用户名: 密码: 验证码:
基于混凝或生化处理的高盐污水氯化消毒技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淡水危机是人类社会共同面临的环境问题,随着人口的不断增长和城市化水平的逐步提高,未来淡水资源的形势更加严峻。在沿海城市海水直接利用成为缓解淡水供需矛盾的重要途径之一,但是海水利用所产生的高盐污水在处理后携带的化学污染物质和病原微生物引起的健康风险问题也随之产生。因此,以控制城市污水处理厂的高盐二级出水和混凝出水中病原微生物的数量及消毒副产物生成量为目的的研究已成为目前的研究热点之一。污水氯化消毒技术是最普遍的消毒方式,具有杀菌效果好、处理成本低、使用方便、易管理等优点,对于提高城市污水的生物安全性具有重要意义。
     为促进沿海城市海水利用的研究发展与实践应用,本课题以实际高盐二级出水和混凝出水为处理对象,通过现场模拟管路实验及小试实验,全面系统研究了高盐污水氯化消毒的效能,考察了高盐二级出水、混凝出水中大肠菌的灭活规律与物化指标的关系,首次探讨了二级生物处理系统中污泥龄的变化对消毒副产物生成的影响,并研究了温度、投氯量、氨氮、溴离子浓度等对消毒副产物的影响,分析了氯化对管道腐蚀加剧的限度及对管内壁生物膜生长脱落的影响。
     高盐混凝出水需氯量的日变化/月变化较大,没有呈现明显的变化规律。白天波动量高达8.0 mg/L,早上的需氯量最高;夜间需氯量略低,月平均需氯量变化趋势与白天基本一致。高盐混凝出水需氯量的日变化系数、时变化系数、总变化系数分别为K_d=1.477,K_h=1.094,K_z=1.616。高盐混凝出水中的大肠菌对自由性余氯的抵抗力较弱而对一氯氨等结合性余氯的耐受性较强,出水中大肠菌(E. coli)的数目主要受控于水中TRC(total residual chlorine)的量,接触反应时间非主要调控参数,只要长于6-8 min。
     高盐二级出水温度对投氯量的影响较小,但温度升高将导致消毒副产物生成的总量增加。氨氮含量对投氯量的影响十分显著,建议在污水厂的实际氯化工序中紧密监测出水中氨氮的含量。氯和氨氮浓度的共同增加将提高氯-氨反应的反应物浓度而使副产物的生成量相对减少。二级生物处理系统的污泥龄对消毒副产物的生成有较大影响,采用较长污泥龄的二级生物处理出水会生成较多的消毒副产物,说明出水中的有机物与氯有较高的反应活性,具有较高的比有机物的CBPs生成能力,即CBPs/DOC(chlorination by-products/dissolved organic carbon)值较高。高盐污水中的溴离子使生成的CBPs向含溴的副产物方向移动,CHBr3和DBAA在副产物总量中所占比例较大,比有机物的溴代消毒副产物的生成量与污水的SUVA(specific UV absorption )值之间不存在正相关关系。
     氯化过程对污水传输管系影响的模拟研究表明,在传输高盐二级出水时,溶解氧所引起的对铸铁管的腐蚀是氯的17.8倍。当溶解氧与氯同时出现时,即使溶解氧含量接近饱和,也并未产生协同腐蚀作用。加氯消毒对铸铁管的腐蚀主要受控于溶解氧而不是水中余氯的含量。腐蚀速率随氧化剂含量的增加而提高,但随余氯提高的速率要比随溶解氧提高的速率小得多。管道内壁附着的生物膜的生长与出水中有机物的含量存在动态平衡的关系。对于BOD(biochemical oxygen demand)含量仅为10 mg/L的高盐二级出水,其相应的生物膜厚度约为200μm,对于高盐混凝出水,生物膜厚度可达300-500μm,即使水中余氯增加到5.0 mg/L甚至更高,并未影响生物膜的生长和脱落,出水中悬浮物的含量也并未显著增加。
     通过本文的研究,对高盐出水中E. coli的灭活规律和消毒副产物生成特性有了更深入的认识,并探明了管道内投氯消毒对传输管系的影响限度,所得结论为今后深入进行理论探讨奠定了基础,为其它沿海城市开展相关的工程应用提供了重要的理论依据和技术支持。
Fresh water shortage crisis has been a vital environmental issue that the whole world faces. Alone with population growth and urbanization level increase, the situation of fresh water resource is extremely serious. The seawater direct use is one of the most important means to relax the contradiction between fresh water supply and demand. However, the health risk arises which derived from the consequent high salinity sewage effluent containing chemical pollutants and pathogenic microorganisms. So, the current study for the purpose of controlling pathogenic microorganism counts and disinfection by-products formation becomes research hotspot. The chlorination technique is the most widely used disinfection method, which has many advantages, such as good kill effectiveness, lower treatment cost, easy to use and operation. Chlorination disinfection has great significance for increasing the bio-safety of sewage effluent.
     To promote R & D and practical application of seawater utilization in coastal cities, based on field experiment, a pipe loop simulator study combined with lab batch test has been conducted to explore chlorination efficiency of wastewater with high salinity; to observe the exact pattern of E. coli inactivation correlated with the final TRC (total residual chlorine) in saline sewage effluent; to assess the biofilm growth and sloughing when the effluent is subjected to chlorination; to assess the corrosion extent in ductile iron pipe when it is used to transport chlorinated saline sewage effluent. In addition to studying the effect of temperature, chlorine dosage, ammonia and bromine concentration on CBPs formation (chlorination by-products), this is the first case to explore the relationship between sludge age and CBPs formation.
     Diurnal/monthly change of chlorine demand in high salinity CEPT (chemically enhanced primary treatment) effluent varied greatly, no obvious changing regularity was observed. The variation could reach 8.0 mg/L at daytime, the chlorine demand was high in the morning, which lowered down a lesser degree at night, and the change tendency of monthly average chlorine demand was almost the same as daytime. Daily/hour/total variation coefficient (K_d, K_h and K_z) of chlorine demand in high salinity CEPT effluent was 1.477,1.094 and 1.616, respectively. The resistance of E. coli in CEPT effluent was low to free chlorine and high to combined chlorine, say monochloramine. The remaining E. coli level was mainly dependent upon the prevailing residual chlorine level, the contact time was non-essential parameter as long as it’s over 6-8 mins.
     The temperature of high salinity secondary effluent had minor effect on chlorine dosage, the CBPs formation increased with increasing temperature. However, the ammonia-N level had major effect, which should be closely monitored in the real chlorination process in sewage treatment works. The more chlorine dosage and ammonia-N level, the more chloramine formed and the other products-CBPs formation relatively decreased. The sludge age in biological treatment had a major effect on CBPs formation. A longer sludge age had been found to yield a higher CBPs formation in the chlorinated saline secondary effluent. The effluent organic matters from the longer sludge age operation had a higher reactivity with chlorine, which resulted in a greater specific total CBPs/DOC (dissolved organic carbon) yield. The rich bromine ions in saline sewage shifted some CBPs to bromine-containing species, such as CHBr3 and DBAA, which represented a large fraction of the total CBPs. These was no positive relationship between Br-CBPs/DOC and SUVA (specific UV absorption) value.
     Simulation study of sewage conveyance system upon chlorination suggested that in carrying the saline secondary effluent, the ductile iron force main corrosion by DO (dissolved oxygen) was about 17.8 times higher than that by chlorine. When DO and chlorine residual were present together, even DO approached saturation, there appeared no synergistic corrosive action, the corrosion rate was mainly dictated by DO while chlorine played only a very insignificant role in affecting the corrosion. The corrosion rate increased when the oxidant increased, however the corresponding rate was much higher with DO increasing than chlorine. The level of biofilm growth in the pipe wall was always in a dynamic equilibrium with the organic strength of the carried flow. For conveying the saline secondary effluent with a BOD (biochemical oxygen demand) of about 10 mg/L, the biofilm thickness was approximately 200μm; for conveying the saline CEPT effluent, the biofilm thickness could reach 300-500μm. With chlorination of up to 5.0 mg/L even higher, the biofilm growth and sloughing were not adversely affected; there was no noticeable deterioration of the current effluent qualities with respect to suspended solids.
     This study developed a better understanding about E. coli kill profile, CBPs formation and proved up the impact degree of the chlorination on sewage conveyance system. The results obtained laid a foundation for further research, also provide technical support and theoretical basis in practical application for the other coastal cities.
引文
1. Berg G D R, Dahling G A, Berman D. Validity of Fecal Coliforms, Total Coliforms and Fecal Streptococci as Indicators of Viruses in Chlorinated Primary Sewage Ef?uents[J]. Appl. Environ. Microbiol. 1978, 36: 880-884.
    2. Morris R. Reduction of Microbial Levels in Sewage Ef?uents Using Chlorine and Peracetic Acid Disinfectants[J]. Water Sci. Technol. 1993, 27: 387-393.
    3. Cowman G A, Singer P C. Effect of Bromide Ion on Haloacetic Acid Speciation Resulting from Chlorination and Chloramination of Aquatic Humic Substances[J]. Environ. Sci. Technol. 1996, 30: 16-24.
    4. Carlson M, Hardy D. Controlling DBPs with Monochloramine[J]. Journal AWWA, 1998, 90(2): 95-106.
    5. Qi Y N, Shang C, Lo I M C. Formation of Haloacetic Acids during Monochloramination[J]. Water Res. 2004, 38: 2375-2383.
    6. White G C. Handbook of Chlorination and Alternative Disinfectants, 4th ed. [M]. New York: Wiley Interscience, 1999.
    7. LeChevallier M W. Coliform Regrowth in Drinking Water: a Review[J]. Journal AWWA, 1990, 32: 74-86.
    8. Payment P, Coffin E, Paquette G. Blood Agar to Detect Virulence Factors in Tap Water Heterotrophic Bacteria[J]. Applied and Environmental Microbiology, 1994, 60: 1179-1183.
    9. Ollos P J, Huck P M, Slawson R M. Factors Affecting Biofilm Accumulation in Model Distribution Systems[J]. Journal AWWA, 2003, 95(1): 87-97.
    10. Van der Kooij D, Veenendaal H R, Baars Lorist C, et al. Biofilm Form Action on Surfaces of Glass and Teflon Exposed to Treated Water[J]. Water Res. 1995, 29(7): 1655-1662.
    11. Pedersen K. Biofilm Development on Stainless Steel and PVC Surfaces in Drinking Water[J]. Water Res. 1990, 24(2): 239-43.
    12. Donlan R M, Pipes W O, Jasper S. Biofilm Formation on Cast Iron Substrata in Water Distribution Systems[J]. Water Res. 1994, 28(6): 1497-1503.
    13. McNeill L S, Edwards M. Review of Iron Pipe Corrosion in Drinking Water Distribution System[J]. Journal AWWA, 2001, 93: 7-88.
    14. Larson T E, Skold R V. Laboratory Studies Relating Mineral Quality of Water to Corrosion of Steel and Cast Iron[J]. Corrosion, 1958, 14(8): 285-288.
    15. Stumm W. Investigation on the Corrosive Behaviors of Waters[J]. Sanitary Eng. Division ASCE, 1960, 86(11): 27-45.
    16. Pisigan J R A, Singley J R. Influence of Buffer Capacity, Chlorine Residual and Flow Rate on Corrosion of Mild Steel and Copper[J]. Journal AWWA, 1987, 79(2): 62-70.
    17. Sarin P, Snoeyink V L. Physico-Chemical Characteristics of Corrosion Scales in Old Iron Pipes[J]. Wat. Res. 2001, 35(12): 2961-2969.
    18.徐丽君.中国海水利用技术与21世纪的发展[J].海洋科学,1999(12):67-70.
    19.武周虎,张国辉,武桂芝.香港利用海水冲厕的实践[J].中国给水排水,2000,16(11):49-50.
    20.渡部建一.海水冲厕-节水的有效途径[J].水道协会杂志,1998,67(8):767.
    21.程宏伟,林里,刘德明.香港应用海水冲厕工程综述[J].福建建筑,2010,146(8):1-4.
    22.水务署年报2008/2009[R].香港:香港水务署,2010.
    23. IP C K. A Review of the Use of Salt Water for Flushing in Hong Kong[D]. Hong Kong: Hong Kong University thesis, 1991: 10-59.
    24. Hashad M F, Sharma S, Nies L F, et al. Study of Salt Wash Water Toxicity on Wastewater Treatment[R]. West Lafayette: Purdue University, Jonit Transportation Research Program, 2006.
    25.高从堦.加快我国海水利用技术产业发展及政策[J].中国海洋大学学报,2004(3):1-4.
    26. Haydar S, Aziz J A. Characterization and Treatability Studies of Tannery Wastewater Using Chemically Enhanced Primary Treatment (CEPT)-a Case Study of Saddiq Leather Works[J]. Hazard. Mater. 2009, 163(2-3): 1076-1083.
    27. Jiang J Q, Graham N J D. Pre-polymerised Inorganic Coagulants and Phosphorus Removal by Coagulation-a Review[J]. Water SA, 1998, 24(3): 237-244.
    28. Jimenez B, Chavez A. Removal of Helminth Eggs in an Advanced Primary Treatment with Sludge Blanket[J]. Environ. Technol. 1998, 19(11): 1061-1071.
    29. Johnson P D, Girinathannair P, Ohlinger K N, et al. Enhanced Removal of Heavy Metals in Primary Treatment Using Coagulation and Flocculation[J]. Water Environ. Res. 2008, 80(5): 472-479.
    30. Harbour Area Treatment Scheme (HATS) EIA Study for the Provision of Disinfection Facilities at SCI Sewage Treatment Works-Investigation[R]. Hong Kong: AECOM, 2006.
    31. Crittenden J C, Trussell R R, Hand D W, et al. Water Treatment Principles and Design[M]. New York: John Wiley, 2005.
    32. Rodriguez M J, Serodes J B. Spatial and Temporal Evolution of Trihalomethanes in Three Water Distribution Systems[J]. Water Res. 2001, 35: 1572-1586.
    33. Bolster C H, Bromley J M, Jones S H. Recovery of Chlorine-Exposed Escherichia coli in Estuarine Microcosms[J]. Environ. Sci. Technol. 2005, 39: 3083-3089.
    34. Koivunen J, Heinonen-Tanski H. Inactivation of Enteric Microorganisms with Chemical Disinfectants, UV Irradiation and Combined Chemical/UV Treatments[J]. Water Research. 2005, 39: 1519-1526.
    35. Edward A B, George P F, George C B. Disinfection Alternatives for Safe Drinking Water[M]. New York: Hazen and Sowyer, 1992.
    36. Li X Y, Ding F, Lo P S Y, et al. Electrochemical Disinfection of Saline Wastewater Effluent[J]. Journal of Environmental Engineering, 2002, 128(8): 697-704.
    37. Kargi F, Dincer A R. Effect of Salt Concentration on Biological Treatment of Saline Wastewater by Fed-Batch Operation[J]. Enzyme and Microbial Technology, 1996, 19(7): 529-537.
    38. Hamoda M F, Al-Attar M S. Effect of High Sodium Chloride Concentration on Activated Sludge Treatment[J]. Wat. Sci. Tech. 1995, 31(9): 61-72.
    39. Panswad T, Anan C. Impact of High Chloride Waste-Water on an Anaerobic/Anoxic/Aerobic Process with and without Inoculation of Chloride Acclimated Seeds[J]. Wat. Res. 1999, 33(5): 1165-1172.
    40. Guerrero L. Treatment of Saline Wastewater from Fish Meal Factories in an Anerobic Filter under Extreme Ammonia Concentration[J]. Bioresource Technology, 1997, 61(1): 69-78.
    41. Vredenbregt L H J. Fluid Bed Biological Nitrification and Denitrifucation in High Salinity Wastewater[J]. Wat. Sci. Tech. 1997, 36(1): 93-100.
    42. Nugul I, Kekker J, Blackall L L. Biological Nutrient Removal Efficiency of Saline Wastewater[J]. Wat. Sci. Tech. 1999, 39(6): 183-190.
    43. Dan N P. Comparative Evaluation of Yeast and Bacterial Treatment of High Salinity Wastewater Based on Biokinetic Coefficients[J]. Bioresource Technology, 2003, 87(1): 51-56.
    44. Lazarova V, Savoye P, Janex M L, et al. Advanced Wastewater Disinfection Technologies: State of the Art and Perspectives[J], Wat. Sci. Tech. 1999, 40: 203-213.
    45. Guidelines for Water Reuse[S] (EPA/625/R-92/004). USEPA, United States Agency for International Development, Washington DC, USA. 1992.
    46. Rebhun M, Narkis N, Wachs A M. Effect of Polyelectrolytes in Conjunction with Bentonitic Clay on Contaminants Removal from Secondary Effluents[J]. Water Res. 1969, 3: 345-355.
    47. Dean R B. Colloids Complicate Treatment Processes[J]. Environ. Sci. Technol. 1969, 3(9): 820-824.
    48. Jacangelo J G, Trussell R R. Water and Wastewater Disinfection: Trends, Issues and Practices[R]. Water science and technology: water supply, 2001.
    49. Hijnen W A M, Beerendonk E F, Medema G J. Inactivation Credit of UV Radiation for Viruses, Bacteria and Protozoan (oo) cysts in Water: A Review[J]. Water Research, 2006, 40: 3-22.
    50. Tree J A, Adams M R, Lees D N. Chlorination of Indicator Bacteria and Viruses in Primary Sewage Effluent[J]. Applied and Environmental Microbiology, 2003, 69(4): 2038-2043.
    51. Morris J C. The Acid Ionization Constant of HOCl from 5 to 35℃[J]. Phys. Chem. 1966, 70(12): 3798-3805.
    52. Yang X. The Role of Dissolved Organic Nitrogen in By-Product Formation during Drinking Water[D]. Hong Kong: The Hong Kong University of Science and Technology dissertation, 2007: 7-8.
    53.沈耀良,朱庆爽.快速混合法氯化消毒及其效果研究[J].环境科学,1992,13(3):55-59.
    54.范懋功.快速混合接触消毒技术用于中水处理[J].给水排水,1999,125(15):52-53.
    55.焦中志.饮用水水质安全中的若干保障技术研究[D].哈尔滨:哈尔滨工业大学学位论文,2005:66-81.
    56. Metcalf & Eddy, Inc. Wastewater Engineering Treatment and Reuse (fourth Edition)[M]. Bei Jing: Tsing Hua University Press, 2002.
    57. Carrosco L, Turner C D. Evaluation of Disinfection Techniques in the Treatment of Advanced Primary Treated Wastewater for Ciudad Juarez, Mexico[J]. Water Environ. Res. 2006, 78: 49-58.
    58. Rudd T, Hopkinson L M. Comparison of Disinfection Techniques for Sewage and Sewage Ef?uents[J]. Water Environ. J. 2007, 3: 612-618.
    59. Narkis N, Armon R, Offer R, et al. Effect of Suspended Solids on Wastewater Disinfection Ef?ciency by Chlorine Dioxide[J]. Water Res. 1995, 29: 227-236.
    60. Petala M, Tsiridis V, Samaras P, et al. Wastewater Reclamation by Advanced Treatment of Secondary Effluents[J]. Desalination, 2006, 195: 109-118.
    61. Bentley R, Meganathan R. Biosynthesis of Vitamin K (Menaquinone) in Bacteria[J]. Microbiol. Rev. 1982, 46 (3): 241-80.
    62. Hudault S, Guignot J, Servin A L. Escherichia coli Strains Colonising the Gastrointestinal Tract Protect Germfree Mice against Salmonella Typhimurium Infection[J]. Gut, 2001, 49 (1): 47-55.
    63. Reid G, Howard J, Gan B S. Can Bacterial Interference Prevent Infection? [J] Trends Microbiol. 2001, 9(9): 424–428.
    64. Vogt R L, Dippold L. Escherichia coli O157: H7 Outbreak Associated with Consumption of Ground Beef[R]. Public Health Rep, 2005, 120(2): 174-178.
    65. Dutka B J. Coliforms are an Inadequate Index of Water Quality[J]. Environ. Health. 1973, 36: 29-46.
    66. Feng P, Weagant S, Grant M. BAM: Enumeration of Escherichia coli and the Coliform Bacteria. Bacteriological Analytical Manual (8th ed.) [M/OL]. MD: FDA/Center for Food Safety & Applied Nutrition, (2002-09-01)[2009-06-05]. http://www.cfsan.fda.gov/~ebam/bam-4.html.
    67. Thompson A. E. coli Thrives in Beach Sands[J/OL]. Live Science, (2007-06-04). http://www.livescience.com/health/070604_beach_ecoli.html.
    68. Bellar T A, Lichtenberg J J, Kroner R C. The Occurrence of Organichalides in Chlorinated Waters[J]. Journal AWWA, 1974, 66(12): 703-706.
    69. Rook J J. Formation of Haloforms during Chlorination of Natural Waters[J]. Water Treat. Exam. 1974, 23(2): 234-243.
    70. Richardson S D. Drinking Water Disinfection by-Products[M]. Encyclopedia of Environmental Analysis and Remediation, 1998: 1398-1421.
    71. Bull R J. Carcinogenic Properties of Brominated Haloacetates[C]//Disinfection by Products in Drinking Water: Critical Issues in Health Effects Research. Washington: Intl. Life Sci. Inst, Health and Envir. Sci. Inst., 1995.
    72. Krasner S W, McGuire M J, Jacangelo J G, et al. Occurrence of Disinfection by-Products in US Drinking Water[J]. Journal AWWA, 1989, 81(8): 41-53.
    73. Liang L, Singer P C. Factors Influencing the Formation and Relative Distribution of Haloacetic Acids and Trihalomethanes in Drinking Water[J]. Environ. Sci. Technol. 2003, 37: 2920-2928.
    74. Singer P C, Weinberg H S, Brophy K, et al. Relative Dominance of Haloacetic Acids and Trihalomethanes in Treated Drinking Water[C]. Denver: AWWA Research Foundation and AWWA, 2002: 298.
    75. Rook J J. Chlorination Reactions of Fulvic Acids in Natural Waters[J]. Environ. Sci. Technol. 1997, 11(5): 478-482.
    76. Norwood D L, Johnson J D, Christman R F. Reactions of Chlorine with Selected Aromatic Models of Aquatic Humic Material[J]. Environ. Sci. Technol. 1980, 14(2): 187-190.
    77. McGuire M J, McLain J L, Obolensky A. Information Collection Rule Data Analysis[C]. Denver: AWWA Research Foundation and AWWA, 2002: 600.
    78. U.S.EPA Stage 2 Disinfectants and Disinfection Byproducts Rule[S]. 2006.
    79. Singer P C. Control of Disinfection by-Products in Drinking Water[J]. Environ. Eng. 1994, 120(4): 727-744.
    80. Nikolaou A D, Lekkas T D. The Role of Natural Organic Matter during Formation of Chlorination by-Products: A Review[J]. Acta Hydrochimica Et Hydrobiologica, 2001, 29(2-3): 63-77.
    81. Cowman G A, Singer P C. Effect of Bromide on Haloacetic Acid Speciation Resulting from Chlorination and Chloramination of Aquatic Humic Substances[J]. Environ. Sci. Technol. 1996, 30: 16-24.
    82. Qi Y N. Monochloramination-Fecal Coliform Inactivation and Haloacetic Acid Formation[D]. Hong Kong: The Hong Kong University of Science andTechnology thesis, 2003.
    83. Peters R J B, Erkelens C, De L, et al. The Analysis of Halogenated Acetic Acids in Dutch Drinking Water[J]. Water Res. 1991, 25(4): 473-477.
    84. Yang X, Shang C. Chlorination Byproduct Formation in the Presence of Humic Acid, Model Nitrogenous Organic Compounds, Ammonia, and Bromide[J]. Environ. Sci. Technol. 2004, 38(19): 4995-5001.
    85. Gazda M, Margerum D W. Reactions of Monochloramine with Br2, Br3-, HOBr, and OBr-: Formation of Bromochloramines[J]. Inorg. Chem. 1994, 33(1): 118-123.
    86. Heller-Grossman L, Idin A, Limoni-Relis B, et al. Formation of Cyanogens Bromide and other Volatile DBPs in the Disinfection of Bromide-Rich Lake Water[J]. Environ. Sci. Technol. 1999, 33(6): 932-937.
    87. IARC. Chlorinated Drinking Waters, Chlorinated by-Products, some other Halogenated Compounds; Cobalt and Cobalt compounds[M]//IARC. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. 1991, 52: 37-141.
    88. Koivusalo M, Vartiainen T. Drinking Water Chlorination by-Products and Cancer[J]. Rev. Environ. Health. 1997, 12(2): 81-90.
    89. Graves C G, Matanoski G M, Tardiff R G. Weight of Evidence for an Association between Adverse Reproductive and Developmental Effects and Exposure to Disinfection by-Products: A Critical Review[J]. Regul. Toxicol. Pharmacol. 2001, 34(2): 103-124.
    90. WHO Guidelines for Drinking-Water Quality[S]. 2006.
    91. Hinzelin F, Block J C. Yeasts and Filamentous Fungi in Drinking Water[J]. Environ. Technol Lett. 1985, 6: 101-106.
    92. Maul A, Vaeost D, Block J C. Microbioloeical Analysis in Water Distribution Networks[M]. Chichester: Ellis Horward, 1989: 127.
    93. Block J C, Melo L F, Bott T R, et al. Biofilms-Science and Technology[M], Netherlands: Kluwer Academic publishers, 1992: 469-485.
    94. Maier S H, Powell R S, Woodward C A. A Parametric Model of Biofilm Shedding in a Test Water Distribution System[J], Urban Water, 2000, 2: 3-12.
    95. Lehtola M J, Miettinen I T, Keina¨nen M M, et al. Microbiology, Chemistry and Biofilm Development in a Pilot Drinking Water Distribution System withCopper and Plastic Pipes[J]. Water Research, 2004, 38: 3769-3779.
    96. Block J C, Haudidier K, Paquin J L, et al. Biofilm Accumulation in Drinking Water Distribution Systems[J]. Biofouling, 1993, 6(4): 333–343.
    97. Van der Wende E, Characklis W G, Smith D B. Biofilms and Bacterial Drinking Water Quality[J]. Water Res. 1989, 23(10): 1313-22.
    98. Kirchman D L, Newell S Y, Hodson R. Incorporation versus Biosynthesis of Leucine: Implications for Measuring Rates of Protein Synthesis and Biomass Production by Bacteria in Marine Systems[J]. Mar Ecol Prog Ser. 1986, 32: 47-59.
    99. Lu P, Huck P M. Evaluation of Methods for Measuring Biomass and Biofilm Thickness in Biological Drinking Water Treatment[C]. Denver: Proc. AWWA Water Quality Technology Conference (WQTC), 1993: 1415-1456.
    100. Murga R, Stewart P S, Daly D. Quantitative Analysis of Biofilm Thickness Variability[J]. Biotechnology and Bioengineering, 1995, 45: 503-510.
    101. McCoy W F, Bryers J D, Robbins J, et al. Observations in Fouling Biofilm Formation[J]. Canadian Journal of Microbiology, 1981, 27: 910-917.
    102. Zacheus O M, Iivanainen E K, Nissinen T K, et al. Martikainen. Bacterial Bio?lm Formation on Polyvinyl Chloride, Polyethylene and Stainless Steel Exposed to Ozonated Water[J]. Water Res. 2000, 34: 63-70.
    103. Niquette P, Servais P, Savoir R. Impacts of Pipe Materials on Densities of Fixed Bacterial Biomass in a Drinking Water Distribution System[J]. Water Res. 2000, 34 (6): 1952-1956.
    104. Ndiongue S, Huck P M, Slawson R M. Effects of Temperature and Biodegradable Organic Matter on Control of Bio?lms by Free Chlorine in a Model Drinking Water Distribution System[J]. Water Research, 2005, 39: 953-964.
    105. Huang J C, Chang S Y, Liu Y C, et al. Biofilm Growths with Sucrose as Substrate[J]. Journal of Environmental Engineering, 1985, 111: 353-363.
    106. Lehtola M J, Nissinen T K, Miettinen I T, et al. Removal of Soft Deposits from Distribution System Improves the Drinking Water Quality[J]. Water Res. 2004, 38 (3): 601-610.
    107. Fass S, Block J C, Boualam M, et al. Release of Organic Matter in a Discontinuously Chlorinated Drinking Water Network[J]. Water Research,2003, 37: 493-500.
    108. Tsai Y P. Interaction of Chlorine Concentration and Shear Stress on Chlorine Consumption, Biofilm Growth Rate and Particle Number[J]. Bioresource Technol. 2006, 97(15): 1912-1919.
    109. Peyton B M. Effects of Shear Stress and Substrate Loading Rate on Pseudomonas Aeruginosa Biofilm Thickness and Density[J]. Water Res. 1996, 30 (1): 29-36.
    110. Schwartz T, Hoffmann S, Obst U. Formation of Natural Bio?lms during Chlorine Dioxide and U.V. Disinfection in a Public Drinking Water Distribution System[J]. Appl. Microbiol. 2003, 95: 591-601.
    111. Norton C D, LeChevallier M W, Falkinham III J O. Survival of Mycobacterium Avium in a Model Distribution System[J]. Water Res. 2004, 38 (6): 1457-1466.
    112. Xu B F, Hu Y F, Yang Z, et al. The Analysis of Common Pipe Materials in Water Distribution Systems[J]. Journey of Design of Colored Metal, 2004, 31 (1): 60-63.
    113. Frateur I, Deslouis C. Free Chlorine Consumption Induced by Cast Iron Corrosion in Drinking Water Distribution Systems[J]. Water Research, 1999, 33(8): 1781-1790.
    114. Niu Z B, Wang Y, Zhang X J, et al. Iron Stability in Drinking Water Distribution Systems in a City of China[J]. Journal of Environmental Science-China, 2006, 18 (1): 40-46.
    115. LeChevallier M W, Lowry C D, Lee R G, et al. Examining the Relationship between Iron Corrosion and the Disinfection of Biofilm Bacteria[J]. Research and Technology, AWWA, 1993, 6: 111-123.
    116. Volk C, Dundore E, Schiermann J, et al. Practical Evaluation of Iron Corrosion Control in a Drinking Water Distribution System[J]. Water Research, 2000, 34(6): 1967-1974.
    117. Sarin P, Snoeyink V L, Bebee J, et al. Physico-Chemical Characteristics of Corrosion Scales in Old Iron Pipes[J]. Water Research, 2001, 35(12): 2961-2969.
    118. Sarin P, Snoeyink V L, Bebee J, et al. Iron Release from Corroded Iron Pipes in Drinking Water Distribution Systems: Effect of Dissolved Oxygen[J]. WaterResearch, 2004, 38: 1259-1269.
    119. Rossman L A. The Effect of Advanced Treatment on Chlorine Decay in Metallic Pipes[J]. Water Research, 2006, 40: 2493-2502.
    120. Imran S A, Dietz J D, Mutoti G, et al. Red Water Release in Drinking Water Distribution Systems[J]. Journal AWWA, 2005, 97(9): 93-100.
    121. McNeill L S, Edwards M. The Importance of Temperature in Assessing Iron Pipe Corrosion in Water Distribution Systems[J]. Enviromental Monitoring and Assessment, 2002, 77(3): 229-242.
    122. Surendranathan A O, Prabhu K N, Nayak H V S. Assessment of Corrosion Behavior of Ductile Irons by Factorial Experiments[J]. Journal of Materials Engineering and Performance, 2009, 18: 1241-1247.
    123. Long M J. Sea-Water In?ltration: The Dramatic Corrosion of Ductile Iron Rising Mains[J]. Water Environment Journal. 1994, 8(5): 538-545.
    124. Holleman A F, Wiberg E. Inorganic Chemistry[M]. San Diego: Academic Press, 2001.
    125.陈沛华.香港冲厕系统供水[R].香港:香港水务署,2007:2-5.
    126. Boffardi B P. Minimization of Lead Corrosion in Drinking Water[J]. Material Performance, 1990, 8: 45-49.
    127. Standard Methods for the Examination of Water and Wastewater (20th edn)[S]. Washington, DC: American Public Health Association/ AWWA/ Water Environment Federation, 1998.
    128. Kargi F, Uygur A. Nutrient Removal Performance of a Sequencing Batch Reactor as a Function of the Sludge Age[J]. Enzyme and Microbial Technology, 2002, 31: 842-847.
    129. Munch D J, Hautman D P. U.S. EPA Method 551.1 (Revision 1.0) [S]. Washington, DC: Office of Research and Development, U.S.EPA, 1995.
    130. Munch D J, Munch J W, Pawlecki A M. U.S. EPA Method 552.2 (Revision 1.0) [S]. Washington, DC: Office of Research and Development, U.S.EPA, 1995.
    131. Gagnon G A, Huck P M. Removal of Easily Biodegradable Organic Compounds by Drinking Water Biofilms: Analysis of Kinetics and Mass Transfer[J]. Wat. Res. 2001, 35(10): 2554-2564.
    132. Mezzanotte V, Antonelli M, Citterio S, et al. Wastewater Disinfection Alternatives: Chlorine, Ozone, Peracetic Acid, and UV Light[J]. WaterEnvironment Research, 2007, 79(12): 2373-2379.
    133.崔有为,王淑莹,彭永臻等.海水代用及其含盐污水的生物处理[J].工业水处理,2005,25(10):1-5.
    134. White G C. Handbook of Chlorine and Alternative Disinfectants (4th ed.)[M]. New York: A Wiley-Interscience Publication, John Wiley & Sons, Inc., 1999.
    135. Plewa M J, Wagner E D, Muellner M G, et al. Comparative Mammalian Cell Toxicity of N-DBPs and C-DBPs[M].//Karanfil T, Krasner S W, Westerhoff P, et al (Eds.). Occurrence, Formation, Health Effects and Control of Disinfection By-Products in Drinking Water. Washington DC: American Chemical Society, 2007.
    136. Sirivedhin T, Gray K A. 2. Comparison of the Disinfection by-Product Formation Potentials between a Wastewater Ef?uent and Surface Waters[J]. Water Research, 2005, 39: 1025-1036.
    137. Diao H F, Li X Y, Gu J D, et al. Electron Microscopic Investigation of the Bactericidal Action of Electrochemical Disinfection in Comparison with Chlorination, Ozonation and Fenton Reaction[J]. Process Biochemistry, 2004, 39: 1421-1426.
    138. Li X Y, Diao H F, Fan F X J, et al. Electrochemical Wastewater Disinfection: Identi?cation of its Principal Germicidal Actions[J]. Journal of Environmental Engineering, 2004, 10: 1217-1221.
    139.王淑莹,崔有为,于德爽等.无机盐对活性污泥沉降性的影响[J].环境工程,2003,21(5):7-9.
    140. U.S. EPA. National Primary Drinking Water Regulations: Disinfectants and Disinfection By-Products; Notice of Data Availability; Proposed Rule[S]. Fed. Regist. 1998, 62, 59388.
    141. Yang X, Shang C, Huang J C. DBP Formation in Breakpoint Chlorination of Wastewater[J]. Water Research, 2005, 39: 4755-4767.
    142. Villanueva C M, Kogevinas M, Grimalt J O. Haloacetic Acids and Trihalomethanes in Finished Drinking Waters from Heterogeneous Sources[J]. Water Research, 2003, 37: 953-958.
    143. Symons J M, Krasner S W, Simms L A, et al. Measurement of THM and Precursor Concentrations Revisited: the Effect of Bromide Ion[J]. Journal AWWA, 1993, 85(1): 51–62.
    144. Zhang H, Qu J H, Liu H J, et al. Isolation of Dissolved Organic Matter in Effluents from Sewage Treatment Plant and Evaluation of the Influences on its DBPs Formation[J]. Separation and Purification Technology, 2008, 64: 31-37.
    145. Shon H K, Vigneswaran S, Snyder S A. Effluent Organic Matter (EfOM) in Wastewater: Constituents, Effects, and Treatment[J]. Crit. Rev. Environ. Sci. Technol. 2006, 36(4): 327-374.
    146. Uyak V, Toroz I. Investigation of Bromide Ion Effects on Disinfection by-Products Formation and Speciation in an Istanbul Water Supply[J]. Journal of Hazardous Materials, 2007, 149: 445-451.
    147. Veleva L, Castro P, Hernandez-Duque G, et al. The Corrosion Performance of Steel and Reinforced Concrete in a Tropical Humid Climate. A Review[J]. Corrosion Reviews, 1998, 16(3): 235.
    148. Huang Y H, Zhang T C. Effects of Dissolved Oxygen on Formation of Corrosion Products and Concomitant Oxygen and Nitrate Reduction in Zero-Valent Iron Systems with or without Aqueous Fe 2+[J]. Water Research, 2005, 39: 1751-1760.
    149. Xu B J. The Theory of Water Treatment[M]. Beijing: The Chinese Construction Industry Publishing Company, 2000.
    150. Mutoti G, Dietz J D, Imran S A, et al. Development of a Novel Iron Release Flux Model for Distribution Systems[J]. Journal AWWA, 2007, 99(1): 102-111.
    151. Gagnon G A, Rand J L, O’Leary K C, et al. Disinfectant Efficacy of Chlorite and Chlorine Dioxide in Drinking Water Bio?lms[J]. Water Research, 2005, 39: 1809-1817.
    152. Lehtola M J, Laxander M, Miettinen I T, et al. The Effects of Changing Water Flow Velocity on the Formation of Biofilms and Water Quality in Pilot Distribution System Consisting of Copper or Polyethylene Pipes[J]. Water Research, 2006, 40: 2151-2160.
    153. Jefferson K. What Drives Bacteria to Produce a Bio?lm? Minireview[J]. FEMS Microbiol. Lett. 2004, 236: 163-173.
    154. Flemming H C. Biofouling in Water Systems-Cases Causes and Countermeasures[J]. Appl. Microbiol. Biotechnol. 2002, 59 (6): 629-640.
    155. LeChevallier M W, Cawthon C D, Lee R G. Factors Promoting Survival of Bacteria in Chlorinated Water Supplies[J]. Appl. Environ. Microbiol. 1988, 54(3): 649-654.
    156. McFeters G A. Enumeration, Occurence, and Significance of Injured Indicator Bacteria in Drinking Water[M]//McFeters G. A. Drinking Water Microbiology. New York: Springer-Verlag, 1990: 478-492.
    157. Holt D M, Gauthier V, Merlet N, et al. Importance of Disinfectant Demand of Materials for Maintaining Residuals in Drinking Water Distribution Systems[J]. Water Supply, 1998, 3(16): 181-191.
    158. Lu W, Kene L, Levi Y. Chlorine Demand of Biofilms in Water Distribtution Systems[J]. Water Res. 1999, 33(3): 827-835.
    159. Parent A, Saby S, Sardin M, et al. Contribution of Biofilms to the Chlorine Demand of Drinking Water Distribution Systems[C]//Proceedings of Water Quality Technology Conference of the AWWA“Advances and Innovations in Water Quality Enhancement”, Boston: AWWA, 1996: 15.
    160. Thogersen J, Dahi E. Chlorine Decay and Bacterial Inactivation Kinetics in Drinking Water in the Tropics[J]. World J Microbiol Biotechnol. 1996, 12(5): 549-556.
    161. Characklis W G. Microbial Biofouling Control[M]//Characklis W G, Marshall K C (editors). Biofilms. New York: Wiley, 1990: 523-633.
    162. LeChevallier M W. Coliform Regrowth in Drinking Water: a Review[J]. Journal AWWA, 1990, 32: 74-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700