用户名: 密码: 验证码:
混合驱动水下滑翔器动力学建模及运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合驱动水下滑翔器集成了自主水下航行器、水下滑翔器及剖面浮标的优点,是海洋环境观测和海洋资源探测的重要平台。滑行操作模式下,周期改变自身净浮力和重心位置,借助机翼的液动升力前进,完成海洋中的锯齿形剖面运动,此时具有工作效率高、范围大、噪音低的特点;推进操作模式下,通过螺旋桨的推力快速前进,借助尾舵或内部姿态调节实现转向,完成海洋中的快速穿梭运动,此时具有速度快,机动性高,受海水深度及流速影响小的特点。
     本文在混合驱动水下滑翔器系统设计的基础上,利用浮基多刚体理论推导了其动力学方程,定制了水动力模型和参数,分析了其机动性与稳定性,完成了三维空间的滑翔运动和推进运动的仿真。而且,本文设计了针对该混合驱动水下滑翔器的神经网络运动控制器,并仿真验证了其稳定性和可行性。本文主要研究成果和创新点为:
     1.研究设计了首台小型混合驱动水下滑翔器样机,吸收了传统自主水下航行器、典型水下滑翔器和ARGO自持剖面浮标三者的优点。给出了混合驱动滑翔器的设计流程和计算方法,提供了部分单元试验及水域试验的重要数据,为混合驱动水下滑翔器的设计和制作提供参考。
     2.采用浮基多刚体理论和鱼雷水动力学模型建立混合驱动水下滑翔器的动力学方程。该方程考虑了内部质量的平移和旋转对姿态的控制作用以及高机动性运动时所受水动力的影响。分析了混合驱动水下滑翔器的机动性和稳定性,并给出了设计参数的选择范围,同时完成混合滑翔器在三维空间的推进操作和滑行操作模式下全状态运动仿真。
     3.针对混合驱动水下滑翔器裁制了基于BP神经网络的动力定位和轨迹跟踪控制方案,并构造李亚普诺夫函数分析了其控制稳定性。同时定制了基于PID神经网络的定深运动,目标跟踪和姿态解耦控制器,仿真验证了控制方法的可行性,提高了自适应控制和容错能力。
The winged hybrid-driven underwater gliders combine the best features of conventional autonomous underwater vehicles, legacy underwater gliders and Argo free-drifting profiling floats, and can be served as important platforms for marine environment observation and ocean resource exploration. Actuated by net buoyancy and hydrodynamic lift from fixed wings, the hybrid gliders perform glide operation and roam the ocean in a zigzag path with high efficiency, long endurance and low noise. Driven by one single prop and steered with deflection of tail fins or redistribution of internal masses, the hybrid gliders undertake thrust operation and penetrate the strong current in the estuary's littoral zone with high maneuverability and burst speed.
     In this paper, the architecture desigh and the operating principle of the hybrid gliders are introduced, the simplified and accurate dynamic models are built by using the theorem of multi-rigid-body with a floating base, the stability and maneuverability are analyzed and the three dimensional motion simulation under both thust operation and glide operation are performed. According to the paticular hydrodynamic profile, the hydrodynamic model was researched and the appropriate pramenters are seleted and calculated. In addition, the control model of the hybrid vehicle is developed based on the neural network algorithm, and its feasibility was verified by the control simulation. The main contributions are summarized as follows:
     1. One mini prototype of the hybrid-driven underwater glider is designed which tend to integrate together all the advantages of the conventional autonomous underwater vehicles, legacy underwater gliders and Argo free-drifting profiling floats. The critical design and calculation is presented and the fundamental data of the unit experiment and field tial are given which can serve as guidance for the fabrication of the marine platforms.
     2. The dynamic model of the hybrid gliders is built by using the therom of the multi-rigid-body with a floating base, and the impacts of the translational and rotational motion of internal masses on its attitude are taken into consideration. The hydrodynamic efficiencies of torpedo are introduced to add the accuracy of the dynamic model of the hybrid glider. Based on the analysis of the stability and maneuverability and the three dimensional motion simulation in both thrust operation and glide operation, the ranges of the design parameters of the hybrid-driven underwater glider are proposed.
     3. The BP neural network based controller for dynamic positioning and trajectory tracking of hybrid driven underwater glider are developed and anaylized, and the PID neural network based controller for fixed-depth navigation, target tracking and attitude decoupling are tailored. The capability of adaptive control and fault tolerance are brought about by the neural networks based control method.
引文
[1]冯士筰,李凤岐,李少菁,海洋科学导论,北京:高等教育出版社,1998
    [2] Costanza R., The ecological, economic, and social importance of the oceans, Ecological Economics, 1999, 31(2):199~213
    [3]朱光文,提升国家海洋技术总体实力推进我国海洋强国建设,海洋技术,2002,21(1):4~6
    [4] Yuh J., Design and control of autonomous underwater robots: a survey, Autonomous Robots, 2000, 8(1):7~24
    [5]赵进平,发展海洋检测技术的思考与实践,北京:海洋出版社,2005
    [6] Manley J. E., Weirich J. B., Deep frontiers: technology for ocean exploration, Sea Technology, 2005, 46(4):10~15
    [7]朱光文,我国海洋监测技术研究和开发的现状和未来发展,海洋技术,2002,21(2):27~32
    [8] Rudnick, D.L. and M.J. Perry, eds, ALPS: autonomous and lagrangian platforms and sensors, Workshop Report, 2003 Ikuo
    [9] Frye D.E., Kemp J., Paul W., et al, Mooring developments for autonomous ocean-sampling networks, IEEE Journal of Oceanic Engineering, 2001, 26(4): 477~486
    [10] A. Alvarez, A. Caffaz, A. Caiti, et al, Folaga: a low-cost autonomous underwater vehicle combining glider and AUV capabilities, Ocean Engineering, 2009, 136(1): 24~38
    [11] S. Wood, T. Allen, S. Kuhn, et al, The development of an autonomous underwater powered glider for deep-sea biological, Chemical and Physical Oceanography,OCEANS’07 Europe Conference Proceedings,2007, 18(21): 1~6
    [12] Pablo Rodriguez, Jaume Piera, Mini AUV, a platform for future use on marine research for the Spanish Research Council, Instrumentation ViewPoint, 2005,Autumn:14~15
    [13] Edward Fiorelli, Naomi Ehrich Leonard, Pradeep Bhatta, Derek A. Paley, Multi-AUV Control and Adaptive Sampling in Monterey Bay, IEEE Journal of Oceanic Engineering, 2006, 31(4): 935~948
    [14] Pradeep Bhatta, et al, Coordination of an underwater glider fleet for adaptive sampling, Proc. International Workshop on Underwater Robotics, Int. Advanced Robotics Programmed (IARP), Genoa, Italy, 2005
    [15]武建国,混合驱动水下滑翔器系统设计与性能研究:[博士学位论文],天津:天津大学,2009
    [16]蒋新松,封锡盛,王棣棠,水下机器人,沈阳:辽宁科学技术出版社,2000
    [17]封锡盛,从有缆遥控水下机器人到自治水下机器人,中国工程科学,2000,2(12):29~33
    [18] Allen B., Stokey R., Austin T., REMUS: a small, low cost AUV; system description, field trials and performance results, OCEANS '97 MTS/IEEE Conference Proceedings, 1997. 994~1000
    [19] Butler B., Den H. V., Theseus: a cable-laying AUV, Engineering in Harmony with Ocean, Proceedings of OCEANS, 1993(1): 1210~1213
    [20] Storkersen N. J., Kristensen A., Indreeide J., HUGIN-UUV for seabed surveying, Sea Technology, 1998, 39(2): 22~27
    [21] Hagen P. E., Storkersen N. J., Vestgard K., HUGIN-use of UUV technology in marine applications, OCEANS '99 MTS/IEEE Conference Proceedings, 1999. 967~972
    [22] Hagen P. E., Storkersen N., Vestgard K., et al, The HUGIN 1000 autonomous underwater vehicle for military applications, Proceedings of Oceans, 2003, 1141~1145
    [23] Purcell M., Von A. C., Allen B., New capabilities of the REMUS autonomous underwater vehicle, OCEANS 2000 MTS/IEEE Conference and Exhibition,2000. 147~151
    [24] Stokey R., Purcell M., Forrester N., et al, A docking system for REMUS: an autonomous underwater vehicle, OCEANS '97. MTS/IEEE Conference Proceedings, 1997: 1132~1136
    [25] ARGO浮标工作原理, Online available at:http://www.argo.gov.cn/argo-china /legend/ARGOfloats.htm#003
    [26] Simonetti P., Low cost endurance ocean profiler, Sea Technology, 1998, 39: 17~21
    [27]余立中,商红梅,张少永,Argo浮标技术研究初探,海洋技术,2001(8):35~38
    [28] Eriksen C. C., Autonomous underwater gliders, autonomous and lagrangian platforms and sensors (ALPS) workshop, Sea Lodge, La Jolla CA, 2003
    [29]余立中,我国的海洋剖面探测浮标—COPEX,海洋技术,2003(5):15~18
    [30] S. Stommel, The Slocum Mission, Oceanography, 1989, 2(1): 22~25
    [31] Douglas C.W., Paul J. S., and Clayton P. J., SLOCUM: An underwater glider propelled by environmental energy, IEEE Journal of Oceanic Engineering, 2001, 126(4): 447~452
    [32] Eriksen C. C., Osse T. J., Light R .D., et al, Seaglider: a long-range autonomous underwater vehicle for oceanographic research, IEEE Journal of Oceanic Engineering, 2001, 126(4): 424~436
    [33] Sherman J., Davis R. E., Owens W. B., Valdes J., The autonomous underwater glider“spray”, IEEE Journal of Oceanic Engineering, 2001, 126(4): 437~446
    [34] D. Richard Blidberg, The development of autonomous underwater vehicles (AUV); A Brief Summary, IEEE International Conference on Robotics and Automation, Korea 2001:1~12
    [35] S. A. Jenkins, D. E. Humphreys, J. Sherman, et al, Underwater glider system study, Technical Report, Office of Naval Research, 2003
    [36] R.Bachmayer, N.E.Leonardy, J.Gravery, et al, Underwater gliders: recent developments and future applications, Proc.IEEE International Symposium on Underwater Technology (UT'04), Tapei, Taiwan, 2004: 195~200
    [37] Ikuo Yamamoto, Research and development of past, present, and future AUV technologies, Online available at: http://www.noc.soton.ac.uk/CASEE/CASEE2 /pages/Masterclass/R&D%20past%20present%20future%20AUV%20tech-2.pdf:1~15
    [38] Todd Allen, Joseph Caldwell, Sean Kuhn, et al, Autonomous underwater vehicle: powered glider, Technical Report, Florida Institute of Technology, 2007
    [39] A. Caffaz, A. Caiti, G. Casalino, A. Turetta, The hybrid Glider/AUV Folaga, IEEE Robotics&Automation Magazine, 2010, 17(1): 31~44
    [40] Griffiths, G., Jones, C. P., Ferguson, J., Bose, N., Undersea glider, Journal of Ocean Technology, 2007, 2(2): 64~75
    [41] D. Malardé, A. La?s-Huon, et al, Integration of an in situ biogeochemical sensor for nitrate determination on an ARGO profiling float (Provor) and the Sterne glider, EGO, Technical Report, 2011
    [42] Wood, Stephen, Autonomous underwater glider, Technical Report, Florida Institute of Technology, 2007
    [43] La Spezia, Inovative glider technology, Technical Report, ACSA Underwater GPS, 2008
    [44] John Keller, UUV mothership to deploy intelligence-gathering unmanned underwater vehicles in development by SAIC, Military and Aerospace Electronics, 2010, 6(1): 6~9
    [45] Jianguo Wu, Chaoying Chen, Shuxin Wang, Hydrodynamic effects of a shroud design for a hybrid-driven underwater glider, Sea Technology, 2010, 51(6):45-47
    [46] Damus R., Manley J., Desset S., et al, Design of an inspection class autonomous underwater vehicle, Ocean's 2002 Conference and Exhibition, 2002.180~185
    [47] Von A. C., Allen B., Austin T., et al,Remote environmental measuring units, autonomous underwater vehicle technology, Proceedings of the 1994 Symposium on AUV, 1994: 13~19
    [48]桑恩方,庞永杰,卞红雨,水下机器人技术,机器人技术与应用,2003,(3):8~13
    [49]马伟锋,胡震,AUV的研究现状与发展趋势,火力与指挥控制,2008,33(6): 10~13
    [50]蒋新松,封锡盛,王棣棠,水下机器人,沈阳:辽宁科学技术出版社,2000
    [51]徐玉如,庞永杰,甘永等,智能水下机器人技术展望,智能系统学报,2006,l1(1):9~16
    [52] Thor I, Fossen, Guidance and control of ocean vehicles, Chichester: John Wiley and Sons, 1994
    [53] D.A. Jones, D.B. Clarke, I.B. Brayshaw, J.L. Barillon, and B. Anderson, The calculation of hydrodynamic coefficients for underwater vehicles, Defense Science and Technology, 2002
    [54] N. Mahmoudian, J. Geisbert, & C. Woolsey, Dynamics & control of underwater gliders i: steady motions, Virginia Center for Autonomous Systems Report No. VaCAS- 2007-01, 2009:1~37
    [55] R. Filoktimon, P. Evangelos, et al, Three dimensional trajectory control of underactuated AUVs, Proc. of the European Control Conference, 2007. 3492~3499
    [56] H. W. Zhang, S. X. Wang, W. Hou, et al, Control and navigation of the variable buoyancy AUV for underwater landing and takeoff, International Journal of Control, 2007, 80(7): 1018 ~ 1026
    [57] B. Wang, Y. M. Su, Y. R. Xu, and L. Wan, Modeling and motion control system research of a mini underwater vehicle, Sixth International Symposium on Underwater Technology, 2009. 71~75
    [58] B. Xie, J. Y. Xu, H. Zhang, et al, Dynamic modeling and investigation of maneuver characteristics of a deep-sea manned submarine vehicle, China Ocean Engineering, 2009, 23(3):505~516
    [59] Y. H. Wang, S. X. Wang, Dynamic modeling and three-dimensional motion analysis of underwater gliders, China Ocean Eng., 2009, 23(3): 489~504.
    [60]王延辉,水下滑翔器动力学行为和鲁棒控制策略研究:[博士学位论文],天津:天津大学,2007
    [61] Yu Zhang, Liang Zhang, and Tiejun Zhao, Discrete decentralized supervisory control for underwater glider, Intelligent Systems Design and Applications, 2006. 103~106
    [62] J. G Graver, Underwater gliders: dynamics, control and design [Dissertation], USA:Princeton University, 2003
    [63] P. Bhatta, N. E. Leonard, Nonlinear Gliding Stability and Control for Vehicles with Hydrodynamic Forcing,Automatic, 2008, 44(5): 1240~1250
    [64] P. Bhatta, N. E. Leonard, a lyapunov function for vehicles with lift and drag: stablity of gliding, 43rd IEEE Conference on Decision and Control, 2004: 4101~4106
    [65] N. E. Leonard, Stability of a bottom-heavy underwater vehicle, Automatica, 1997, 33(3): 331~346
    [66] N. E. Leonard and J. G. Graver, Model-based feedback control of autonomous underwater gliders, IEEE Journal of Oceanic Engineering, 2001,26(4): 633~645
    [67]王树新,王延辉,张大涛等,温差能驱动的水下滑翔器设计与实验研究,海洋技术,2006,25(1):1~5
    [68]俞建成,张奇峰,吴利红等,水下滑翔机器人系统研究,海洋技术,2006,25(1):6~10
    [69]荣建德,水下运载器性能的分析与设计,北京:国防工业出版社,2008
    [70] Webb, Slocum shallow battery glider, Operations Manual, Webb Research Corporation, 2005
    [71] Yu Zhang , Jianshen Zhi, Tong Jiang ,et al, research on a new buoyancy driven system for underwater glider, The Sixth World Congress on Intelligent Control and Automation,2006. 6169-6172
    [72]谢俊元,遥控水下机器人(ROV)分布式控制体系结构,船舶力学,1997,1(2):61~62
    [73]饶运涛,邹继军,郑勇芸,现场总线CAN原理与应用技术,北京:北京航空航天大学出版社,2003
    [74] Ridao P., Yuh J, On AUV control architecture, The 2000 IEEE International Conference on Intelligent Robots and Systems, 2000, 15(7): 855~860
    [75] Brooks R.A., A robust layered control system for a mobile robot, IEEE Journal of Robotics and Automation, 1996, 2:14~23
    [76]施丽娟,谢祚水,肋骨对环肋圆柱壳壳板稳定性影响的初步研究,华东船舶工业学院学报,1999,13(3):1~5
    [77]谢祚水,施丽娟,环肋圆柱壳结构壳板稳定性研究,海洋工程,2002,20(4):32~36
    [78]陆蓓,刘涛,崔维成,深海载人潜水器耐压球壳极限强度研究,船舶力学,2004,8(1):51~58
    [79]谢祚水,环肋圆柱壳稳定特性研究,中国造船,1998,143(4):73~80
    [80]阚雷,张宇文,范辉等,浮力驱动式水下滑翔机运动仿真,计算机工程与应用,2007,43(18):199~201
    [81] R. E. Davis, C. C. Eriksen and C. P. Jones,“Autonomous buoyancy-driven underwater gliders,”The Technology and Applications of Autonomous Underwater Vehicles. G. Griffiths, ed., Taylor and Francis, London, 2002. 37~58
    [82] Simonetti P., SLOCUM glider: design and 1991 field trials, Webb Research Corp., Woods Hole Oceanographic Institution, Office of Naval Technology, 1992
    [83] Daniel L. Rudnick , Russ E. Davis.,Underwater gliders for ocean research, Marine technology society journal, 2004, 38(2): 73~84
    [84] Thermal glider, online available at: http://thefutureofthings.com/pod/1115/ thermal-glider.html
    [85]马峥,张华,张楠等,水下滑翔机滑翔运动的能量分析及水动力性能研究,船舶力学,2006,10(3):53~60
    [86]葛晖,徐德民,周秦英,基于变质心控制的低速水下航行器动力学建模,机械科学与技术,2007,26(3):327~331
    [87]马冬梅,马峥,张华等,水下滑翔机水动力性能分析及滑翔姿态优化研究,水动力学研究与进展,2007,9(5):703~708
    [88] Mini Underwater glider (MUG) for education, online available at: http://www.naoe.eng.osaka-u.ac.jp/naoe/naoe7/MUG.html
    [89] Crimmins D., Deacutis C., Hinchey E., et al, Use of a long endurance solar powered autonomous underwater vehicle (SAUV II) to measure dissolved oxygen concentrations in Greenwich Bay, Rhode Island, U.S.A, OCEANS’05 Europe Conference Proceedings , 2005: 896~901
    [90] Liberdade XRay advanced underwater glider, online available at: http://www.onr.navy.mil
    [91] Williams D B, Efficiency analysis and prototyping of a buoyancy powered underwater glider [Dissertation].The USA:Florida Atlantic University, 2000
    [92]施生达,潜艇操纵性,北京:国防工业出版社,1995
    [93] P.M.Ostafichuk, AUV hydrodynamics and modeling for improve control [Dissertation], Canada: University of British Columbia, 2004
    [94] Timothy Curtis, B.Eng, The design, conatruction, outfitting, and preliminary testing of the C-SCOUT autonomous underwater vehicle (AUV) [Dissertation], Canada, Faculty of Engineering and Applied Science Memorial University of Newfoundland, 2001
    [95] Tyagi A, Sen Debabrata. Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach, Ocean Engineering, 2006, 33(5/6): 798~809
    [96] Y.G.Le Page, Hydrodynamics and control of an autonomous underwater vehicle equipped with a vectored thruster, Florida Atlantic University, 2000
    [97] Wu Baoshan , Pan Ziyi, XI A Xian, et al, Investigation of the hydrodynamic characteristics of body of revolution with stern ring-wing, Journal of Ship Mechanics, 2003, 12, 6(7): 54~59
    [98] Roy Featherstone, David Orin, Robot Dynamics: Equations and Algorithms, IEEE International Conference on Robotics and Automation, 2000. 826~834
    [99] J. Wittenburg, Dynamics of systems of rigid bodies, Stuttgart: B. G. Teubner, 1977
    [100] David G. Luenburger, Dynamic equations in descriptor form, IEEE Transactions on automatic control, 1977, 22(3): 312~321
    [101] Joshua G. Graver, Ralf Bachmayer, Naomi Ehrich Leonard, Underwater glider model parameter identification, Proc. 13th Int. Symp. Unmanned Untethered Submersible Technology (UUST), 2003, 1~12
    [102] Thor I. Fossen, Handbook of marine craft hydrodynamics and motion control, John Wiley & Sons Ltd., April 2011
    [103] Thor I. Fossen, Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles, 2002
    [104] Joonyoung Kim, Kihun Kim, Choi, H.S., Woojae Seong, Kyu-Yeul Lee, Estimation of hydrodynamic coefficients for an AUV using nonlinear observers, Ocean Engineering, 27(4): 830~ 840
    [105]蔡自兴,机器人学,北京:清华大学出版社,2000
    [106]熊友伦,机器人学,北京:机械工业出版社,1993
    [107]居余马,线性代数,北京:清华大学出版社,2010
    [108]程云鹏,矩阵论,北京:北大出版社,2003
    [109] Nina Mahmoudian, Efficient motion planning and control for underwater gliders [Dissertation], USA, Virginia Polytechnic Institute and State University, 2009
    [110]李天森,鱼雷操纵性,北京:国防工业出版社,1999
    [111]王延辉,王树新,谢春刚,基于温差能源的水下滑翔器动力学分析与设计,天津大学学报,2007,40(2):133~138
    [112] Nickell C. L., Woolsey C. A., Stilwell D. J, A low-speed control module for a streamlined AUV, OCEANS '05 MTS/IEEE Conference Proceedings, Washington, DC, 2005:1680~1685
    [113] Webb D., Design of a mobile and bottom-resting autonomous underwater gliding vehicle, In: Proceedings of the unmanned underwater submersibles technology 2003 conference, Durham, NH, 2003
    [114]胡志强,林扬,谷海涛,水下机器人粘性类水动力数值计算方法研究,机器人,2007,29(2):145~150
    [115]张佐厚,胡志安,船舶推进,北京:国防工业出版社, 1980
    [116] Yang C.-I., Hartwich P., Sundaram P., A navier-stokes solution of hull-ring wing-thruster interaction, In NAS-NRC, Eighteenth Symposium on Naval Hydrodynamics : 687~696
    [117] Tyagi A, Sen Debabrata, Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach, Ocean Engineering, 2006, 33(5/6): 798~809
    [118] Douglas E.H, Correlation and validation of a CFD based hydrodynamic &dynamic model for a towed undersea vehicle,OCEANS, 2001( 3): 1755~1760
    [119]张怀新,潘雨村,CFD在潜艇外形方案比较中的应用,船舶力学,2006,10(4):1~8
    [120] Yamaguchi, Satoru; Kawanami, Takeo, et al, A study on shape optimization for an underwater vehicle based on numerical simulation, Proceedings of ISOPE Pacific/Asia Offshore Mechanics Symposium, 2002: 43~48
    [121] Arabshahi, A.; Gibeling, H.J., Numerical simulation of viscous flows about underwater vehicles, OCEANS 2000 MTS/IEEE Conference and Exhibition, 2000: 2185~2195
    [122]严生,鱼雷航行力学,西安:西北工业大学出版社,2005
    [123]张宏伟,可着陆水下自航行器系统设计与动力学行为研究:[博士学位论文],天津:天津大学,2007
    [124] Jenkins S A, Humphreys D E, Sherman J, et al, Alternatives for enhancement of transport economy in underwater gliders, IEEE Proceedings of OCEANS, 2003. 948~950
    [125]王晓鸣,混合驱动水下自航行器动力学行为与控制策略研究:[博士学位论文],天津:天津大学,2009
    [126] Jasmin Velagic, Nedim Osmic, and Bakir Lacevic, Neural network controller for mobile robot motion control, World Academy of Science, Engineering and Technology, 2008, 47: 193~198
    [127] Z. Vukic, B. Borovic, B. Tovornik, Adaptive neuro controller for a precise maneouvring of underwater vehicle, 5th IFAC Conference on Manoeuvring and Control of Marine Craft– MCMC 2000, Aalborg, 173~178
    [128] V. Koroman, O. Kuljaca, B. Borovic, Conventional and fuzzy control algorithm for underwater vehicle positioning, Comparing Analysis Electronics in Marine, 39th International Symposium Proceedings, Zadar, 1997: 211~215
    [129] N. Mahmoudian, C. Woolsey, Dynamics & control of underwater glider ii: motion planning and control, Technical Report, Virginia Polytechnic Institute & State University, 2010:1~23
    [130] S. K. Agrawal, R. Garimella, and G. Desmier, Free-floating closed-chain planar robots: kinematics and path planning, Nonlinear Dynamics, 1996, 9: 1-19
    [131]任慧荣,类车移动机器人轨迹跟踪控制方法研究:[硕士学位论文],天津:天津大学,2008
    [132]田献军,多机器人体系结构与轨迹跟踪的研究:[硕士学位论文],武汉:武汉理工大学,2009
    [133] Simon Haykin, Neural networks: a comprehensive foundation (3rd edition), USA: Prentice-Hall, Inc, 2007
    [134] Marco Borri, Lorenzo Trainelli, Alessandro Croce, An index reduction method in holonomic system dynamics, Second MIT Conference on Computational Fluid and Solid Mechanics, 2003, 126~130
    [135] Raul Rojas, Alexander Gloye Forster, Holonomic control of a robot with an omnidirectional drive, KI - Kunstliche Intelligenz, BottcherIT Verlag, 2006
    [136] Wang-Sang Koon, Jerrold E. Marsden, Optimal control for holonomic and nonholonomic mechanical systems with symmetry and lagrangian reduction, SIAM J. of Control and Optimization, 1997, 35: 901-929
    [137] Z. Vukic, B. Borovic, B. Tovornik, Adaptive neuro controller for a precise maneouvring of underwater vehicle, 5th IFAC Conference on Manoeuvring and Control of Marine Craft– MCMC 2000, Aalborg, pp. 173-178
    [138] B. Borovic, O. Kuljaca, F. L. Lewis, Neural net underwater vehicle dynamic positioning control, 9th Mediterranean Conference on Control and Automation– MED 2001, Dubrovnik, published on CD, paper No. 066
    [139] David A. S., Louis L. W., Model-based dynamic positioning of underwater robotic vehicles: theory and experiment,IEEE Journal of Oceanic Engineering,2004, 29(1): 169~186
    [140] John Ting-Yung Wen, Control of nonholonomic systems, Technical Report, Rensselaer Polytechnic Institut, 1998
    [141] Giuseppe Oriolo, Control of nonholonomic system, Lecture, University of Roma, 2005
    [142] Christopher Lee Nickell, Modular modification of a buoyant AUV for low-speed operation [Dissertation], USA, Virginia Polytechnic Institute and State University, 2005
    [143] Dynamics and Control of Nonholonomic Dynamical Systems, Available online at: http://www.inversioninc.com/nonholonomic.html
    [144] Potter I. J., A systematic experimental and analytical investigation of the autonomous underwater vehicle design process with particular regard to power system integration: [Dissertation],University of Calgary,1998
    [145] N. P. I., Aneke, Ccontrol of underactuated mechanical systems, University Press Facilities, Eindhoven, The Netherlands: University Press Facilities, 2002
    [146] R. Fierro, F. L. Lewis, Control of a nonholonomic mobile robot using neural networks, IEEE Transactions on Neural Networks, 1998, 9(4): 589~600
    [147] Yugang Liu, Yangmin Li, Sliding mode adaptive neural-network control for nonholonomic mobile modular manipulators, Journal of Intelligent and Robotic Systems, 2005, 44(3)
    [148] Z. P. Wang, S. S. Ge, T. H. Lee, Robust adaptive neural network control of uncertain nonholonomic systems with strong nonlinear drifts, IEEE Trans Syst Man Cybern B Cybern. 2004, 34(5):2048-2059
    [149] P. Bhatta, Nonlinear stability and control of gliding vehicles: [Dissertation], USA:Princeton University, 2006
    [150]徐丽娜,神经网络控制,北京:电子工业出版社,2003
    [151]刘金琨,先进PID控制及其Matlab仿真,北京:电子工业出版社,2003
    [152] S. X. Wang, X. J. Sun, et al, Motion characteristic analysis of a hybrid-driven underwater glider, OCEANS 2010 IEEE– Sydney, Sydney, NSW, 2010: 1~9
    [153] S. X. Wang, X. J. Sun, et al, Dynamic modeling and motion simulation for a winged Hybrid-Driven underwater glider, China Ocean Engineering, 2010, 25(1): 97~112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700