecting rod is asymmetric. The difference depth and the asymmetric structure affect on the order and the time lag of fracture splitting at both sides of connecting rod. The time lag of fracture splitting is the longer at both sides of connecting rod, and there is the bigger bending deformation at the side of later fracture, and there is the more plastic deformation during fracture splitting connecting rod. The FEA models of one side fracture splitting of connecting rod were established and the FEA simulation were done to study the role of clamping the connecting cap during fracture splitting. The results showed that clamping the connecting cap could restrict the connecting cap rotation during fracture splitting and weaken the influence of asymmetric factors on fracture splitting. The FEA models of flat and oblique incision connecting rod with different crack depth on both sides were established and the FEA simulation were done. The experiments of fracture splitting connecting rod were carried out by electrometric method. Based on the results of the above simulations and the experiments, the paper obtained the quantitative effects of the asymmetric starting-notch depth on fracture splitting the flat and the oblique incision connecting rod. When fracture splitting the flat incision connecting rod, the bearing hole plastic deformation after fracture splitting might be limited by controlling the ratio of depth difference to shallower depth of the two starting-notches of flat incision connecting rod in the reasonable range. When fracture splitting the oblique incision connecting rod, the optimization of the depth parameters on both sides of starting-notch could reduce the effect of the asymmetric structure on fracture splitting of the oblique incision connecting rod.
     6. The wedge block mechanism with self-locking function was chose to achieve clamping the connecting cap. The load of fracture splitting equipment of connecting rod were obtained by the wedge block which was driven and could duplicate the load direct by the hydraulic cylinder. The relation between the load of fracture splitting equipment and the theory design load was determined. The design method of the load of fracture splitting equipment was proposed. By this method, the loads of fracture splitting EA113 engine(1.6L) connecting rod of Jetta car, 8.6L diesel engine 36D connecting rod of the truck and 13L diesel engine 53D connecting rod of the heavy truck and special vehicles were calculated. Based on these loads, the equipments for fracture splitting the connecting rod for the engine of car、light and heavy truck were made. These equipments have already applied mass production of connecting rod and achieved good economic benefits.
引文
[1]中国汽车工业协会编辑.1995年版中国汽车工业年鉴[C].北京:中国汽车工业协会,1995.
    [2] Dean Zeng.2010年全球汽车产量达7761万辆[N/OL].盖世汽车网[2011-03-18].http://auto.gasgoo.com/News/2011/03/170541504150305779403.shtml.
    [3]搜狐汽车研究室.2011年6月车市产销分析[J/OL].搜狐汽车研究,2011,51(6):[2011-07-07].http://auto.sohu.com/s2011/sar051/
    [4]方红燕、王今、刘克强.汽车行业能耗分析与节能技术研究[J].制造技术与材料,2009,(4):42-45.
    [5]王祖德.中国汽车零部件工业现状与发展[J].汽车研究与开发, 2004(3): 12-18.
    [6]搜狐汽车研究室,2011全球汽车产业白皮书[R].搜狐汽车, 2011.
    [7] Berthold Repgen.Optimized Connecting Rods to Enable Higher Engine Performance and Cost Reduction[J].SAE Technical Paper,980882,1998.
    [8]寇淑清,杨慎华,邓春萍,等.裂解工艺——发动机连杆制造最新技术[J].中国机械工程,2001,12(7):938-941.
    [9]中国汽车工业协会编辑.2009年版中国汽车工业年鉴[C].北京:中国汽车工业协会,2009.
    [10]谢谈,余宁,蒋鹏,等.发动机连杆断裂剖分新技术[J].机械工艺师,2000(4):19-20.
    [11] Z.Gu,S.Yang,S.Ku,et al.Fracture splitting technology of automobile engine connecting rod[J].Int J Adv Manuf Technol,2005(25):883-887.
    [12]顾永生.连杆大头的涨断工艺[J].世界制造技术与装备市场,1996(2):9-10.
    [13] Giddings&Lewis, Inc.Method of cracking a connecting rod:United States Patent,5274919[P].1994-01-04.
    [14] Alfing Kessler Sondermaschinen Gmbh.Method and apparatus for fracturing connecting Rods:United State,5169046[P].1992-12-08.
    [15] EX-Cell-O.Method and installation for machining parts having a bearing eye:Canada,CA2055401[P].
    [16] Alfing Kessler Sondermaschinen Gmbh.Device for separating the rod and the cap for a connecting rod by breaking:International Patent, WO99/06169[P]. 1999-02-11.
    [17]清华大学工程系《汽车构造》编写组.汽车构造[M].北京:人民出版社,2000.
    [18]张志强.发动机连杆裂解加工影响因素数值分析及试验研究[D].长春:吉林大学材料学院,2007.
    [19]龚俊,芮执原,郎福元,等.激光催列的初步研究[J].甘肃工业大学学报,1994,20(4):44-48.
    [20]佚名.裂纹技术装备[J].机械研究与应用,1999,12(3):55.
    [21]克劳斯·毛瑟集团.连杆涨断工艺[J].汽车与配件,2006(1):24-25.
    [22]王彦菊,寇淑清,杨慎华.基于数值仿真的连杆裂解加工缺陷分析[J].材料科学与工艺,2008,16(6):776-780.
    [23]李鹏.国外汽车发动机连杆材料最新应用[J].汽车工艺与材料,2010(1):42-45.
    [24]寇淑清,杨慎华,金文明.连杆裂解加工新技术与装备[J].机械工人(热加工),2002(11):5-7.
    [25]邓伟辉,张永俊.连杆涨断加工技术现状与展望[J].机电工程技术,2008,37(4):13-18.
    [26] Tsuyoshi Kubota,Shinya Iwasaki,Tsuneo Isobe,et al.Development of Fracture Splitting Method for Case Hardened Connecting Rods[J].SAE Technical Paper,2004-32-0064,2004.
    [27]王彦菊.发动机连杆裂解过程数值模拟及裂解参量分析[D].长春:吉林大学材料学院,2009.
    [28] Hye Sung Kima, Tae Gyu Kimb, Tai-Joo Chung, et al. Fatigue characteristics of high strength C70S6 and SMA40 steels[J]. Materials Science and Engineering A, 2010,527:2813-1818.
    [29] Chang Ku Lee,Young Sang Ko,Sung Hwan Kim,et al.Development of High Strength, Fracture Split Steel Connecting Rods[J]. SAE Technical Paper, 2007-01-1002,2007.
    [30] P.F. Bariani, S. Bruschi. Modelling the forging and post-forging cooling of C70S6 conrods[J]. Journal of Materials Processing Technology, 2005, 167:529-535.
    [31] Hyounsoo Park, Young Sang Ko, Seung Cheal Jung,et al.Development of Fracture Split Steel Connecting Rods[J]. SAE Technical Paper, 2003-01-1309, 2003.
    [32] Shinichiro Kato,Takashi Kano,Makoto Hobo,et al.Development of Microalloyed Steel for Fracture Split Connecting Rod[J]. SAE Technical Paper, 2007-01-1004, 2007.
    [33]范天佑.断裂理论基础[M].北京:科学出版社,2003.
    [34] Victor E. Saouma. Lecture Notes in: FRACTURE MECHANICS[M/OL]. University of Colorado. http://ceae.colorado.edu/-saouma/Lecture-Notes/lecfrac.pdf
    [35]郑修麟.切口件的断裂力学[M].西安:西北工业大学出版社,2005.
    [36]龙期威.断裂分形研究的新热点——关于断口分维是否具有普适性的一场争论[J].物理, 1997, 26(1):3-5.
    [37]杨慎华,张志强,寇淑清.连杆预制裂纹槽几何参数对胀裂力的影响[J].吉林大学学报(工学版),2006,36(02):195-198.
    [38]张志强,郑祺峰,赵勇,等.预制裂纹槽加工方法对连杆裂解加工质量的影响规律[J].内燃机工程,2008,29(05):80-84.
    [39]刘文忠. ALFING激光裂解设备的应用[J].汽车工艺与材料,2005 ,20 (11):11-13.
    [40]郑祺峰,杨慎华,邓春萍,等.应用Nd∶YAG激光加工连杆初始裂解槽[J].光学精密工程,2010,18(01):142-148.
    [41] Manfred Weber.Cost Effective Finishing of Powder Forged Connecting Rods with the Fracture-Splitting-Method[J].SAE Technical Paper,910157,1991.
    [42] Gottfried Hoffmann,Timothy Geiman,Michael Marra,et al.Fracture Splitting of Powder Forged Connecting Rods[J].SAE Technical Paper,2002-01-0609,2002.
    [43] ULRICH DüRR. Laser Drilling in Industrial Use. Micro Material Processing[J]. 2008, 5(3):57-59.
    [44]杨逸民.脉冲Nd:YAG激光在精密加工中的应用[J].激光与红外,1997,27(6):333-336.
    [45] Friedrich Bachmann. Industrial applications of high power diode lasers in materials processing[J]. Applied surface science, 2003, 208-209:125-136.
    [46] Adila Afzal,Ali Fatemi.A Comparative Study of Fatigue Behavior and Life Predictions of Forged Steel and PM Connecting Rods[J].SAE Technical Paper,2004-01-1529,2004.
    [47] Joseph M. Capus. PM advances in automotive applications[J]. Metal power report, 2001,(5):21-24.
    [48]佚名.发动机连杆新材料新工艺2[N/OL].成都亚普美汽配有限公司[2011-03-21]. http://www.connecting-rod.net/news/news24_cn.html.
    [49]佚名.发动机连杆新材料新工艺3[N/OL].成都亚普美汽配有限公司[2011-03-21]. http://www.connecting-rod.net/news/news25_cn.html.
    [50]杨志刚,寇淑清,张先国,等.斜切口连杆裂解工艺开发及应用[J].车用发动机,2007,171(5):73-77.
    [51]刘瑞宁,王福明,李强.微合金非调质钢的发展及现状.河北冶金[J]. 2006, 151(1):6-9
    [52]丁洁.汽车用微合金非调质钢的应用现状及发展.金属热处理[J]. 2006, 31(9):46-48.
    [53]刘瑞宁,王福明.汽车用微合金化非调质钢的进展.特殊钢[J]. 2006, 27(3):39-43.
    [54] Edmond Ilia,Michael O’Neill,Kevin Tutton,et al.Benchmarking the Industry: Powder Forging Makes a Better Connecting Rod[J]. SAE Technical Paper, 2005-01-0713,2005.
    [55]詹姆斯·格莱克.混沌学——一门新学科[M].张彦,顾肃,宋永华,等,译.北京:社会科学文献出版社,1991.
    [56]谢和平.脆性材料裂纹扩展的分形运动学[J].力学学报,1994,26(6):757-762.
    [57]谷诤巍.发动机连杆裂解加工工艺[J].新技术新工艺,2003(7):14-15.
    [58]吴顺达,王晓燕.胀断连杆锻造技术[J].锻压技术, 2011,36(1):30-34.
    [59]于永仁.连杆裂解工艺[J].汽车工艺与材料,1998(9):9-11.
    [60]徐兴尧.国外凸轮轴和连杆生产新工艺[J].汽车工艺与材料,1996(9):1-6.
    [61] Bayerische Motoren Werke Aktiengesellschaft. Verfahren zum Bruchtrennen eines Bauteiles in einer Duchbrechung benachbarten Querschnitten, insbesondere geteilte Lageranordnungen, vorzugsweise Pleuel von Hubklobenmaschinen: European patent, EP0713741A1[P]. 1996-05-29.
    [62] Giddings & Lewis, Inc. Method of cracking a connecting rod: United States Patent: 5274919[P]. 1994-01-04.
    [63] Alfing Kessler Sondermaschinen Gmbh. Methord fof fracture-separating an annular piece: United States, US6474526B1[P]. 2002-11-05.
    [64] Vigel S.p.A. Apparatus for separating the bearing cap of a connecting rod by fracture: United States, US6536642B1[P]. 2003-03-25.
    [65] Gottfried Hoffmann, West Bend. Dynamic splitting of connecting rods: United States, US2003/0019100A1[P]. 2003-01-30.
    [66] Yasunaga Corporation. Connecting rod fracture machine and method for fracture separating connecting rod using the machine: United States, US2002/0023939A1[P]. 2002-02-28.
    [67] Tsuyoshi Kubota, Shinya Iwasaki, Tsunneo Isobe. Fracture split method for connecting rod: United States, US2004/0025340A1[P]. 2004-02-12.
    [68] Ford Motor Company. Low-cost method of making cracked connecting rods comprised of forged wrought steel: Uinited State ,5105538[P]. 1992-04-21.
    [69] Ex-Cell-O GmbH. Method and installation for machining machine parts having a bearing eye. Uinited State, 5263622[P]. 1993-11-23.
    [70] Ex-Cell-O Machine Tools, Inc.Process and apparatus for manufacturing connecting rods. Uinited State, 5946790[P]. 1999-09-07.
    [71]杨慎华,寇淑清,谷诤巍,等.发动机连杆裂解加工新技术[J].哈尔滨工业大学学报,2000,32(3):129-131.
    [72]何约洁.国外发动机连杆生产现状[J].内燃机,1994(6):6-9.
    [73]刘赞丰,杨志刚,何善开,等.发动机连杆的裂解加工技术[J].现代汽车零部件,2011:26(3)48-51.
    [74] Cesar Almeida, Abhay Gogate,Shankar Patil,et al.Development and Analysis of Fracture Split Angle Connecting Rod for the MaxxForce Engine for M & HCV Application for India[J].SAE Technical Paper,2011-26-0075,2011.
    [75] Moses A. Olaniran,Charles A. Stickels.Separation of Forged Steel Connecting Rods and Caps by Fracture Splitting[J].SAE Technical Paper, 930033,1933.
    [76]宋炯毅,汪雷刚.涨断连杆加工工艺研究[J].现代零部件,2011(3):72-73.
    [77] Daniel Robat. Steels for Connecting Rod Forgingswith Optimum Splittability[C]. 16 th International Forging Congress, Beijing ,1999.
    [78] Klaus Lipp, Heinz Kaufmann. Die and Powder Forging Materials for Automotive Connecting Rods[J]. MTZ worldwide,2011,72(5):70-75.
    [79]韩凤麟.用常规粉末冶金工艺制造汽车连杆[J].粉末冶金技术, 1996, 14(3):214-224.
    [80] Paul Skoglund, Sven Bengtsson,Anders Bergkvist,et al.Performance of High Density P/M Connecting Rods[J].SAE Technical Paper,2000-01-0403,2000.
    [81] Timothy Geiman, Denis Christopherson, Michael Marra,et al.Machinability and Performance of Precision Powder Forged Connecting Rods[J].SAE Technical Paper,2001-01-0351,2001.
    [82]韩凤麟.粉末锻造与C - 70钢锻造汽车发动机连杆[J].现代零部件,2005(12):18-23.
    [83] Edmond Ilia,Michael O’Neill,Kevin Tutton,et al.Benchmarking the Industry: Powder Forging Makes a Better Connecting Rod[J].SAE Technical Paper,2005-01-0713,2005.
    [84] Edmond Ilia, Kevin Tutton, George Lanni. Fuel economy the driver for new materials[J]. Metal Powder Report,2007,62(9):24-31.
    [85] James R Dale, Vice President. Powder forged or C-70 steel? Now the MPIF strikes back[J]. Metal Powder Report, 2005, 60(2):14-17.
    [86] Anonymous author. Crunch time at SAE leaves the C-70 con rod case bent and very battered[J]. Metal Powder Report, 2005, 60(6):14-16.
    [87]曹正,史万富,王敢利,等.高碳微合金非调质钢连杆研究[J].汽车工艺与材料,2000(12):24-27.
    [88]陈子宏,陈庆丰,熊玉彰,等.裂解连杆用高碳微合金钢的开发[J].汽车工艺与材料,2011(5):58-63.
    [89]刘智雄,惠卫军,陈思联,等.胀断连杆用中碳非调质钢的高周疲劳性能[J].钢铁研究学报,2011,23(6):49-53.
    [90]张贤忠,蔡启舟,陈庆丰,等.汽车裂解连杆用高强度非调质钢组织和性能的研究[J].钢铁研究,2011,39(1):15-17.
    [91] Xianzhong Zhang,Qizhou Cai,Guifeng Zhou,et al.Microstructure and mechanical properties of V–Ti–N microalloyed steel used for fracture splitting connecting rod[J].J Mater Sci,2011,46(6):1789–1795.
    [92]中华人民共和国国家标准.金属材料室温拉伸试验方法[S]. GB/T 228-2002.
    [93]汪大年.金属塑性成形原理[M].北京:机械工业出版社,1993.
    [94]中华人民共和国国家标准.金属材料平面应变断裂韧度KIC试验方法[S]. GB/T 4161-2007.
    [95] ASTM. Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials[S]. E399-09.
    [96] Deen Zhang, S.J.Harris, D.G. McCartney, et al. The effect of laser transformation notching on the controlled fracture of a high carbon (C70S6) steel[J]. Materials Science and Engineering.2007,12(40):1-12.
    [97] J. M. Barsom, S. T. Rolfe. Correlations between KIC and Charpy V-Notch Test Result in the Transition-Temperature Range, in Impact Testing of Materials[S]. ASTM STP466. American Society for Testing and Materials, Philadelphia,1970.
    [98]谢谈,余宁,蒋鹏,等.发动机连杆断裂剖分新技术[J].机械工艺师,2000(4):19-20.
    [99]于永仁.连杆裂解工艺[J].汽车工艺与材料,1998(9):9-11.
    [100] A. Griffth. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society[J], 1921,(A221):163-197.
    [101] Inglis C. E. Stresses in a plate due to the presence of cracks and sharp corners.[J] Trans. Inst. Naval Arch,1913,55:219-241.
    [102] G. Irwin. Plastic zone near a crack and fracture toughness[C]. Proc. 7th Sagamore Ordnance Materials Conference, Syracuse University Research Institute, 1960,(4):63-73.
    [103] Irwin G R. Analysis of stresses and strains near the end of a crack traversing a plate[J]. Journal of Applied Mechnics,1957,(24):361-364.
    [104] Orowan E. Fracture and strength of solids[J]. Reports on Progress in Physics, 1948,(12):185-232.
    [105]何庆芝,郦正能.工程断裂力学[M].北京:航空航天大学出版社,1993.
    [106] Westergaard H. M. Bearing pressures and cracks. J. Appl. Mech.,1939,6:4-53.
    [107] Alan T. Zehnder. Lecture Notes on Fracture Mechanics[M/OL]. Cornell University, [2009-07-30]. http://ecommons.cornell.edu/bitstream/1813/3075/7/Fracture2011.
    [108] Rice J. R. A path in dependent integral and the approximate analysis of strain concentration by notches and cracks[J].Journal of Applied Mechanics, 1968,(35):379-386.
    [109] G. P. Cherepanov. Crack propagation in continuous media[J]. Journal of Applied Mathematic and Mechanics, 1967,31:503-512.
    [110] J. D. Eshelby, The continuum theory of lattice defects[J]. Progress in Solid State Physics 1956,3:79-303.
    [111] Melvin F. Kanninen, C. H. Popelar. Advanced fracture mechanics[M]. Oxford University Press, 1985.
    [112] Dugdale D.S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960,8:100–104.
    [113] Alan T. Zehnder. Lecture Notes on Fracture Mechanics[M/OL]. Cornell University, [2009-07-30]. http://ecommons.cornell.edu/bitstream/1813/3075/7/Fracture2011.
    [114]杨卫.宏观断裂力学[M].北京:国防工业出版社,1995.
    [115]于永仁.连杆裂解工艺[J].汽车工艺与材料,1998(9):9-11.
    [116] Neuber H.Theory of stress concentration for shear strained prismatical bodies with arbitrary non-linear stress-strain law[J]. J. Appl. Mechanics, 1961, 28:544-550.
    [117] G Harkegard and T Mann. Neuber prediction of elastic-plastic strain concentration in notched tensile specimens under large-scale yielding[J]. J. Strain Analysis, 2003, 38(1):79-94.
    [118]孙训方.材料力学[M].北京:人民教育出版社,1979.
    [119] Zheng X L. On an unified model for predicting notch strength and fracture toughness[J]. Eng.Fract.Mech.,1989,33(5):685-695.
    [120]王丹.碳钢激光打微孔作用机理及工艺研究[D].长春:长春理工大学, 2007.
    [121] Liming Zheng,ShuqingKou,ShenhuaYang.A study of process parameters during pulsed Nd:YAG laser notching of C70S6 fracture splitting connecting rods[J].Optics & Laser Technology,2010,42(6):985–993.
    [122]王金伟.连杆/箱体主轴承座裂解槽脉冲激光加工数值模拟及试验研究[D].长春:吉林大学材料学院, 2011.
    [123] Kou SQ,Wang JW, Zheng QF.Numerical analysis of the temperature field generated during the production of a fracture notch in a C70S6 steel connecting rod using a Nd:YAG laser[J]. Lasers in Engineering,2011,21(1-2):15-127.
    [124] Kou SQ,Wang JW, Gao Y.Microstructure and Fracture Splitting Properties of a Fracture Splitting Notch Produced in a Connecting Rod (C70S6) Using Pulsed Laser Grooving[J].Lasers in Engineering,2010,20(5-6):381-395.
    [125] Howard Schmidt, Clarkston Mich. Prefracture laser formation of a stress riser groove: United States 5208979[P]. 1993-05-11.
    [126]赵勇,杨慎华,郑祺峰,等.激光预制裂纹槽的断裂分析[J].吉林大学学报(工学版),2011,41(04):984-987.
    [127] Zhao Yong,Yang Shen-hua,Zheng Qi-feng.The effect of notch processing on fracture of high-carbon steel (C70S6)[C]//1st International Conference on High Performance Structures and Materials Engineering.Switzerland,Advanced Materials Research,2011,(217-218):1283-1288.
    [128] 2005年汽车发动机工艺与装备(第十二届)国际研讨会综述.现代汽车发动机最新制造技术[J].汽车工艺与材料,2006(4):41-44.
    [129] J. G. Blauel,R. A. Mayville,M. Moser. Werkstoff und Mechanik beim Bruchtrennen von Automobil-Pleueln[J]. Mat.-wiss. u. Werkstofftech, 2000(3):238-244.
    [130] Fukuda S,Eto H. Development of fracture splitting connecting rod[J]. JSAE Review, 2002,23(1):101-104. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700