用户名: 密码: 验证码:
基于性能的钢筋混凝土框架结构抗震性能评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于性能的抗震设计理论自二十世纪九十年代提出以来,得到各国学者的广泛关注并开展了多方面的研究。与传统的保障生命安全为主要设防目标的抗震思想不同,该理论以提高结构的抗震性能为目标,可以实现建筑结构的多性能目标,并要求所设计的结构在未来可能发生的地震作用下具有可预见性。钢筋混凝土结构作为我国建筑的主要结构形式,研究其从初始弹性、逐渐退化直至整体失稳倒塌各阶段的性能具有重要的理论意义和工程应用价值。因此,本文在国家杰出青年科学基金项目(No.50925828)《结构健康监测与振动控制》的资助下,以结构的非线性地震反应分析为手段,对钢筋混凝土框架结构进行了基于性能的抗震性能评估。综合应用理论分析、数值模拟等手段在如下几方面展开研究并取得了一定成果:
     1.以五层、八层、十二层和二十层钢筋混凝土框架结构为研究对象,考虑结构参数随机性和地震动随机性对各结构模型进行了不同破坏参数下的随机增量动力分析(IDA)。结果表明,各结构IDA曲线具有很好的收敛性,证明了所取强度指标的有效性。随机增量动力分析为后续基于性能的地震评估提供了数据支持。
     2.对上述4个结构模型进行了场地危险性分析及不同工程需求参数下的结构整体概率抗震能力分析,得出了各结构的场地危险性曲线及不同超越概率水平下的整体地震危险性曲线。场地危险性曲线很好地反映了设计场地的危险性信息,进而为工程抗震设计提供设计地震动参数。整体地震危险性曲线将结构概率抗震能力单位时间化,并将结构概率抗震能力的研究范围扩大化。
     3.基于IDA分析及地震危险性分析,对各结构模型进行了地震易损性分析,得到了易损性曲线。当以整体破坏指标最大层间位移角表示结构反应时,基于Pushover分析,求出了各结构不同破坏状态下的量化指标限值。当以局部破坏指标柱脚曲率和柱脚钢筋应力表示结构反应时,本文提出了一种得到结构立即使用(IO)和防止倒塌(CP)破坏状态时的量化指标限值的方法。
     4.介绍了基于调制IDA方法对结构进行量化地震损失评估的过程。提出了建筑设施在确定地震作用下的财务风险评估方法,这种方法在数学上表示为一个四重积分,运用该方法对本文4个结构模型进行了期望年度损失计算。
     5.基于直接微分法对钢筋混凝土框架结构进行了参数灵敏度分析,评估了随机参数对结构系统的影响,得到了各结构参数的敏感性。基于有限元可靠度方法对五层和八层框架结构进行了非线性静力抗震可靠度分析,得到了结构整体变形的可靠指标及失效概率。结果表明,随着地震作用的增强,结构的可靠指标逐渐减小、失效概率逐渐增大。采用不同可靠度分析方法计算的结果差异不大,表明所编程序的正确性。基于平均值一次二阶矩(MVFOSM)有限元可靠度原理,得到各结构在不同程度地震作用下整体抗震能力的前二阶矩统计信息,并与重要抽样(IS)计算结果进行对比,分析表明两种分析方法计算结果的合理性。基于一阶可靠度(FORM)和重要抽样(IS)方法,得到了结构整体地震易损性曲线,为今后震害预测提供了参考。
     6.基于正交多项式展开法研究了结构参数及地震动变异性对结构时程响应的影响,结果表明质量和刚度变异对结构动力响应有很大影响且随机参数的数目越多对结构响应影响越大。介绍了一种人工合成与目标地震动相拟合的随机地震动模型,该模型可直接用于基于性能的抗震设计中。
Performance-based seismic design theory has received wide attention by scholars from various countries since it has been proposed in the 1990s, and it has been carried out extensive studies. Unlike the traditional philosophy of seismic design which is only to ensure life safety, this theroy is committed to improve the seismic performance of structures. It can achive multiple performace objectives of building structures and require the design of structure has predictability under the earthquake that may occur in the future. Reinforced conctrete structure as the main structure of our architecture, studying its performance of various stages, from initial flexibility, and gradually degrade until the overall instability collapse, has impotant theoretical significance and practical value. Accordingly, under the supports of National Science Fund for Distinguished Young Scholars (No.50925828)《Structural health monitoring and vibration control》, by means of non-linear seismic response analysis, the performance-based seismic performance evaluation on reinforced concrete frame structures is done. The following main contents are studied through theoretical analysis, numerical simulation and some impotant results and conclusions have been achieved as follows:
     1. Taking 5-story,8-story,12-story and 20-story reinforced concrete (RC) frame structures as research objects and considering the random of structural parameters and ground motions, stochastic incremental dynamic analysis (IDA) under different damage measures (DM) is carried out to the four models. The results show that the IDA curves of each model have good convergence which proves that the choosing of intensity measures (IM) is effective. The stochastic incremental dynamic analysis provides the data support for the following performance-based seismic evaluation.
     2. Site hazard analysis and overall probability of seismic capacity analysis under different engineering demand parameters (EDP) are carried out on the four models. Site hazard curves and overall seismic hazard curves of different exceeding probabilities of each strcuture are obtained. The site hazard curves well reflect the hazard information of site design and thus provide ground motion parameters for engineering seismic design. The overall seismic hazard curves make the probablistic seismic capacity of the structure be unit time and extend the study area.
     3. Based on incremental dynamic analysis and seismic hazard analysis, seismic fragility analysis is implemented and fragility curves are received. When taking overall damage index of maximum drift represent structural response, based on Pushover analysis, the quantitative indexs under different damage states are found. When taking local damage index of curvature and steel stress of columns represent structural response, a method of getting the immediate occupation (10) and collapse prevention (CP) are proposed.
     4. The process of quantifying the seismic loss evaluation based on modified IDA has been introduced. A financial risk assessment methodology of building facilities under determined earthquake has been proposed, which can be mathematically represented as a quadruple integral. Using this method, the expected annual lossoes of the four models are calculated.
     5. Based on direct differentiation method (DDM), parameter sensitivity analysis is executed on RC frame structures, the effects of random parameters on the structural system are evaluated and the sensitivity of each parameter is obtained. Based on finite element reliability methods, the nonlinear static reliability analysis is carried out on the 5-story and 8-story RC frame structures. The reliability index and failure probability of overall deformation are gained. The results show that with the enhancement of seismic load, the reliability index reduces and the failure probability increases. There is little difference between the results calculated by different reliability analysis methods which indicate the correctness of the program. Based on finite element reliability theory MVFOSM, the overall seismic capacity of second-order moment statistical informations of each structure under different levels of earthquake are gotten, and are compared with the results of important sampleing. The analysis shows that the two methods'results are reasonable. Based on FORM and IS, the overall seismic fragility curves are acquired and they can provide reference for future seismic damage prediction.
     6. Based on orthogonal expansion method, the impact of time history response for the variability of structural parameters and ground motions are studied. The results show that the variations of mass and stiffmess have significant influence on the structural dynamic response, and the more number of random parameters the greater impact on the structural response. A synthetic random seismic model matching with target ground motion is introduced which can be directly used for performance-based seismic design. Keywords:performance based; incremental dynamic analysis; seimic hazard; seismic fragility; loss ratio;parameter sensitivity; finite element reliability
引文
[1]中国地震局震害防御司编译.全球重大灾害性地震目录.北京:地震出版社,1996.
    [2]吕大刚.基于最优设防荷载和性能的抗灾结构智能优化设计研究[博士学位论文].哈尔滨:哈尔滨建筑大学,2007.
    [3]ATC-40. Seismic evaluation and retrofit of concrete buildings. Applied Technology Council, Redwood City,1996.1, ATC-40:p.50-108.
    [4]Federal Emergency Management Agency. Guidelines and Commentary for the Seismic Rehabilitation of Buildings. FEMA 273&274,1998:p.226-304.
    [5]Vamvatsikos D, Cornell CA. Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics,2002,31(3):p.491-514.
    [6]Mackie K. Fragility-based seismic decision making for highway overpass bridges[Ph.D]. Berkeley:Department of Civil and Environmental Engineering of UC Berkeley,2005.
    [7]Cornell CA, Krawinkler H. Progress and challenges in seismic performance assessment. PEER Center News,2000,3(2):p.1-3.
    [8]Mochle JP, Deierlein GG. A framework methodology for performance-based earthquake engineering, in:Proc. of 13th World Conference on Earthquake Engineering. Vancouver,2004, paper No.679.
    [9]Asgarian B, Shokrgozar HR, Talarposhti AS. Seismic performance evaluation of the jacket type offshore platforms through incremental dynamic analysis considering soil-pile-structure interaction.2008 Seismic Engineering Conference Commemorating the 1908 Messina and Reggio Calabria Earthquake,2008,1020:p.1787-1794.
    [10]Krawinkler H, Zareian F, Medina RA, et al. Decision support for conceptual performance-based design. Earthquake Engineering and Structural Dynamics,2006, 35(1):p.115-133.
    [11]Mander JB, Dhakal RP, Mashiko N, et al. Incremental dynamic analysis applied to seismic financial risk assessment of bridges. Engineering structures,2007,29(10):p. 2662-2672.
    [12]Montiel MA, Ruiz S. Influence of structural capacity uncertainty on seismic reliability of buildings under narrow-band motions. Earthquake Engineering and Structural Dynamics,2007,36(13):p.1915-1934.
    [13]Baker JW. Probabilistic structural response assessment using vector-valued intensity measures. Earthquake Engineering and Structural Dynamics,2007,36:p.1861-1883.
    [14]Tothong P, Luco N. Probabilistic demand analysis using advanced ground motion intensity measures. Earthquake Engineering and Structural Dynamics,2007,36:p. 1837-1860.
    [15]Baker JW, Cornell CA. Vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon. Earthquake Engineering and Structural Dynamics, 2005,34(10):p.1193-1217.
    [16]Mehanny S S, Cordova P. Development of a two-parameter seismic intensity measure and probabilistic design procedure. Journal of Engineering and Applied Science,2004, 51(2):p.233-252.
    [17]Vamvatsikos D, Cornell CA. Developing efficient scalar and vector intensity measures for IDA capacity estimation by incorporating elastic spectral shape information. Earthquake Engineering and Structural Dynamics,2005,34:p. 1573-1600.
    [18]Baker JW, Cornell CA. A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon. Earthquake Engineering and Structural Dynamics, 2005,34:p.1193-1217.
    [19]Alavi B, Krawinkler H. Behavior of moment-resisting frame structures subjected to near-fault ground motions. Earthquake Engineering and Structural Dynamics,2004, 33(6):p.687-706.
    [20]Luco N, Cornell CA. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions. Earthquake Spectral,2007,23(2):p.357-392.
    [21]Baker JW, Cornell CA. Vector-valued intensity measures for pulse-like near-fault ground motions. Engineering Structures,2008,30(4):p.1048-1057.
    [22]Cornell CA, Jalayer F, Hamburger RO. Probabilistic basis for 2000 SAC Federal Emergency Management Agency steel moment frame guidelines. Journal of Structural Engineering,2002,128(4):p.526-533.
    [23]韩建平,吕西林,李慧.基于性能的地震工程研究的新进展及对结构非线性分析的要求.地震工程与工程振动,2007,27(4):p.15-23.
    [24]Deierlein GG, Krawinkler H, Cornell CA. A framework for performance-based earthquake engineering. in:2003 Pacific Conference on Earthquake Engineering,2003, paper No.140:1-8.
    [25]Dhakal RP, Mander JB. Financial risk assessment methodology for natural hazards. Bulletin of the New Zealand Society of Earthquake Engineering,2006,39(2):p. 91-105.
    [26]Bertero VV. Strength and deformation capacities of buildings under extreme environments. Structural Engineering and Structural Mechanics, Pister KS(ed). Prentice-Hall:Englewood Cliffs, NJ.1977:p.211-215.
    [27]FEMA. Recommended seismic design criteria for new steel moment-frame buildings. Report No.FEMA2350, SAC Joint Venture, Federal Emergency Management Agency,Washington, DC,2000.
    [28]FEMA. Recommended seismic evaluation and upgrade criteria for existing welded steel moment-frame buildings. Report No. FEMA2351, SAC Joint Venture, Federal Emergency Management Agency, Washington, DC,2000.
    [29]Asgarian B, Sadrinezhad A, Alanjari P. Seismic performance evaluation of steel moment resisting frames through incremental dynamic analysis. Journal of Constructional Steel Research,2010,66(2):p.178-190.
    [30]Vamvatsikos D, Fragiadakis M. Incremental dynamic analysis for estimating seismic performance sensitivity and uncertainty. Earthquake Engineering and Structural Dynamics,2010,39(2):141-163.
    [31]Vamvatsikos D, Cornell CA. Applied incremental dynamic analysis. Earthquake Spectra,2004,20(2):p.523-553.
    [32]Christovasilis IP, Filiatrault A, Constantinou M C, et al. Incremental dynamic analysis of woodframe buildings. Earthquake Engineering and Structural Dynamics,2009, 38(4):p.477-496.
    [33]Maniyar MM, Khare RK. Selection of ground motion for performing incremental dynamic analysis of existing reinforced concrete buildings in India. Current Science, 2011,100(5):p.701-713.
    [34]Xiao-Hui Yu, Da-Gang Lv, Peng-Yan Song, et al. Stochastic incremental dynamic analysis considering random system properties. in:The 14th World Conference on Earthquake Engineering, Beijing, China,2008.
    [35]Han SW, Chopra AK. Approximate incremental dynamic analysis using the model pushover analysis procedure. Earthquake Engineering and Structural Dynamics,2006, 35:p.1853-1873.
    [36]Azarbakht A, Dolsek M. Prediction of the median IDA curve by employing a limited number of ground motion records. Earthquake Engineering and Structural Dynamics, 2007,36:p.2401-2421.
    [37]Giovenale P, Cornell CA, Esteva L. Comparing the adequacy of alternative ground motion intensity measures for the estimation of structural responses. Earthquake Engineering and Structural Dynamics,2004,33:p.951-979.
    [38]Tothong P, Cornell CA. Structural performance assessment under near-source pulse-like ground motion using advanced ground motion intensity measures. Earthquake Engineering and Structural Dynamics,2008,37:p.1013-1037.
    [39]杨成,徐腾飞,李英民,等.应用弹塑性反应谱对IDA方法的改进研究.地震工程与工程振动,2008,28(4):p.64-69.
    [40]吕大刚,于晓辉,王光远.基于单地震动记录IDA方法的结构倒塌分析.地震工程与工程振动,2009,29(6):p.33-39.
    [41]卜一,吕西林,周颖,等.采用增量动力分析方法确定高层混合结构的性能水准.结构工程师,2009,25(2):p.77-84.
    [42]申彦利,杨庆山,田玉基.基于概率的多点激励地震场强度参数研究.工程力学,2010,27(1):p.202-208.
    [43]陆新征,叶列平.基于IDA分析的结构抗地震倒塌能力研究.工程抗震与加固改造,2010,32(1):p.13-18.
    [44]杨俊芬,顾强,何涛,等.用增量动力分析方法求解人字形中心支撑钢框架的结构影响系数和位移放大系数(Ⅰ)——方法.地震工程与工程振动,2010,30(2):p.64-71.
    [45]杨俊芬,顾强,万红,等.用增量动力分析方法确定人字形中心支撑钢框架的结构影响系数和位移放大系数(Ⅱ)——算例.地震工程与工程振动,2010,30(3):p.86-95.
    [46]王秋维,史庆轩,侯炜,等.型钢混凝土框架结构基于增量动力分析的抗震性能评估.世界地震工程,2011,27(1):p.34-40.
    [47]冯清海,袁万城.基于IDA的钢筋混凝土桥墩随机地震响应概率特征分析.武汉理工大学学报(交通科学与工程版),2009,33(5):p.936-939.
    [48]李宁,翟长海,谢礼立.单向偏心结构的简化增量动力分析方法.工程力学,2011,28(5):p.8-12.
    [49]汪梦甫,曹秀娟,孙文林,增量动力分析方法的改进及其在高层混合结构地震危害性评估中的应用.工程抗震与加固改造,2010,32(1):p.104-109.
    [50]周颖,吕西林,卜一.增量动力分析法在高层混合结构性能评估中的应用.同济大学学报(自然科学版),2010,38(2):p.183-187.
    [51]杨俊芬,顾强,苏明周.基于增量动力分析和人工神经网络计算结构影响系数和位移放大系数.西安建筑科技大学学报(自然科学版),2010,42(6):p.815-822.
    [52]王丹.钢框架结构的地震易损性及概率风险分析[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [53]Shinozuka M, Feng MQ, Lee J, et al. Statistical analysis of fragility curves. Journal of Engineering Mechanics,1999,126(12):p.1224-1231.
    [54]Straub D, Kiureghian AD. Improved seismic fragility modeling from empirical data. Structural Safety,2008,30(4):p.320-336.
    [55]Hsieh MH, Lee BJ, Lei TC, et al. Seismic fragility curves analysis of bridges based on the Chi-Chi earthquake data. Journal of the Chinese Institute of Civil and Hydraulic Engineering,2005,17(1):p.121-132.
    [56]Park J, Kim J. Fragility analysis of steel moment frames with various seismic connections subjected to sudden loss of a column. Engineering Structures,2010,32(6): p.1547-1555.
    [57]Dimova SL, Elenas A. Seismic intensity parameters for fragility analysis of structures with energy dissipating devices. Structural Safety,2002,24(1):p.1-28.
    [58]Sasani M, Kiureghian AD. Seismic fragility of RC structural walls:displacement approach. Journal of Structural Engineering,2001,127(2):p.219-228.
    [59]Shinozuka M, Feng MQ, Kim HK, et al. Nonlinear static procedure for fragility curve development. Journal of Engineering Mechanics,2000,126(12):p.1287-1295.
    [60]Schotanus MIJ, Franchin P, Lupoi A, et al. Seismic fragility analysis of 3D structures. Structural Saftey,2004,26(4):p.421-441.
    [61]Kwon OS, Elnashai A. The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure. Engineering Structures,2006,28(2):p. 289-303.
    [62]Kircil MS, Polat Z. Fragility analysis of mid-rise R/C frame buildings. Engineering Structures,2006,28(9):p.1335-1345.
    [63]Shinozuka M, Feng MQ, Kim H, et al. Nonlinear static procedure for fragility curve development. Journal of Engineering Mechanics,2000,126(12):p.1287-1295.
    [64]成小平,胡幸贤,帅向华.基于神经网络模型的房屋震害易损性估计方法.自然灾害学报,2005,9(2):p.68-73.
    [65]于刚,孙利民.断索导致的斜拉桥结构易损性分析.同济大学学报(自然科学版),2010,38(3):p.323-328.
    [66]吕大刚,于晓辉,潘峰.基于改进云图法的结构概率地震需求分析.世界地震工程,2010,26(1):p.7-15.
    [67]Hwang H,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析.土木工程学报,2004,37(6):p.47-51.
    [68]朱健,谭平,周福霖.基于位移的钢筋混凝土结构单层厂房易损性分析.振动与冲击,2010,29(1):p.207-213.
    [69]吕大刚,于晓辉,王光远.基于MVFOSM有限元可靠度方法的结构整体概率抗震能力分析.世界地震工程,2008,24(2):p.1-8.
    [70]王威,田杰,苏经宇,等.基于贝叶斯随机评价方法的小城镇灾害易损性分析.防灾减灾工程学报,2010,30(5):p.524-527.
    [71]王飞,蒋建群,城市地震灾害综合易损性分析方法探讨.地震研究,2005,28(1):p.95-101.
    [72]Kuribayashi E, Ueda O, Tazaki T. An ecomometric model of long-term effects of earthquake losses. in:13th Joint Meeting of US-Japan Panelon Wind and Seismic Effects. Tsukuba,1987.
    [73]Kawashima K, Kanoh T. Evaluation of indirect economic effects caused by the 1983 Nihonkai-chubu, Japan, earthquake. Earthquake Spectra,1990,6(4):p.739-756.
    [74]Shinozuka M, Chang SE. Advances in earthquake loss estimation and application to Memphis, Tennessee. Earthquake Spectra,1997,13(4):p.739-758.
    [75]Gordon P, Moore JE, Richardson HW, et al. An integrated model of bridge performance, highway networks, and the spalial metro-politan economy:towards a general model of how losses due to earthquake impacts on lifelines affect the economy. in:NCEER-97-005. Proceedings of Workshop on Earthquake Engineering Frontiers in Transportation Facillites, National Center For Earthquake Engineering Research. Buffalo NY,1997.
    [76]美国应用技术委员会编.加利福尼亚未来地震的损失估计.曹新玲等译.北京:地震出版社,1991.
    [77]地震工程委员会地震损失估计小组.未来地震的损失估计.国家地震局震害防御司译.北京:地震出版社,1989.
    [78]Liu BC等著.美国新马德里地区地震灾害损失预测研究.国家地震局震害防御司译.北京:地震出版社,1993.
    [79]国家地震局震害防御司.未来地震的损失估计方法.北京:地震出版社,1991.
    [80]ATC-13 Earthquake Damage Evaluation Data for California. Applied Technology Council,1985.
    [81]Thomas CM, Franz NR. An earthquake loss estimation methodology for building based on ATC-13 and ATC-21. Earthquake Spectra,1997,13(4):p.114-135.
    [82]Dina DA, Robin S, Carlos O. Earthquake loss estimation for Europe's Historic Town Centres. Earthquake Spectra,1997,13(14):p.773-793.
    [83]金国梁.建筑物的地震震害预测方法综述.世界地震工程,1987,1:p.6-11.
    [84]周光全,卢永坤,非明伦,等.地震灾害损失初步评估方法研究.地震研究,201 0,33(2):p.208-215.
    [85]楼宝棠.中国古今地震灾情总汇.北京:地震出版社,1996.
    [86]陈颙,刘杰,陈棋福,等.地震危险性分析和震害预测.北京:地震出版社,1996.
    [87]王海兹.地震灾害经济损失评估与减灾工程投资评价方法研究[硕士学位论文].上海:同济大学经济管理学院,1997.
    [88]Cornell CA. Engineering seismic risk analysis. Bulletin of Seismological Society of America,1968,58(5):p.1583-1606.
    [89]Kiureghian AD, Ang AHS. A fault-rupture model for seismic risk analysis. Bulletin of the Seismological Society of America,1977,67(4):p.1173-1194.
    [90]鲍霭斌,李中锡,高小旺,等.我国部分地区基本烈度的概率标定.地震学报,1985,7(1):p.100-109.
    [91]高小旺,鲍霭斌.地震作用的概率模型及其统计参数.地震工程与工程振动, 1985,3(1):p.13-22.
    [92]欧进萍,刘会仪.基于随机地震动模型的结构随机地震反应谱及其应用.地震工程与工程振动,1994,14(1):p.14-23.
    [93]欧进萍,段宇博,刘会仪.结构随机地震作用及其统计参数.哈尔滨建筑工程学院学报,1994,27(5):p.1-10.
    [94]Suzuki Y, Minai R. Application of stochastic differential equations to seismic reliability analysis of hysteretic structures. Probabilistic Engineering Mechanics,1988, 3(1):p.43-52.
    [95]Kawano K, Venkataramana K. Dynamic response and reliability analysis of large offshore structures. Computer Methods in Applied Mechanics and Engineering,1999, 168(1-4):p.255-272.
    [96]Colangeloa F, Gianninib R, Pinto PE. Seismic reliability analysis of reinforced concrete structures with stochastic properties. Structural Safety,1996,18(2-3):p. 151-168.
    [97]Zhao YG, Ono T, Idota H. Response uncertainty and time-variant reliability analysis for hysteretic MDF structures. Earthquake Engineering and Structural Dynamics,1999, 28:p.1187-1213.
    [98]Chen JB, Li J. Dynamic response and reliability analysis of non-linear stochastic structures. Probabilistic Engineering Mechanics,2005,20(1):p.33-44.
    [99]Kiureghian AD. The geometry of random vibrations and solutions by FORM and SORM. Probabilistic Engineering Mechanics,2000,15(1):p.81-90.
    [100]Koo H. SORM and simulation techniques for nonlinear random vibration analysis[Ph.D]. Berkeley:Department of Civil&Environmental Engineering, University of California,2002.
    [101]Zhang J, Foschi RO. Performance-based design and seismic reliability analysis using designed experiments and neural networks. Probabilistic Engineering Mechanics,2004, 19(3):p.259-267.
    [102]Chaudhuri A, Chakraborty S. Sensitivity evaluation in seismic reliability analysis of structures Computer Methods in Applied Mechanics and Engineering,2004,193(1-2): p.59-68.
    [103]Hwang HHM, Low YK. Seismic reliability analysis of plane frame structures. Probabilistic Engineering Mechanics,2003,4(2):p.74-84.
    [104]Huh J, Haldar A. Seismic reliability of non-linear frames with PR connections using systematic RSM. Probabilistic Engineering Mechanics,2002,17(2):p.177-190.
    [105]Lin KC, Lin CCJ, Chen JY, et al. Seismic reliability of steel framed buildings. Structural Safety,2009,32(3):p.174-182.
    [106]Guo AX, Xu YL, Wu B. Seismic reliability analysis of hysteretic structure with viscoelastic dampers. Engineering Structures,2001,24(3):p.373-383.
    [107]刘从容,童岳生,谢行皓.钢筋混凝土剪力墙结构抗震可靠度分析.西安建筑科技大学学报(自然科学版),1992,24(4):p.433-440.
    [108]高小旺,沈聚敏.“大震”作用下钢筋混凝土框架房屋变形能力的抗震可靠度分析.土木工程学报,1993,26(3):p.3-12.
    [109]马宏旺.钢筋混凝土框架结构抗震可靠度分析与设计研究[博士学位论文].大连:大连理工大学,2001.
    [110]高小旺,孟俊义,何江,等.钢筋混凝土框架房屋不同破坏状态的抗震可靠度分析.自然灾害学报,1995,4(S1):p.68-76.
    [111]李刚,程耿东.钢筋混凝土框架发生局部破坏后抗震可靠度分析.大连理工大学学报,2001,41(3):p.343-348.
    [112]严松宏,梁波,高波.地下结构纵向抗震动力可靠度分析.岩石力学与工程学报,2005,24(1):p.71-76.
    [113]颜全胜,李伟,余晓琳,等.基于FORM的斜拉桥抗震可靠度分析.防灾减灾工程学报,2010,30(增刊):p.26-30.
    [114]刘昌军.考虑参数随机性的钢筋混凝土框架结构抗震可靠度分析[硕士学位论文].西安:西北工业大学,2003.
    [115]李建华,李杰.多点激励下结构抗震可靠度分析的反应谱方法.防灾减灾工程学报,2004,24(3):p.242-246.
    [116]Krawinkler H, Miranda E. Performance based earthquake engineering. Boca Raton: CRC Press LLC,2004.
    [117]Ibarra LF. Global collapse of frame structures under seismic excitations[Ph.D]. California:Stanford University,2003.
    [118]Ibarra LF, Medina R, Krawinkler H. Hysteretic models that incorporate strength and stiffness deterioration. Earthquake Engineering and Structural Dynamics,2005, 34(12):p.1489-1511.
    [119]OpenSees. Open system for earthquake engineering simulation. http://opensees.berkeley.edu.
    [120]Shome N, Cornell CA. Probabilistic seismic demand analysis of nonlinear structures. Report No. RMS-35. RMS Program, Stanford University, Stanford, California (accessed:February 12,2004),2004.
    [121]Mckay MD, Beckman RJ, Conver WJ. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics,1979,21(2):p.239-245.
    [122]Cardoso JF. Informax and maximum likelihood for source separation. Signal Processing,1997,4(4):p.112-114.
    [123]Shome N, Cornell CA, Bazzurro P, et al. Earthquake records, and nonlinear responses. Earthquake Spectra,1998,14(3):p.469-500.
    [124]Chopra AK. Dynamics of structures:theory and applications to earthquake engineering (Second Edition). Prentice-Hall:Englewood Cli4s,NJ,2005.
    [125]吴巧云,朱宏平,樊剑.近场地震作用下某框架结构的增量动力分析.见:第19界全国结构工程学术会议.济南,2010.
    [126]龚思礼.建筑结构设计系列手册—建筑抗震设计手册(第二版).北京:中国建筑工业出版社,2003.
    [127]Martinez ME. Performance-based seismic design and probabilistic assessment of reinforced concrete moment resisting frame structures [Master of Engineering Thesis]. New Zealand:Department of Civil Engineering, University of Canterbury,2002.
    [128]Zareian F, Krawinkler H. Assessment of probability of collapse and design for collapse safety. Earthquake Engineering and Structural Dynamics,2007,36(13):p. 1901-1914.
    [129]Kennedy RP, Cornell CA, Campbell RD, et al. Probabilistic seismic safety study of an existing nuclear power plant. Nuclear Engineering and Design,1980,59(2):p. 315-338.
    [130]建筑抗震设计规范GB 50011-2010.北京:中国建筑工业出版社,2010.
    [131]Federal Emergency Management Agency (FEMA). Recommended seismic design criteria for new steel moment-frame buildings. Rep.no.FEMA-350. Washington (DC): SAC Joint Venture,2000.
    [132]Shome N. Probabilistic seismic demand analysis of nonlinear structures [Ph. D]. California:Stanford University,1999.
    [133]Aslani H, Miranda E. Probabilistic response assessment for building-specific loss estimation. PEER 2003-03. Pacific Earthquake Engineering Research Center. California:University of California at Berkeley,2003.
    [134]Baker JW, Cornell CA. Choice of a vector of ground motion intensity measure for seismic demand hazard analysis, in:13th World Conference on Earthquake Engineering. Vancouver, B.C., Canada, August 1-6,2004, Paper No.3384.
    [135]尹之潜.结构易损性分类和未来地震灾害估计.中国地震,1996,12(1):p.49-55.
    [136]高小旺,垄思礼,苏经宇.建筑抗震规范设计理解和应用.北京:中国建筑工业出版社,2002.
    [137]FEMA 356 Prestandard and commentary for seismic rehabilitation of buildins. Washington DC:American Society of Civil Engineers,2000.
    [138]HAZUS-MH MR1. Multi-hazard loss estimation methodology:earthquake model. Department of Homeland Security, FEMA, Washington DC,2003.
    [139]刑燕.在役结构在未来地震中的损失估计[硕士学位论文].西安:西安建筑科技大学,2004.
    [140]常泽民.钢筋混凝土结构非线性抗震可靠度及地震易损性分析[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [141]赵国藩,金伟良,贡金鑫.结构可靠度理论.北京:中国建筑工业出版社,2000.
    [142]Ang AHS, Cornell CA. Reliability based of structural safety and design. Journal of Structural Engineering,1974,100(9):p.1755-1769.
    [143]Cornell CA. Probability-based structures code. Journal of American Concrete Institution,1969,66(12):p.974-985.
    [144]Hasofer AM, Lind NC. Exact and invariant second moment code format. Journal of Engineering Mechanics,1974,100(EM1):p.111-121.
    [145]Rackwitz R, Fiessler B. Structural reliability under combined random load sequences. Journal of Computers and Structures,1978,9(5):p.489-494.
    [146]Fiessler B, Newmann HJ, Rackwitz R. Quadratic limit states in structural reliability. Journal of Engineering Mechanics,1979,105(EM4):p.661-676.
    [147]Busher CG. Adaptive sampling-an iterative fast Monte Carlo procedures. Structural Safety,1988,11(4):p.119-126.
    [148]Fu G. Variance reduction by truncated multimodal important sampling. Structural Safety,1994,14(5):p.267-283.
    [149]Pulido JE, Jacobs TL, Prates EC. Structural reliability using Monte Carlo simulation with variance reduction techniques on elaastic-plastic structures. Computer and Structures,1992,43(3):p.419-430.
    [150]Ayyub BM, Chia CY. Generalized conditional expection for structural reliability assessment. Structural Safety,1992,11(2):p.131-146.
    [151]刘宁.可靠度随机有限元法及其工程应用.北京:中国水利水电出版社,2001.
    [152]Zhang Y, Der Kiureghian A. Dynamic response sensitivity of inelastic structures. Computer Methods in Applied Mechanics and Engineering,1993,108(1-2):p.23-36.
    [153]Kleiber M, Antunez H, Hien TD, et al. Parameter Sensitivity in Nonlinear Mechanics: Theory and Finite Element Computations. Wiley, New York,1997.
    [154]Conte JP. Finite element response sensitivity analysis in earthquake engineering. Earthquake Engineering Frontiers in the New Millennium,2001, Spencer and Hu, Swets and Zeitlinger:p.395-401.
    [155]Conte J P, Vijalapura P K, Meghella M. Consistent Finite-Element Response Sensitivity Analysis. Journal of Engineering Mechanics, ASCE,2003,129(12):p. 1380-1393.
    [156]Conte JP, Barbato M, Spacone E. Finite element response sensitivity analysis using force-based frame models. International Journal of Numerical Methods in Engineering,2004,59(13):p.1781-1820.
    [157]Gu Q, Conte JP. Convergence studies in nonlinear finite element response sensitivity analysis, in:The 9th International Conference on Applications of Statistics and Probability in Civil Engineering. Berkeley, California, USA,2003.
    [158]Zona A, Barbato M, Conte JP. Finite element response sensitivity analysis of steel-concrete composite beams with deformable shear connection. Journal of Engineering Mechanics (ASCE),2005,131(11):p.1126-1139.
    [159]Barbato M, Conte J. Finite element structural response sensitivity and reliability analyses using smooth versus non-smooth material constitutive models. International Journal of Reliability and Safety,2006,1(1-2):p.3-39.
    [160]Zhu WQ, Wu WQ. A stochastic finite element method for real eigenvalue problems. Probabilistic Engineering Mechanics,1992,118(3):p.496-551.
    [161]Astill J, Nosseir CJ, Shinozuka M. Impact loading on structures with random properties. Journal of Engineering Mechanics(ASCE),1972,1(1):p.63-77.
    [162]Li J. Stochastic structural system-analysis and modeling. Beijing:Science Press, 1996 (in Chinese).
    [163]Li J, Liao ST. Response analysis of stochastic parameter structures under non-stationary random excitation. Computational Mechanics,2001,27(1):p.61-68.
    [164]閤东东.利用主从结构相互作用的被动控制研究[博士学位论文].武汉:华中科技大学,2010.
    [165]Li J, Chen JB. Probability density evolution method for dynamic response analysis of structures with uncertain parameters. Computational Mechanics,2004,34(5):p. 400-409.
    [166]Li J, Chen JB. Dynamic response and reliability analysis of structures with uncertain parameters. International Journal of Numerical Methods in Engineering, 2005,62(2):p.289-315.
    [167]李杰,陈建兵.随机结构动力反应分析的概率密度演化方法.力学学报,2003,35(4):p.437-442.
    [168]李杰.随机结构动力分析的扩阶系统方法.工程力学,1996,13(1):p.93-102.
    [169]Zerva A. Seismic source mechanisms and ground motion models, review paper. Probabilistic Engineering Mechanics,1988,3:p.64-74.
    [170]Liu SC. Synthesis of stochastic representations of ground motions. The Bell Systems Technical Journal,1970,49:p.521-541.
    [171]Ahmadi G. Generation of artificial time-histories compatible with given response spectra—a review. Solid Mechanics Archives,1979,4:p.207-239.
    [172]Shinozuka M. Stochastic process models for earthquake ground motion. Probabilistic Engineering Mechanics,1988,3(3):p.114-123.
    [173]Kozin F. Autoregressive moving average models of earthquake records. Probabilistic Engineering Mechanics,1988,3(2):p.58-63.
    [174]Conte JP, Peng BF. Fully nonstationary analytical earthquake ground-motion model. Journal of Engineering Mechanics (ASCE),1997,123(1):p.15-24.
    [175]Bolotin VV. Statistical theory of the aseismic design of structures, in:Proceedings of the 2nd World Conference on Earthquake Engineering,1960, II(Tokyo and Kyoto, Japan):p.1365-1374.
    [176]Shinozuka M, Sato Y. Simulation of nonstationary random process. Journal of Engineering Mechanics (ASCE),1967,93:p.11-40.
    [177]Amin M, Ang AHS. Nonstationary stochastic model of earthquake motions. Journal of Engineering Mechanics Division (ASCE),1968,94:p.559-583.
    [178]Iyengar RN, Iyengar KTS. A nonstationary random process model for earthquake accelerograms. Bulletin of the Seismological Society of America,1969,59(3):p. 1163-1188.
    [179]Ruiz P, Penzien J. Stochastic seismic response of structures. Journal of Engineering Mechanics (ASCE),1971,97(2):p.441-456.
    [180]Cornell CA. Stochastic process models in structural engineering. Technical Report No.34. Department of Civil Engineering, Stanford University, Stanford, California, 1960.
    [181]Lin YK. Nonstationary excitation and response in linear systems treated as sequences of random pulses. Journal of the Acoustical Society of America,1965, 38(3):p.453-460.
    [182]Lin YK. On random pulse train and its evolutionary spectral representation. Probabilistic Engineering Mechanics,1986,1:p.219-223.
    [183]Jurkevics A, Ulrych TJ. Representing and simulating strong ground motion. Bulletin of the Seismological Society of America,1978,68(3):p.781-801.
    [184]Hoshiya M, Hasgur Z. AR and MA models of nonstationary ground motion. Bulletin of the International Institute of Seismology and Earthquake Engineering,1978,16:p. 55-68.
    [185]Polhemus NW, Cakmak AS. Simulation of earthquake ground motions using autoregressive moving average (ARMA) models. Earthquake Engineering and Structural Dynamics,1981,9(4):p.343-354.
    [186]Chang MK, Kwiatkowski JW, Nau RF, et al. ARMA models for earthquake ground motions. Earthquake Engineering and Structural Dynamics,1982,10:p.651-662.
    [187]Conte JP, Pister KS, Mahin SA. Nonstationary ARMA modeling of seismic motions. Soil Dynamics and Earthquake Engineering and Structural Dynamics,1992,11(7):p. 411-426.
    [188]Mobarakeh AA, Rofooei FR, Ahmadi G. Simulation of earthquake records using time-varying ARMA (2,1) model. Probabilistic Engineering Mechanics,2002,17(1): p.15-34.
    [189]Saragoni GR, Hart GC. Simulation of artificial earthquakes. Earthquake Engineering and Structural Dynamics,1973,2(3):p.249-267.
    [190]Der Kiureghian A, Crempien J. An evolutionary model for earthquake ground motion. Structural Safety,1989,6(2-4):p.235-246.
    [191]Wen YK, Gu P. Description and simulation of nonstationary processes based on Hilbert spectra. Journal of Engineering Mechanics (ASCE),2004,130(8):p. 942-951.
    [192]Lutes LD, Sarkani S. Random vibrations:Analysis of structural and mechanical systems. Burlington, MA:Elsevier Butterworth-Heinemann,2004.
    [193]Housner GW, Jennings PC. Generation of artificial earthquakes. Journal of Engineering Mechanics Division (ASCE),1964,90:p.113-150.
    [194]Amin M, Ang AHS. Nonstationary stochastic model of earthquake motions. Journal of Engineering Mechanics Division (ASCE),1968,94:p.559-583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700