用户名: 密码: 验证码:
不同形貌MFe_2O_4(M=Mn,Zn,Co,Ni等)的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖晶石铁氧体MFe2O4(M=Mn, Zn, Co, Ni, Cu)由于具有优良的物理化学性质和巨大的应用潜力而备受关注。研究发现铁氧体的形貌和尺寸会直接影响其结构和性质,但是铁氧体是一种结构复杂的三元氧化物,一般都需要在模板或表面活性剂辅助下经繁杂的操作过程才能合成出特殊形貌的产物。本论文在无需任何表面活性剂或模板的条件下合成出纳米棒状、纳米纤维状和橄榄球形尖晶石铁氧体,并用溶胶-凝胶法合成出三维大孔的尖晶石铁氧体。研究了不同形貌铁氧体的合成条件、结构、磁性和吸附性质,并探讨了一维铁氧体纳米纤维和三维大孔铁氧体的形成过程。而且将大孔铁氧体作为吸附剂应用在废水处理中,分析其吸附过程中的影响因素、吸附动力学及吸附平衡等温线等,探讨了铁氧体作为吸附剂处理有机染料废水和重金属离子废水的吸附机理。
     本论文将种子生长法(以一定形貌的简单氧化物为原料,合成特殊形貌的复杂氧化物)与传统的水热法或固相法相结合,实现了从具有特殊形貌的二元氧化物合成特殊形貌的三元氧化物。在此合成过程中,先以简单的沉淀法方法合成出具有特殊形貌的二元氧化物,再将其作为种子用传统的水热法或固相法合成出纳米棒状、纳米纤维状和橄榄球形的尖晶石铁氧体。以此方法合成出的纳米棒状、纳米纤维状和橄榄球形铁氧体的形貌可以通过控制合成条件实改变,而且所得产物的磁性明显高于直接用市售氧化物为原料所得产物的磁性。另外,本论文探讨了种子在用此方法制备铁氧体过程中的作用,以及用固相-种子法合成纳米纤维状NiFe2O4时纳米纤维的形成过程。
     以鸡蛋蛋清为络合剂用溶胶-凝胶法合成出三维大孔铁氧体MnFe2O4、NiFe2O4、ZnFe2O4、CoFe2O4。发现大孔铁氧体的合成条件对孔径大小和孔的形状有很大影响。探讨了以此方法合成大孔铁氧体时形成大孔的机理。
     将大孔铁氧体作为吸附剂应用在有机染料和重金属离子废水处理中,结果表明大孔铁氧体对有机染料(亚甲基兰(MB)和碱性品红(FR))及重金属离子(Cu(II)、Cr(VI)和Ni(Ⅱ))都具有明显的吸附作用。由于所得尖晶石铁氧体具有明显的亚铁磁性,可以在外加磁场作用下容易地实现磁分离,铁氧体经分离和脱附后可以实现再生,并在多次吸附-脱附循环中保持较高的去除率。对铁氧体吸附有机染料的单因素影响吸附性能的实验进行了探讨,得出各种尖晶石铁氧体吸附MB和FR的最佳吸附条件。并通过吸附前后红外光谱分析、吸附动力学分析及吸附等温线分析,探讨了铁氧体吸附有机染料的吸附机理。结果表明铁氧体吸附MB和FR均符合准二级吸附动力学方程;均为颗粒内扩散和膜扩散联合控制过程;且均符合Langmuir吸附等温式。
     研究了Zn2+离子掺杂对铁氧体MnFe2O4结构、形貌、磁性及吸附性质的影响,结果表明离子掺杂可以改变铁氧体的结构和形貌,适当掺杂有利于提高产物的磁性和吸附性质。
Spinel ferrites MFe2O4 (M=Mn, Zn, Ni et al.) have attached many attentions for their excellent physical and chemical properties. The nanoscale ferrites are applied widely in various fields with the development of nanotechnology. Since the structure and properties of ferrites can be affected by their morphologies, ferrites with different morphologies (nanorod, nanofibcr, olivary and pores) are synthesized by the routes of combining the suit growth method and simple hydrothermal/solid-state routes, without any template or active surfactant. The synthesis conditions, structures, morphologies, magnetic and adsorption properties are investigated. The formation mechanisms of NiFe2O4 nanofibers and 3D macroporous NiFe2O4 are studied. In addition, since the porous structure suit for adsorption, the porous ferrites are applied in the treatment of wastewater and the adsorption mechanism is studied by effect factors, adsorption kinetic and adsorption isothermal.
     The syntheses of complex oxides using binary oxide as raw materials by simple routes are realized by combining the seed growth method and traditional hydrothermal/solid-state method. The special shape ferrites are difficult to synthesize without template or active surfactant due to their complex structures. However, the nanorod, nanofiber and olivary spinel ferrites are synthesized by seed-hydrothermal and seed-solid-state routes in this work. And the morphologies can be controlled by synthesis conditions. During this synthesis process, simple oxide are synthesized by coprecipitation firstly, and then used as seed to fabricate the ferrites with nanofiber and olivary morphologies. In addition, the mechanism of synthesizing nanofiber ferrite by seed-solid-state route is studied.
     3D-macroporous ferrites are synthesized by sol-gel method with egg white as ligand. This realized the synthesis of 3D macroporous ferrites with simple route and by biologic raw materials. And find that the synthesis condition related to the pore size of porous ferrites. In addition, the mechanism of forming pores in the process of synthesizing spinel ferries by this route is pointed out.
     The porous ferrites are applied in the treatment of wastewater containing organic dyes and heavy metal ions. The results showed that all ferrites have obvious adsorption of organic dyes (MB and FR) and heavy metal ions (Cu (Ⅱ), Cr (VI) and Ni (Ⅱ)). The ferrites can be separated from solution after adsorption easily, due to their ferromagnetic properties. The separated ferrites can be reused many times keeping high adsorption activities, and the rates of adsorption in the reused cycles are even higher than that in the first cycle. The best adsorption conditions are investigated by the studies of the effect factors of organic dyes adsorption on ferrites.In addition, the adsorption mechanism of organic dyes on ferrites is studied by FT-IR analysis, adsorption kinetic and adsorption isothermal. Results showed that the Fe-O bond of ferrite is responsible for good adsorption, the adsorptions of MB and FR fit pseudo-second-order kinetic model, Langmuir isotherm equation well.
     The effects of ions substitution on ferrites'structure, morphologies, magnetic and adsorption properties are studied. Results showed that the ions substitution can change ferrites'structure and morphologies, and reasonable substitution can enhance their magnetic and adsorption properties.
引文
[1]周志刚.铁氧体磁性材料[M].北京:科学出版社,1981:381-383.
    [2]李乐中,兰中文,余忠等.MnZn功率铁氧体的研究进展及发展趋势[J].材料导报,2008,22(2):93-96.
    [3]刘明.铁氧体纳米结构的发热特性与微磁学模拟的研究[D].南京:东南大学.
    [4]Xiaofei Cao, Kangning Sun, Chang Sun, et al. The study on microstructure and microwave-absorbing properties of lithium zinc ferrites doped with magnesium and copper [J]. Journal of Magnetism and Magnetic Materials.2009,321(18):2896-2901.
    [5]Ningjie Chu, Xinqing Wang, Yapi Liu, et al. Magnetic properties of low Mn-doped NiCuZn nanocrystalline ferrites [J]. Journal of Alloys and Compounds,2009,470(1-2): 438-442.
    [6]A. V. Kadu, S. V. Jagtap, G. N. Chaudhari. Studies on the preparation and ethanol gas sensing properties of spinel Zn0.6Mn0.4Fe2O4 nanomaterials [J]. Current Applied Physics, 2009,9(6):1246-1251.
    [7]K. Kamala Bharathi, J. Arout Chelvane, G. Markandeyulu. Magnetoelectric properties of Gd and Nd-doped nickel ferrite [J]. Journal of Magnetism and Magnetic Materials,2009, 321(22):S3677-3680.
    [8]蒋荣立,陈文龙,张宗祥等..镝掺杂铁氧体纳米晶的制备、表征和磁性[J].化学学报,2008,66(11):1322-1326.
    [9]徐彦.准一维金属、铁氧体的制备和磁性[D].兰州:兰州大学,2009.
    [10]张俊.一维铁氧化物材料的制备及性能研究[D].沈阳:沈阳理工大学,2007.
    [11]范立佳.静电纺丝技术制备铁氧体纳米纤维[D].长春:长春理工大学,2008.
    [12]刘锦宏.镍基尖晶石铁氧体纳米颗粒的微结构与磁性研究[D].兰州:兰州大学,2005.
    [13]颜爱国.尖晶石型铁氧体纳米晶的控制合成、结构和性能研究[D].南京:中南大学,2008.
    [14]J.A.C. de Paiva, M.P.F. Graca, J. Monteiro, et al. Spectroscopy studies of NiFe2O4 nanosized powders obtained using coconut water [J]. Journal of Alloys and Compounds, 2009.485(1-2):637-641.
    [15]Ibetombi Soibam, Sumitra Phanjoubam. Chandra Prakash. Mossbauer and magnetic studies of cobalt substituted lithium zinc ferrites prepared by citrate precursor method [J]. Journal of Alloys and Compounds.2009.475(1-2):328-331.
    [16]Daliya S. Mathew, Ruey-Shin Juang. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions [J]. Chemical Engineering Journal,2007,129(1-3):51-65
    [17]Z.F. Zi, S.B. Zhang, B. Wang, et al. Morphology and magnetic properties of Coo.8Fe2.2O4 films prepared by the chemical solution deposition [J]. Journal of Magnetism and Magnetic Materials,2010,322 (1):148-151.
    [18]S. Dasgupta, J. Das, J. Eckert, et al. Influence of environment and grain size on magnetic properties of nanocrystalline Mn-Zn ferrite [J]. Journal of Magnetism and Magnetic Materials,2006,306(1):9-15.
    [19]N. Ramamanohar Reddy, M. Venkata Ramana, G. Rajitha, et al. Stress sensitivity of inductance in NiCuZn ferrites [J]. Journal of Magnetism and Magnetic Materials,2005. 292:159-163.
    [20]T. Krishnaveni, B. Rajini Kanth, V. Seetha Rama Raju, et al. Fabrication of multilayer chip inductors using Ni-Cu-Zn ferrites [J]. Journal of Alloys and Compounds,2006, 414(1-2):282-286.
    [21]B. Ramesh. D. Ravinder. Electrical properties of Li-Mn ferrites [J]. Materials Letters, 2008,62(14):2043-2046.
    [22]Ovidiu Caltun, G.S.N. Rao, K.H. Rao, et al. The influence of Mn doping level on magnetostriction coefficient of cobalt ferrite [J]. Journal of Magnetism and Magnetic Materials,2007.316(2):e618-e620.
    [23]J. Kulikowski, A. Bienkowski. Magnetostriction of Ni-Zn ferrites containing cobalt [J]. Journal of Magnetism and Magnetic Materials,1982,26(l-3):297-299.
    [24]颜旭刚,娄敏毅、王德平等.锰锌铁氧体材料的合成及其医学应用[J].材料导论,2005,11(19):340-343.
    [25]唐秋莎,张东生,顾宁等.新型纳米基因载体(PEI/Mno.5Zno.5Fe204)的制备、表征及体外实验[J].功能材料,2007,6:689-695.
    [26]Masaru Tada, Takashi Kanemaru, Takeshi Hara, et al. Synthesis of hollow ferrite nanospheres for biomedical applications [J]. Journal of Magnetism and Magnetic Materials,2009.321(10):1414-1416.
    [27]J. Lu, S. L. Ma, J. Y. Sun, et al. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging [J]. Biomaterials,2009,30:2919-2928.
    [28]Shihong XU, Wenfeng SHANGGUAN, Jian YUAN, et al. Preparation and Photocatalytic Properties of Magnetically Separable TiO2 Supported on Nickel Ferrite [J]. Chinese Journal of Chemical Engineering,2007,15(2):190-195.
    [29]Hui Zhang, Rong Hou, Zhong-Li Lu, et al. A novel magnetic nanocomposite involving anatase titania coating on silica-modified cobalt ferrite via lower temperature hydrolysis of a water-soluble titania precursor [J]. Materials Research Bulletin,2009,44(10): 2000-2008.
    [30]Joong-Hee Nam, Yong-Hui Joo, Ji-Ho Lee, et al. Preparation of NiZn-ferrite nanofibers by electrospinning for DNA separation [J]. Journal of Magnetism and Magnetic Materials,2009,321 (10):1389-1392.
    [31]张晏清,张雄.空心微珠铁氧体复合粉体的改性与吸波性能[J].无机材料学报,2009,24(4):732-736.
    [32]王采芳,熊惟皓.空心微珠为基的铁氧体复合材料的制备与研究[J].功能材料,2004,35(z1):536-541.
    [33]A. R. Bueno, M. L. Gregori, M. C. S. Nobrega. Microwave-absorbing properties of Nio.50-xZno.50-xMe2XFe204 (Me=Cu, Mn. Mg) ferrite-wax composite in X-band frequencies [J]. J. Magn. Magn. Mater.2008.320:864-870.
    [34]Vincent G. Harris. Anton Geiler, Yajie Chen, et al. Recent advances in processing and applications of microwave ferrites[J]. Journal of Magnetism and Magnetic Materials, 2009,321(14):2035-2047.
    [35]A. C. F. M. Costa, D. A. Vieira. V.J. Silva, et al. Synthesis of the Ni-Zn-Sm ferrites using microwaves energy [J]. Journal of Alloys and Compounds,2009,483(1-2):37-39.
    [36]E. Calderon-Ortiz, O. Perales-Perez, P. Voyles, et al. MnxZni-xFe2-yRyO4 (R=Gd, Eu) ferrite nanocrystals for magnetocaloric applications [J]. Microelectronics Journal,2009, 40 (4-5):677-680.
    [37]Ranjan Ganguly, Ishwar K. Puri. Field-Assisted Self-Assembly of Superparamagnetic Nanoparticles for Biomedical. MEMS and BioMEMS Applications [J]. Advances in Applied Mechanics.2007,41:293-335
    [38]Sara A. Majetich. Magnetic Nanoparticles and Their Applications [J]. Nanostructured Materials (Second Edition),2007:439-485
    [39]R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, et al. Mn-Zn ferrite nanoparticles for ferrofluid preparation:Study on thermal-magnetic properties [J]. Journal of Magnetism and Magnetic Materials,2006,298(2):83-94.
    [40]X. M. Ji, M. L. Li, Y. X. Zhao, et al. A new composite electrode of Ni-Ferrite/TiOx/Si(111):Preparations and photoelectrochemical studies [J]. Solid State Sci.,2009,11:1170-1175.
    [41]刘延祥,李玉书,刘星等.棕红色颜料的制备及形成机理的研究[J].电瓷避雷器,2003,4:19-24.
    [42]S. Watson, D. Beydoum, R. Amal. Synthesis of a novel magnetic photocatalyst by ditect deposition of nanosized TiO2 crystals onto a magnetic core [J]. Journal of Photochemistry and Photobioligy A:chemistry,2002,148:303-313
    [43]付乌有,杨海滨,刘冰冰等.锐钛矿TiO2/MnFe2O4核壳结构复合纳米颗粒的制备及其光催化特性[J].复合材料学报.2007,24(3):136-140
    [44]Donia Beydoum, Rose Amal. Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photo catalyst. [J]. Materials Science and Engineering,2002, B94:71-81
    [45]廖振华,陈建军,姚可夫等.纳米TiO2光催化剂负载化的研究进展[J].无机材料学报.2004,19(1):17-24
    [46]黄河.溶胶-凝胶法制备磁载光催化剂[J].环境污染治理技术与设备.2004,5(1):65-68.
    [47]陈金媛,等.磁性纳米TiO2/Fe3O4)光催化复合材料的制备及性能[J].化学学报,2004,62(20):2093-2097.
    [48]D.Beydoun, R.Amal. Novel photocatalyst:titania-coated magnetite activity and photodissolution [J]. The Journal of Physical Chemistry B,2004,104(18):4387-4391.
    [49]金名惠,TiO2/SiO2/Fe3O4的制各及其对溴氨酸降解的光催化活性[J].华中科技大学学报,2006,34(10):108-110.
    [50]包淑娟,张校刚,刘献明等.TiO2/SiO2/Fe3O4的制备及其光催化性能[J].应用化学,2004,21:261-263.
    [51]Y.S.Chung, S.B.Park, D.W.Kang. Magnetically separable titania-coated nickel ferrite photocatalyst [J]. Materials Chemistry and Physics,2004, (86):375-378.
    [52]S.A.Bilmes, P.Mandelbaum, F.Alvarez, et al. Surface and electronic structure of titanium dioxide photocatalysts [J]. The Journal of Physical Chemistry B,2000,104(42): 9851-9858.
    [53]王传义,刘春艳,沈涛.半导体光催化剂的表面修饰[J].高等学校化学报,1998,119(12):3013-3019.
    [54]魏子栋,段非,谭君等.TiO2光催化氧化研究进展[J].化学通报,2001,2:76-80.
    [55]M.Tomkiewicz, Scaling properties in photocatalysis [J]. Catalysis Today,2000,58(2-3): 115-123.
    [56]Z.GZou, J.H.Ye, R.Abe, et al. Photocatalytic decomposition of water with Bi2lnNbO7 [J]. Catalysis Letters,2000,68:235-239.
    [57]Z.GZou, J.H.Ye, H.Arakawa. Structural properties of InNbO4 and InTaO4:correlation with photocatalytic and photophysical properties [J]. Chemical Physics Letters,2000, 332:271-276
    [58]冯步学.毛纺企业染整废水处理中吸附絮凝剂作用效果的探究[D].北京:北京服装学院.2009
    [59]R. C. Wu, J. H. Qu, H. He. Removal of azo-dye Acid Red B (ARB) by adsorption and combustion using magnetic CuFe2O4 powder [J]. Appl. Catal. B.48 (2004) 49-56.
    [60]郁黎明.张金仓,徐振佩等.高能球磨法合成纳米晶NiZn铁氧体的结构和磁性[J].功能材料,2004,6:689-695
    [61]张存芳,余红雅,钟喜存等.高能球磨法制备Mn-Zn铁氧体材料的研究[J].材料导报,2009.12:8-13.
    [62]刘银,丘泰,沈春英等.纳米晶CO1-xNixFe204铁氧体的制备及Ni2+对其磁性能的影响[J].硅酸盐学报,2007,2:160-165.
    [63]Omprakash Suwalka, Ram Kripal Sharma, Varkey Sebastian, et al. A study of nanosized Ni substituted Co-Zn ferrite prepared by coprecipitation [J]. Journal of Magnetism and Magnetic Materials,2007,313(1):198-203.
    [64]K. Maaz, S. Karim, A. Mashiatullah, J. Liu, et al. Structural analysis of nickel doped cobalt ferrite nanoparticles prepared by coprecipitation route [J]. Physica B:Condensed Matter,2009.404(21):3947-3951.
    [65]张伯军,华杰,刘梅等.纳米复合材料Co0.5Ni0.5Fe204-SiO2的显微结构和磁性[J].硅酸盐学报,2008,3:292-297.
    [66]Guoli Fan. Zhijun Gu, Lan Yang, et al. Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique [J]. Chemical Engineering Journal,2009,155(1-2):534-541.
    [67]P. Lavela, J. L. Tirado. CoFe2O4 and NIFe2O4 synthesized by sol-gel procedures for their use as anode materials for Li ion batteries [J]. Journal of Power Sources,2007,172(1): 379-387.
    [68]Jianzhen Huo, Mingzhen Wei. Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method [J]. Materials Letters, 2009,63(13-14):1183-1184.
    [69]Manish Srivastava, S. Chaubey, Animesh K. Ojha. Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods [J]. Materials Chemistry and Physics,2009,118(1):174-180.
    [70]Lijun Zhao, Hongjie Zhang, Yan Xing, et al. Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method [J]. Journal of Solid State Chemistry, 2008,181(2):245-252.
    [71]Junwu Nie, Guoyue Xu, Ying Yang, et al. Strong magnetoelectric coupling in CoFe2O4-BaTiO3 composites prepared by molten-salt synthesis method [J]. Materials Chemistry and Physics,2009.115(1):400-403.
    [72]M. A. Gabal, S. S. Ata-Allah. Concerning the cation distribution in MnFe2O4 synthesized through the thermal decomposition of oxalates [J]. Journal of Physics and Chemistry of Solids,2004,65(5):995-1003.
    [73]Zhang Chunye, Shen Xiangqian, Zhou Jianxin, et al. Preparation of Spinel Ferrite CoFe2O4 Fibres by Organic Gel-Thermal Decomposition Process [J]. Rare Metal Materials and Engineering,2008,37(1):180-184.
    [74]Lijun Zhao, Yuming Cui, Hua Yang, et al. The magnetic properties of Nio.7Mno.3GdxFe2-xO4 ferrite [J]. Materials Letters.2006,60(1):104-108.
    [75]Jilin Zhang, Jianxin Shi. Menglian Gong. Synthesis of magnetic nickel spinel ferrite nanospheres by a reverse emulsion-assisted hydrothermal process [J]. Journal of Solid State Chemistry,2009,182(8):2135-2140.
    [76]L.X. Phua, F. Xu, Y.G. Ma, et al. Structure and magnetic characterizations of cobalt ferrite films prepared by spray pyrolysis [J]. Thin Solid Films,2009.517(20): 5858-5861.
    [77]高存绪,薛德胜.铁氧体纳米线阵列的制备与研究[D].兰州:兰州大学,2003.
    [78]J. Bera, P.K. Roy. Effect of grain size on electromagnetic properties of Nio.7Zno.3Fe204 ferrite [J]. Physica B:Condensed Matter,2005,363(1-4):128-132.
    [79]Zhongbing Huang, Guangfu Yin, Xiaoming Liao, et al. Preparation and magnetic properties of Cu-ferrite nanorods and nanowires [J]. Journal of Colloid and Interface Science,2008,317(2):530-535.
    [80]方晓生,张立德.气相法合成一维无机纳米材料的研究进展[J].无机化学学报2006,9:1555-1574.
    [81]于冬亮,都有为.CoFe2O4纳米线阵列的制备与磁性[J].功能材料,2006,8(37):1210-1215.
    [82]Shixi Liu, Bin Yue, Kun Jiao, et al. Template synthesis of one-dimensional nanostructured spinel zinc ferrite [J]. Materials Letters,2006,60 (2):154-158
    [83]Hitoshi Ogihara. Sadakane Masahiro, Yoshinobu Nodasaka, et al. Synthesis, characterization and formation process of transition metal oxide nanotubes using carbon nanofibers as templates [J]. Journal of Solid State Chemistry,2009,182(6):1587-1592.
    [84]Feifei Liu, Xinyong Li. Qidong Zhao, et al. Structural and photovoltaic properties of highly ordered ZnFe2O4 nanotube arrays fabricated by a facile sol-gel template method [J]. Acta Materialia,2009,57(9):2684-2690.
    [85]Yan Xu, Jie Wei, Jinli Yao, et al. Synthesis of CoFe2O4 nanotube arrays through an improved sol-gel template approach [J]. Materials Letters,2008,62(8-9):1403-1405.
    [86]Young-Wan Ju, Jae-Hyun Park, Hong-Ryun Jung, et al. Fabrication and characterization of cobalt ferrite (CoFe2O4) nanofibers by electrospinning [J]. Materials Science and Engineering:B,2008,147(1):7-12.
    [87]Wichaid Ponhan, Santi Maensiri. Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers [J]. Solid State Sciences,2009,11(2):479-484.
    [88]向军,沈湘黔,朱永伟.尖晶石型铁氧体纤维的制备及磁性能[J].无机材料学报,2008.5(23):1005-1012.
    [89]向军.沈湘黔,朱永伟.铁氧体纤维的制备、结构及其磁性能[J].功能材料,2009,3(40):365-370.
    [90]钟云波,李志华,任忠鸣等.磁场对纳米MnZn铁氧体前驱体形貌的影响[J].稀有金属材料与工程,2006,35(8):1263-1270
    [91]桂林,钟云波,傅小明,雷作胜.任忠鸣.强磁场下共沉淀-相转化法制备纳米钻铁氧体颗粒[J].金属学报,2007,43(5):529-533.
    [92]杨朋飞.反相微乳法应用于制备棒状粒子的研究[D].济南:山东大学,2005.
    [93]Vuk Uskokovic, Miha Drofenik. A mechanism for the formation of nanostructured NiZn ferrites via a microemulsion-assisted precipitation method [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,266(1-3):168-174.
    [94]D. E. ZHANG, X. J. Zhang, X.M. Ni, et al. Synthesis and characterization of NiFe2O4 magnetic nanorods via a PEG-assisted route [J]. Journal of Magnetism and Magnetic Materials 292 (2005) 79-82
    [95]G. B. Ji, S. L. Tang, S.K. Ren, et al. Simplified synthesis of single-crystalline magnetic CoFe2O4 nanorods by a surfactant-assisted hydrothermal process [J]. Journal of Crystal Growth,2004,270(1-2):156-161.
    [96]J. T Jiu, K. C. Murai, D. Kim. et al. Preparation of Ag nanorods with high yield by polyol process [J]. Mater. Chem. Phys.2009,114:333-338.
    [97]S. Kundu, H. Liang. Polyelectrolyte-mediated non-micellar synthesis of monodispersed 'aggregates' of gold nanoparticles using a microwave approach [J]. Colloids Surf. A. 2008,330:143-150.
    [98]J. Y. Chen, B. Lim, E. P. Lee, et al. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications [J]. Nanotoday.2009,4:81-95.
    [99]W. J. Lee, William H. Smyrl. Oxide nanotube arrays fabricated by anodizing processes for advanced material application [J]. Current Applied Physics.2008,8:818-821.
    [100]C. S. Pan, D. S. Zhang, L. Y. Shi. CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods [J]. J. Solid State Chem.2008,181:1298-1306.
    [101]L. L. Cui, H. C. Gu, H. Xu, et al. Synthesis and characterization of superparamagnetic composite nanorings [J]. Mater. Lett.2006,60:2929-2932.
    [102]H. Wang, X. Quan. H. T. Yu. et al. Fabrication of a TiO2/carbon nanowall heterojunction and its photocatalytic ability [J]. Carbon.2008,46:1126-1132.
    [103]M. Breedon. C. Rix, K. Kalantar-zadeh. Seeded growth of ZnO nanorods from NaOH solutions [J]. Mater. Lett.2009,63(2):249-251.
    [104]Jing Feng, Shuyan Qi, Xiangyu Hou, et al. Synthesis of rod-shaped La0.7Sr0.3MnO3 by a simple solid state ceramic route [J]. Solid State Sciences,2007,9(11):1033-1035.
    [105]Shuyan Qi, Jing Feng, Xiaodong Xu, et al. The growth process of rod-shaped Lao.7Sr0.3Mn03 in solid state method [J]. Journal of Alloys and Compounds,2009, 478(1-2):317-320.
    [106]甘治平.单分散钡铁氧体亚微空心球的制备研究[D].武汉:武汉理工大学,2006.
    [107]王新营.大孔材料的制备及其有关性能的研究[D].合肥:中国科学技术大学,2007.
    [108]Ben H. Erne, Maria Claesson, Stefano Sacanna, et al. Low-frequency complex magnetic susceptibility of magnetic composite microspheres in colloidal dispersion [J]. Journal of Magnetism and Magnetic Materials,2007,311(1):145-149.
    [109]K. Chibwe, W. Jones. Intercalation of organic and inorganic anions into layered double hydroxides [J]. J.Chem.Soc.Chem.Commu.1989:926-927
    [110]孟伟青.层状前体法制备铁氧体磁性材料的研究[D].北京:北京化工大学,2004.
    [111]毛宝东.铁氧化物纳米材料的形貌可控合成及性质研究[D].长春:东北师范大学,2007.
    [112]Raghavarapu Venkata Krishnarao, Yashwant Ramchandra Mahajan, Thammana Jagadish Kumar. Conversion of raw rice husks to SiC by pyrolysis in nitrogen atmosphere [J]. Journal of the European Ceramic Society,1998,18(2):147-152.
    [113]谭玉琢,盂锦宏,孙杰等.化学沉淀-局部规整法制备棒状M型钡铁氧体的形成历程[J].无机化学学报.2008,24(12):1991-1996.
    [114]杜菲,王春忠,李旭等.空穴掺杂对Li1-xCuNO4(x<0.1)一维自旋链材料光谱性质的影响[J].高等学校化学学报.2008,29(7):1312-1317.
    [115]陈文,彭俊锋,麦立强等.两种一维纳米结构钒氧化物的合成与表征[J].无机化学学报,2004,20(2):147-151.
    [116]Li-Ying Zhang, De-Sheng Xue, Jie Fen. Magnetic properties of amorphous β-FeOOH nanowire arrays [J]. Journal of Magnetism and Magnetic Materials.2006,305(1): 228-232.
    [117]张颂,刘桂霞,董相廷等.Gd2O3:Eu3纳米棒的制备与发光性能[J].高等学校化学 学报.2009,30(1):7-10.
    [118]Liying Zhang, Yafei Zhang. Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters [J]. Journal of Magnetism and Magnetic Materials.2009, 321(5):L15-L20.
    [119]J.Douglas Adam, Lionel E.Davis, Gerald F.Dionne el al. Ferrite Devices and Materials [J]. IEEE Transactions on Microwave Theory and Techniques.2002,50(3):721-737.
    [120]Sa Lv, Hui Suo, Xu Zhao, et al. Direct growth of silver nanostructures on zinc substrate by a modified galvanic displacement reaction [J]. Solid State Communications.2009, 149(41-42):1755-1759.
    [121]Chang-Seung Lee, Sung-Woong Chung, Yong-Chun Kim, et al. Growth of highly oriented Pt(100) thin films on a MgO(100) seed layer deposited on Si(100) substrates by magnetron sputtering, [J]. Surface and Coatings Technology.1997,90(3):229-233.
    [122]Sung Koo Kang, Younghun Kim, Mi Sun Hahn, et al. Aspect ratio control of Au nanorods via temperature and hydroxylamine concentration of reaction medium, [J]. Current Applied Physics.2006,6(1):e114-e120
    [123]Prabhakar Rai, Jin-Nyeong Jo, In-Hwan Lee, et al. Fabrication of flower-like ZnO microstructures from ZnO nanorods and their hotoluminescence properties [J]. Materials Chemistry and Physics.2010,124(1):406-412.
    [124]D.-W. Kim, S. Shin, Y. Kim, et al. Growth behaviour of ZnO thin films and nanowires on SrTiO3 substrates [J]. Solid State Communications,143(3),2007,140-143.
    [125]李发伸,王涛,王颖.H2O2氧化法制备Fe3O4纳米颗粒及与共沉淀法制备该样晶的比较[J].物理学报.2005,54(7):3101-3110
    [126]G. Bonsdorf, K. Schafer, K. Teske, et al. Stability region and oxygen stoichiometry of manganese ferrite [J]. Solid State Ionics.110(1-2),1998,73-82.
    [127]Nasr-Allah M. Deraz, Gamil A. El-Shobaky. Solid-solid interaction between ferric oxide and manganese carbonate as influenced by lithium oxide doping [J]. Thermochimica Acta.2001,375(1-2):137-145.
    [128]C. Caizer, V. Tura. Magnetic relaxation/stability of Co ferrite nanoparticles embedded in amorphous silica particles [J]. Journal of Magnetism and Magnetic Materials.2006. 301(2):513-520.
    [129]L. Zhen, K. He, C.Y. Xu, et al. Synthesis and characterization of single-crystalline 4 nanorods via a surfactant-free hydrothermal route [J]. Journal of Magnetism and Magnetic Materials.2008,320(21):2672-2675.
    [130]Young-Wan Ju, Jae-Hyun Park, Hong-Ryun Jung, et al. Electrospun MnFe2O4 nanofibers:Preparation and morphology [J]. Composites Science and Technology.2008, 68:1704-1709.
    [131]C. Caizer, V. Tura. Magnetic relaxation/stability of Co ferrite nanoparticles embedded in amorphous silica particles [J]. Journal of Magnetism and Magnetic Materials.2006, 301(2):513-520.
    [132]林君,苏锵,溶胶-凝胶法及其在稀土发光材料合成中的应用[J].稀土.1995.15(1):42-46.
    [133]李惟,房学迅,王丽萍.生物化学[M].北京:化学工业出版社,2005:203-222.
    [134]Y. Mine. Recent advances in the understand of egg white protein functionality [J]. Trens in food science & Technology.1995.6(7):225-232.
    [135]Andre D. NISBET, Richard H., SAUND R.Y., et al. The complete Amino-Acid Sequence of Hen Ovalbuimin [J].1981,115(2):335-345
    [136]范杰,余承忠,屠波等.生物蛋清蛋白模板合成海绵状大孔无机氧化物[J].高等学校化学学报.2001,22(9):1459-1461.
    [137]Hsuan-Fu Yu, Shang-Wei Yang. Formation of crystalline MnFe2O4 powder by flame-combusting freeze-dried citrate precursors [J]. Journal of Alloys and Compounds. 2005,394(1):286-291.
    [138]W. J. Huang, G. C. Fang, C. C. Wang. A nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in water [J]. Colloids Surf. A.2005,260:45-51.
    [139]R. Rosal, A. Rodriguez, J. Antonio, et al. Oxidation of dissolved organic matter in the effluent of a sewage treatment plant using ozone combined with hydrogen peroxide (O3/H2O2) [J]. Chem. Eng. J.2009,149:311-318.
    [140]Z. Y. Wang, C. Chen, F. Q. Wu, et al. Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals [J]. J. Hazard. Mater.2009,164:615-620.
    [141]L. Chia-Hung, W. Jeng-Shiou, C. Hsin-Chieh, et al. Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers [J]. Water Res.2007,41: 1491-1500.
    [142]P. K. Krishna, M. S. Venkata, S. Sridhar. et al. Laccase-membrane reactors for decolorization of an acid azo dye in aqueous phase:Process optimization [J].Water Res. 2009,43:3647-3658.
    [143]Y. Zhou. Y. Gan, E. J. Wanless. G. J. Jameson, et al. Interaction Forces between Silica Surfaces in Aqueous Solutions of Cationic Polymeric Flocculants:Effect of Polymer Charge [J]. Langmuir.2008,24:10920-10928.
    [144]K. Anoop Krishnan. Adsorption of nitrilotriacetic acid onto activated carbon prepared by steam pyrolysis of sawdust:Kinetic and isotherm studies [J]. Colloids Surf. A.2008, 317:344-351.
    [145]C. S. Sundaram, N. Viswanathan, S. Meenakshi. Defluoridation of water using gnesia/chitosan composite [J]. J. Hazard. Mater.2009,163:618-624.
    [146]L. M. Nikolenko, A. V. Ivanchihina, S. B. Brichkin, et al. Ternary AOT/water/hexane systems as "micellar sieves" for cyanine dye J-aggregates [J]. J. Colloid Interface Sci. 2009,332:366-372.
    [147]S. A. Cetinus, E. Sahin, D. Saraydin. Preparation of Cu (Ⅱ) adsorbed chitosan beads for catalase immobilization [J]. Food Chem.2009,114:962-969.
    [148]R. Vincent, S. Jean-Michel, C. Valerie, et al. Removal of organic dyes by magnetic alginate beads [J]. Water Res.2008,42:1290-1298.
    [149]X. L. Zhao, Y. L. Shi, Y. Q. Cai, et al. Cetyltrimethylammonium Bromide-Coated Magnetic Nanoparticles for the Preconcentration of Phenolic Compounds from Environmental Water Samples [J]. Environ. Sci. Technol.2008.42:1201-1206.
    [150]X. Q. Liu, Y. P. Guan, Z. Y. Ma, et al. Surface Modification and Characterization of Magnetic Polymer Nanospheres Prepared by Miniemulsion Polymerization [J]. Langmuir.2004,20:10278-10282.
    [151]L. Zhang, M. M. Su, X. J. Guo. Studies on the treatment of brilliant green solution by combination microwave induced oxidation with CoFe2O4 [J]. Sep. Puri. Technol.2008, 62:458-463.
    [152]L. Song, S. J. Zhang. Direct synthesis of porous/hollow magnesium carbonate hydroxide spindly nanorods and their application in water treatment [J]. Colloids Surf. A. 2009,350:22-25.
    [153]B. Y. Ji. F. Shao, G. J. Hu, et al. Adsorption of methyl tetr-butyl ether (MTBE) from aqueous solution by porous polymeric adsorbents[J]. J. Hazard. Mater.2009.161:81-87.
    [154]X. Zhuang, Y. Wan, C. M. Feng, et al. Highly Efficient Adsorption of Bulky Dye Molecules in Wastewater on Ordered Mesoporous Carbons [J]. Chem. Mater.2009.21: 706-716.
    [155]郭秀盈,颜秀茹,霍明亮.纳米Mn-Zn铁氧体的制备和研究[J].无机化学学报.2004,5:608-612.
    [156]Qiang-Min Wei, Jian-Biao Li. Yong-Jun Chen. Cation distribution and infrared properties of NixMn1-xFe2O4 ferrites [J]. Journal of Materials Science.2001,36(21): 5115-5118.
    [157]B. Skolyszewska, W. Tokarz, K. Przybylski, et al. Preparation and magnetic properties of MgZn and MnZn ferrites[J]. Physica C.2003,387:290-294.
    [158]M. Ma, Y. Zhang, X. B. Li, et al. Synthesis and characterization of titania-coated Mn-Zn ferrite nanoparticles[J]. Colloids Surf. A.2003,224:207-212.
    [159]G. Y. Li, Y. R. Jiang, K. L. Huang, et al. Preparation and properties of magnetic Fe3O4-chitosan nanoparticles[J]. J. Alloys Compd.2008,466:451-456.
    [160]S. Senthilkumaar, P. R. Varadarajan, K. Porkodi, et al. Adsorption of methylene blue onto jute fiber carbon:kinetics and equilibrium studies[J]. J. Colloid Interface Sci.,2005, 284:78-82.
    [161]Francisco Arias, Tushar Kanti Sen. Removal of zinc metal ion (Zn2+) from its aqueous solution by kaolin clay mineral:A kinetic and equilibrium study [J]. Colloids Surf. A. 2009,348:100-108.
    [162]V. C. Taty-Costodes, H.Fauduet. C. Porte, et al. Removal of Cd(II) and Pb(II) ions from aqueous soluteions by adsorption onto sawdust of pinus sylvestris [J]. J. Hazard. Mater B.2003,10(5):151-142.
    [163]Y. M. Ren, X. Z. Wei, M. L. Zhang. Adsorption character for removal Cu (Ⅱ) by magnetic Cu (Ⅱ) ion imprinted composite adsorbent [J]. J. Hazard. Mater.2008,158: 14-22.
    [164]H. Deng, L. Yang, G. H. Tao. et al. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—Application in methylene blue adsorption from aqueous solution [J]. Hazard. Mater.2009,166:1514-1521.
    [165]R. Gong, Y. Sun, J. Chen, et al. Effect of chemical modification on dye adsorption capacity of peanut hull [J]. Dye. Pigment.2005.67:175-181.
    [166]B. H. Hameed. D. K.Mahmoud. A. L. Ahmad. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent:Coconut (Cocos nucifera) bunch waste[J]. J. Hazard. Mater,2008.158:65-72.
    [167]M. Kaiser, Effect of nickel substitutions on some properties of Cu-Zn ferrites [J]. J. Alloys Compd.2009,468:15-21.
    [168]M. Kantcheva, A. Agiral, O. Samarskaya, et al. Characterization of LaMnAl11O19 by FT-IR spectroscopy of adsorbed NO and NO/O2[J]. Appl. Surf. Sci.2005,252: 1481-1491.
    [169]G. Rytwo, D. Tropp, C. Serban, Adsorption of diquat, paraquat and methyl green on sepiolite:experimental results and model calculations [J]. Appl. Clay Sci.2002,20: 273-282.
    [170]C. Namasivayam, D. Kavitha, IR, XRD and SEM studies on the mechanism of adsorption of dyes and phenols by coir pith carbon from aqueous phase [J]. Microchem. J.2006,82:43-48.
    [171]M.A.安德森,A.J.鲁宾.水溶液吸附化学(无机物在固一液界面上的吸附作用)[M].科学出版社.1989:2-79.
    [172]W. Sutmm, H. Hohl, F. Dalnay. Interaction of metal ions with hydroxyl oxides surface [J]. Croact Chem Acta.1976.48:491-504.
    [173]Atul K. Mittal, S.K.Gupta. Biosorption of cationic dyes by dead macrofungusfomitopsis carnea:batch studies [J]. Wat Sci Tech.1996.34 (10):81-87.
    [174]Esma Tutem, Resat Apak, Cagatay F.Unal. Adsorptive Removal of chlorphenols from water by bituminous shale [J]. Wat Res.1998,32 (8):2315-2324.
    [175]Benhammou, A. Yaacoubi, L. Nibou. et al. Adsorption of metal ions onto Moroccan stevensite:kinetic and isotherm studies [J]. J. Colloid Interface Sci.2005,282:320-324.
    [176]E. Veena Gopalan, I.A. Al-Omari. K.A. Malini, et al. Impact of zinc substitution on the structural and magnetic properties of chemically derived nanosized manganese zinc mixed ferrites [J]. Journal of Magnetism and Magnetic Materials.2009.321(8): 1092-1099.
    [177]R. Arulmurugana, B. Jeyadevanb. G. Vaidyanathana, et al. Effect of zinc substitution on Co-Zn and Mn-Zn ferrite nanoparticles prepared by co-precipitation [J]. Journal of Magnetism and Magnetic Materials.2005,288:470-477.
    [178]M.M. Hessien, M.M. Rashad, K. El-Barawy, et al. Influence of manganese substitution and annealing temperature on the formation, microstructure and magnetic properties of Mn-Zn ferrites[J]. Journal of Magnetism and Magnetic Materials.2008,320(9): 1615-1621.
    [179]S. Ayyappan, S. Mahadevan, P. Chandramohan, et al. Influence of Co2+ Ion Concentration on the Size, Magnetic Properties, and Purity of CoFe2O4 Spinel Ferrite Nanoparticles, [J].J. Phys. Chem. C.2010,114:6334-6341.
    [180]A.C.F.M. Costa, V.J. Silva, C.C. Xin, et al. Effect of urea and glycine fuels on the combustion reaction synthesis of Mn-Zn ferrites:Evaluation of morphology and magnetic properties [J]. Journal of Alloys and Compounds.2010,495(2):503-505.
    [181]Z. Beji, L. S. Smiri, N. Yaacoub, et al. Annealing Effect on the Magnetic Properties of Polyol-made Ni-Zn Ferrite Nanoparticles [J]. Chem. Mater.2010,22 (4):1350-1366.
    [182]Muhammad Ajmal, Asghari Maqsood. Influence of zinc substitution on structural and electrical properties of Ni1-xZnxFe2O4 ferrites [J].Materials Science and Engineering:B. 2007,139(2-3):164-170.
    [183]D.S. Birajdar. D.R. Mane, S.S. More, et al. Structural and magnetic properties of ZnxCu1.4-xMn0.4Fe1.2O4 ferrites [J]. Materials Letters.2005.59(24-25):2981-2985.
    [184]M. Manjurul Haque, M. Huq, M.A. Hakim. Effect of Zn2+ substitution on the magnetic properties of Mg1-xZnxFe2O4 ferrites [J]. Physica B:Condensed Matter.2009,404(21): 3915-3921
    [185]Xiangyu Hou, Jing Feng, Yueming Ren, et al. Synthesis and adsorption properties of spongelike porous MnFe2O4 [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2010,363(1-3):1-7.
    [186]M.L. Garcia-Benjume, M.I. Espitia-Cabrera, M.E. Contreras-Garcia. Hierarchical macro-mesoporous structures in the system TiO2-Al2O3. obtained by hydrothermal synthesis using Tween-20 as a directing agent [J]. Materials Characterization.2009, 60(12):1482-1488.
    [187]X. Wang, J.C. Yu, C. Ho, Y. Hou, et al. Photocatalytic activity of a hierarchically macro/mesoporous titania [J]. Langmuir.2005,21:2552-2559.
    [188]Kamal M. S. Khalil, Mohamed I. Zaki. Preparation and characterization of sol-gel derived mesoporous titania spheroids [J]. Powder Technology.2001.120(3):256-263.
    [189]Jiaguo Yu, Lifang Qi. Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light-driven photocatalytic activity[J]. Journal of Hazardous Materials.2009,169(1-3):221-227.
    [190]Jiaguo Yu, Jimmy C. Yu, Mitch K. P. Leung, et al. Jincai Zhao.Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania [J]. Journal of Catalysis.2003,217(1):69-78.
    [191]Jing Jiang, Yan-Min Yang, Liang-Chao Li. Surfactant-assisted synthesis of nanostructured NiFe2O4 via a refluxing route [J].Materials Letters.2008,62(12-13): 1973-1975.
    [192]Amina A Attia, Badie S Girgis, Soheir A Khedr. Capacity of activated carbon derived from pistachio shells by H3PO4 in the removal of dyes and phenolics [J]. Journal of Chemical Technology & Biotechnology.2003,78(6):611-619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700