用户名: 密码: 验证码:
新型纳米催化材料的设计、制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米催化剂由于其高效的还原或氧化作用,在催化或光催化领域的应用非常广泛,与普通商用催化剂相比,表现出高活性和高选择性等优异的催化性能。在反应中,纳米催化剂的尺寸、形貌、表面性质等对其活性和选择性起到了关键的作用。纳米催化剂制备过程中的条件,如原料浓度、反应时间、反应温度、溶剂比例和表面活性剂等,对于控制制备纳米催化剂至关重要。目前,人们对各种纳米催化剂的制备和应用做了大量研究,取得了丰硕的成果,同时也提出了纳米催化剂在实际应用中出现的许多问题。
     本论文立足于绿色、廉价、简易、可工业化放大的制备方法,来获得尺寸、形貌及表面性质可控的纳米氧化锌光催化剂、纳米铜催化剂,并且发挥优化设计理念,对纳米氧化锌光催化剂、纳米铜催化剂进行了有针对性的表面改性。本论文从控制制备、表面改性及提高产品应用性能等方面开展了研究工作,全文的主要内容和创新点如下:
     1、系统研究了水热法控制制备多形貌、多尺寸纳米氧化锌的制备工艺。考察了原料浓度、水热温度、水热时间、pH值、溶剂比例等因素对氧化锌颗粒尺寸和形貌的影响,结果表明:通过不同原料的水热反应,可以得到类球状、棒状、花状的纳米氧化锌光催化剂,调节原料浓度、水热温度、水热时间、pH值及溶剂比例等参数,可以控制光催化剂的形貌和尺寸。该制备方法原料简单价廉,调控手段简单,适于工业化放大生产。
     2、以罗丹明B等为降解对象,研究了水溶液中各种产品的光催化活性,考察了产品形貌、粒径、表面处理和使用条件对光催化性能的影响,选取了利于提高光催化效率的途径。实验结果表明:本论文所报道的方法所制备的纳米氧化锌光催化剂均具有良好的光催化性能,减小颗粒粒径、增大比表面积、较低温度煅烧有利于得到高催化性能的光催化剂,选取适当用量、调节体系pH值等,可以促进光催化体系的迅速降解。
     3、创新性的设计、制备并表征了核壳结构的纳米ZnO@SiO2、ZnO@@SiO2光催化剂颗粒,对其光催化性能进行了测试,验证了其在光催化应用中的优势和设计思路的正确性。
     4、系统研究了液相还原法制备纳米铜催化剂的制备工艺。考察了原料浓度、体系温度、反应时间、溶剂比例和表面活性剂等对铜催化剂颗粒的影响,结果表明:该工艺可以得到形貌可控、粒度可调、分散均匀、质量稳定的纳米铜催化剂,为工业化放大生产提供了基础。
     5、创新性的设计、制备并表征了核壳结构的纳米Cu@C催化剂颗粒,对其催化性能进行了测试,验证了其在苯羟基化催化反应中的优势和设计思路的正确性。
     6、在两种催化剂基础相材料的制备实验基础上,结合液相还原法与高通量反应器的特点,利用超重力旋转床和套管式微反应器对制备过程进行了连续式放大研究,对烧杯实验的放大制备优化了产品形貌、尺寸、分散性能,充分证明了高通量反应器在微观混合和反应传质方面的优势。
Nano-catalyst, which showed highly efficient the reduction or oxidation properties, was widely used in the catalysis or photocatalysis areas. Compared to the commercial catalyst, nano-catalyst possessed higher activity, selectivity, and more excellent catalytic performance. The partical size, mophology and surface properties of the nano-catalyst played the key role of the activity and selectivity. The properties of the nano-catalyst were affected by the preparation conditions, such as regant concentration, duration time, temperature, solvent ratio, surfactant, etc. Recently, lots of reasearch work on the preparation and application of nano-catalyst has been reported. However, the applications of nano-catalyst are still a challenge to the scientists.
     Herein we report on the synthesis of nano-ZnO and Cu catalysts with controllable particle size, morphology and surface properites through a simple green, cheap and easy for industrial way. The surface modifications to the nano-ZnO and Cu catalysts were researched separatly in order to design an optimized catalyst structure.The main content and innovations are summarized as follows.
     1、Nano-ZnO with different morphologies and particle sizes can be successfully synthesized using a simple hydrothermal method. The effects of the reagent concentration, hydrothermal temperaure, duration time, slurry pH value and solvents ratio to the nano-ZnO morphologies and particle sizes were studied. Sphere-like, rod-like and flower-like nano-ZnO catalysts were obtained by changing the different hydrothermal reagents. The morphologies and particle sizes of the photocatalysts could be contralable synthesized by adjusting the reagents concentration, hydrothermal temperaure, duration time, slurry pH value and solvents ratio. This simple preparation method with the inexpensive raw materials is easy to control which could be potential enlarged in industry.
     2、The photocatalytic activities of differenct samples in the water solution were researched using Rhodamine B as the degradation target. The effects of products morphology, partical size, surface modification and system conditions to the photocatalytic properties were also studied. The optimized method for increase the photocatalytic efficiency was found. The results showed that as-prepared nano-ZnO catalysts all posessed good photocatalytic properties. Decreasing of particle size, increasing of specific surface area and low temperatur calcining will lead to the increase of the photocatalytic properties. The degradation speed of the whole photocatalytic system will be increaed by adjusting the concentration of the catalysts and the pH value of the slurry.
     3、Novel nano core/shell strctured ZnO@SiO2 and ZnO@@SiO2 photocatalytic particles were successfully designed and synthesized. The photocatalytic propereties were researched. The results showed that the core/shell strctured ZnO@SiO2 and ZnO@@SiO2 photocatalytic particles have potential application in catalysts area, which proved the advantage in the photocatalytic application area and the correctness of our design.
     4、Nano Cu catalysts can be successfully synthesized using liquid phase reduction method. The effects of the reagents concentration, system temperature, duration time, solvents ratio and surfactants to the Cu particles were studied in our research work. The well-dispersed nano Cu catalyst particles with contralable mophology and particle size can be obtained by the simple method, which could be potential, applied in industry area.
     5、A novel nano core/shell strctured Cu@C photocatalytic particles were successfully designed and synthesized. The photocatalytic propereties were reseached. The results showed that the core/shell strctured Cu@C photocatalytic particles have potential application in catalysts area, which proved the advatage in the Benzene hydroxylation catalytic application area and the correctness of our design.
     6、Based on the lab-preparations of the two kinds of catalysts, the whole synthesis systems were enlarged throughout tube-in-tube microreactor and the rotating packed bed combining with liquid phase reduction method. The tube-in-tube microreactor and the rotating packed bed can significantly improve the dispersity of the particles.
引文
[1]Kamat P V, Dimitrijevic N M. Colloidal semiconductors as photocatalysts for solar energy conversion [J]. Sol Energy,1990(44):83-98.
    [2]Cavicchi R E, Silsbee R H. Coulomb Suppression of Tunneling Rate from Small Metal Particles [J]. Phys Rev Lett,1984, (52):1453.
    [3]Bucher J P, Douglass D C, Bloomfield L A. Magnetic properties of free cobalt clusters [J]. Phys Rev Lett,1991,66(23):3052.
    [4]李宇农,何建军,龙小兵.纳米金属粉末研究进展[J].粉末冶金工业,2004,14(1):34-39.
    [5]盖国胜.超微粉体技术[M].北京:化学工业出版社.2004.
    [6]陈月辉,赵光贤.纳米材料的特性和制备方法及应用[J].橡胶工业,2004,51(3):182-188.
    [7]李凤生,崔平,杨毅,等.微纳米粉体后处理技术及运用[M].北京:国防工业出版社,2005.
    [8]冯新建.纳米技术及其在化工行业中的应用[J].新疆化工.2008,3:3-6.
    [9]徐敬标.方兴未艾的纳米材料[J].技术物理教学.2004,12(2):47-48.
    [10]谢济仁,邵刚勤,易忠来,等.纳米材料应用[J].武汉理工大学学报.2004,26(2):17-20.
    [11]叶飞.纳米材料的发展与应用[J].安庆师范学院学报(自然科学版),2004,10(4):27-28.
    [12]冉秀伦,杨荣杰.高燃速推进剂研制现状分析[J].飞航导弹,2006,(9):45-50.
    [13]杜力军,邢东明,丁怡,等.微细化工艺制备三种中药的溶出度、生物活性及体内动力学比较研究[J].世界科学技术-中医药现代化.2004,6(5):34-39.
    [14]史冬霞,李奉勤,范文成,等.超微粉碎技术在中药生产中的研究概况[J].中国药业,2006,15(11):61-63.
    [15]孙成林,连钦明.纳米技术与纳米材料制备及应用综述[J].中国粉体工业,2006,1:6-10.
    [16]曹学军.美国国际纳米技术计划[J].国外科技动态,2000,6:18.
    [17]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J]. Science,2001, (291):1947-1949.
    [18]He L, Zhu Y Z, Zheng J Y, Meso-meso linked diporphyrin functionalized single-walled carbon nanotubes,2010,216:15-23.
    [19]Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science,2001,292:1897-1899.
    [20]Zhang H Z, Yu D P, Ding Y, et al. Dependence of the silicon nanowire diameter on ambient pressure [J]. Appl Phys Lett,1998,73:3396-3398.
    [21]J Y Li, X L Chen, Li H, et al. Fabrication of zinc oxide nanorods [J]. J Cryst Growth, 2001,233:5-7.
    [22]Gudiksen M S, Lauhon L J, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics [J]. Nature,2002,415:617-620.
    [23]Bagnall D, Chen Y, Zhu Z, et al. Optically pumped lasing of ZnO at room temperature [J]. Appl Phys Lett,1997,70:2230-2232.
    [24]Lauhon L J, Gudiksen M S, Wang C L, et al. Epitaxial core-shell and core-multishell nanowire heterostructures [J]. Nature,2002,420(6911):57-61.
    [25]Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles [J]. Science, 2002,298:2176-2179.
    [26]林元华.纳米技术—人类的又一次产业革命[J].国外科技动态,2000,1:111.
    [27]盖国胜.超微粉体技术[M].北京:化学工业出版社,2004:1.
    [28]Lijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [29]Xia Y, Yang P, Sun Y, et al. One-dimensional nanostructures:synthesis, characterization, and applications [J]. Adv Mater,2003,15:353-389.
    [30]Calvert P. Rough guide to nanoworld [J]. Nature,1996,383(26):3002-3011.
    [31]张立德.纳米材料[M].北京:化学工业出版社,2000:1.
    [32]Michael S, Thomas T. Nanocomposites for Soldiers Ballistic Protection [M]. Massachusetts,1999:71.
    [33]Schmid G, Emde S, Maihack V, et al. Synthesis and catalytic properties of large ligand stabilized palladium clusters [J]. J Mol Catal A:Chem,1996,107:95-104.
    [34]Schmid G, Maihack V, Lantermann F. Ligand-stabilized metal clusters and colloids: properties and applications [J]. J Chem Soc Dalton Trans,1996,589-595.
    [35]Wieringa H A, Soehout C C, Gerritsen J W, et al. Direct imaging of Pd 561 (phen) 36 O 200 and Au 55 (PPh 3) 12 Cl 6 clusters using scanning tunneling microscopy. Adv Mater,1990,2:482-484.
    [36]Moreno-Manas M, Pleixats R. Formation of carbon-carbon bonds under catalysis by transition-metal nanoparticles [J]. Acc Chem Res,2003,36:638-643.
    [37]Zhang J, Wang Y, Ji H, et al. Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene [J]. J Catal,2005, 229:114-118.
    [38]Zarur A J, Ying J Y. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion [J]. Nature,2000, (403),65-67.
    [39]Hu J S, Ren L L, Guo Y G, et al. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles [J]. Angew Chem Int Ed,2005, (44):1269-1273.
    [40]Andersson M, Osterlund L, Ljungstrom S, et al. Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic "wet oxidation of phenol [J]. J Phys Chem B,2002,106:10674-10679.
    [41]Fuerte A, Hernandez-Alonso M D, Maira A J, et al. Nanosize Ti-W mixed oxides:effect of doping level in the photocatalytic degradation of toluene using sunlight-type excitation [J]. J Catal,2002,212:1-9.
    [42]Wang C, Wang X M, Xu B Q, et al.Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation [J]. J Photochem PhotobiolA:Chem,2004,168:47-52.
    [43]洪新华,等.纳米技术与纳米材料研究应用进展[J].河南师范大学学报,2001,29(2):36-39.
    [44]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37-41.
    [45]李田,严煦世.光催化氧化法去除水中有机氯化物的研究[J].上海环境科学,1992, 11:11.
    [46]Magdy W R, Malati M A. The photocatalysed reduction of aqueous sodium carbonate to carbon using platinised titania [J]. J Chem Soc Chem Comm,1987,47:1418-1420.
    [47]付宏祥.有机物存在下Cr(Ⅵ)离子的光催化还原[J].物理化学学报,1997,13:106.
    [48]Ishitani O, Inoue C, Suzuki Y, et al. Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2 [J]. J Photochem PhotoBiol A:Chem,1993,72:269.
    [49]胡安正,唐超群.纳米TiO2光催化材料及其应用于环境保护的研究进展[J].功能材料,2001,32:586.
    [50]Kaneco S, Kurimoto H, Shimizu Y, et al. Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2 [J]. Energy,1999,24:21.
    [51]Wong W K, Malati M A. Doped TiO2 for solar energy applications [J]. Sol Energy, 1986,36:163.
    [52]Liu B J, Torimoto T, Yoneyana H. Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents [J]. J Photochem Photobiology A:Chem,1997,108:187.
    [53]Mizuno T, Adachi K, Ohta K, et al. Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions [J]. J Photochem Photobiol A:Chem,1996,98: 87.
    [54]Tada H, Hyodo M, Kawahara H, et al. Photoinduced polymerization of 1,3,5, 7-tetramethylcyclotetrasiloxane by titania particles [J]. J Phys Chem,1991,95:10185.
    [55]Becker W G, Truong M M, Ai C C, et al. Interfacial factors that affect the photoefficiency of semiconductor-sensitized oxidations in nonaqueous media [J]. J Phys Chem,1989,93:4882.
    [56]徐用军,陈福明.载钯TiO2半导体悬浮催化体系中CO2的光还原[J].感光科学和光化学,1999,17(1):61-65.
    [57]Goren Z, Willner I, Nelson A J. Selective photoreduction of carbon dioxide/bicarbonate to formate by aqueous suspensions and colloids of palladium-titania [J]. J Phys Chem, 1990,94:3784.
    [58]Leng W H, Cheng X F, Zhang J Q. Comment on "Photocatalytic Oxidation of Arsenite on TiO2:Understanding the Controversial Oxidation Mechanism Involving Superoxides and the Effect of Alternative Electron Acceptors" [J]. Environ Sci Technol,2007, 41(17):6311-6312.
    [59]Yassltepe E, Yatmaz H C, Ozturk C. Photocatalytic efficiency of ZnO plates in degradation of azo dye solutions [J]. J photochem photobio A:Chem,2008,198(1): 1-6.
    [60]Bandara J, Ranasinghe R A S S. The effect of MgO coating on photocatalytic activity of SnO2 for the degradation of chlorophenol and textile colorants:the correlation between the photocatalytic activity and the negative shift of flatband potential of SnO2 [J]. Appl Catal A:Gen,2007,319(1):58-63.
    [61]Yagi M, Mamyanla S, Sone K et al. Preparation and photoelectrocatalytic activity of a nano-structured WO3 platelet film [J]. J Solid State Chem,2008,181(1):175-182.
    [62]Neppolian B, Wang Q L, Yamashita H. Synthesisand characterization of ZrO2-TiO2 binary oxide semiconductor nanoparticles:Application and interparticle electron transfer process [J]. Appl Catal:Gen,2007,333(2):264-271.
    [63]Chen X Y, Yu T, Fan X X, et al. Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production [J].Appl Surf Sci,2007,253(20):8500-8506.
    [64]Gondal M A, Hameed A, Yamani Z H, et al. Production of hydrogen and oxygen by water splitting using laser induced photo-catalysis over Fe2O3 [J]. Appl Catal A:Gen, 2004,268(1-2):159-167.
    [65]Puangpetch T, Sreethawong T, Yoshikawa S, et al. Synthesis and photocatalytic activity in methyl orange degradation of mesoporous-assembled SrTiO3 nanocrystals prepared by sol-gel method with the aid of structure-directing surfactant [J]. J Mol Catal A: Chem,2008,287(1-2):70-79.
    [66]Stutrez-Parra R, Hemfindez-P6rez I, Rincon M E, et al. Visible light-induced degradation of blue textile azo dye on TiO2/CdO-ZnO coupled nanoporous films [J]. Sol Energ Mater Sol C,2003,76(2):189-199.
    [67]Datta A, Priyam A, Bhattacharyya S N. Temperature tunability of size in CdS nanoparticles and Size dependent photocatalytic degradation of nitroaromatics [J]. J Colloid Interf Sci,2008,322(1):128-135.
    [68]Torres-Martinez C L, Kho R, Mian O 1, et al. Efficient Photocatalytic Degradation of Environmental Pollutants with Mass-Produced ZnS Nanocrystals [J]. J Colloid Interf Sci,2001,240(2):525-532.
    [69]Ho W K, Yu J C. Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles [J]. J Mol Catal A:Chem,2006,247 (1-2):268-274.
    [70]Yamashita H, Nishida Y, Yuan S, et al. Design of TiO2-SiC photocatalyst using TiC-SiC nano-particles for degradation of 2-propanol diluted in water [J]. Catal Today, 2007,120(2):163-167.
    [71]Maeda K, Takata T, Ham M, et al. GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting. J Am Chem Soc,2005,127(23): 8286-8287.
    [72]Hagfeldt A, Gratzel M. Light-induced redox reactions hananoerystalline systems [J]. Chem Rev,1995,95(1):49-68.
    [73]Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J]. Chem Rev,1995,95(3):735-758.
    [74]Evgenidou E, Fytianos K, Poulios I. Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts [J]. APPl Catal B:Environ,2005, 59:8.
    [75]Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics [J]. J Phys Chem,1994,98:13669.
    [76]Iliev V, Tomova D, L. Bilyarska, et al. Photocatalytic properties of TiO2 modified with platinum and silver nanoparticles in the degradation of oxalic acid in aqueous solution [J]. Appl Catal B:Environ,2006,63,266-271.
    [77]Bessekhouad Y, Robert D, Weber J V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant [J]. J. Photochem Photobiol A:Chem,2004,163:569.
    [78]Zhang M L, An T C, Hu X H, et al. Preparation and photocatalytic properties of a nanometer ZnO-SnO2 coupled oxide [J]. Appl Catal A:Gen,2004,260:215-222.
    [79]Zhang M L, Sheng G Y, Fu J M, et al. Novel preparation of nanosized ZnO-SnO2 with high photocatalytic activity by homogeneous co-precipitation method [J]. Mater Lett, 2005,59:3641.
    [80]Wang C, Wang X M, Xu B Q et al. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation [J]. J Photo chem. Photobiol A:Chem.2004,168:47.
    [81]Sampa C, Dutta K B. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst [J]. J Hazardous Matar B,2004,112:269-278.
    [82]Marcl G, Augugliaro V, LopezMunoz M J, et al. Preparation characterization and photocatalytic activity of polycrystallineZnO/TiO2 systems.2. Surface, bulk characterization, and 4-nitrophenol photodegradation in Liquid-Solid Regime [J]. J Phys Chem B,2001,105:1033.
    [83]Daneshvar N, Salari D, Khataee A R, et al. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2 [J]. J Photochem Photobiol A: Chem,2004,162:317.
    [84]Yang J, Li D, Wang X, et al. Rapid Synthesis of Nanocrystalline TiO2/SnO2 Binary Oxides and Their Photoinduced Decomposition of Methyl Orange [J]. J Solid State Chem,2002,165:193.
    [85]Vinodgopal K, Kamat P V. Environ Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films [J]. Sci Techno,1995, 29:841.
    [86]Shi L Y, Li C Z, Gu H C, et al. Morphology and properties of ultrafine SnO2-TiO2 coupled semiconductor particles [J]. Mater Chem Phys,2000,62:62.
    [87]Wan Q, Wang T. H., J. C. Zhao. Enhanced photocatalytic activity of ZnO nanotetrapods [J]. Appl Phys Lett,2005,87(8):083105.
    [88]Li D, Haneda H, Ohashi N, et al. Morphological reform of ZnO particles induced by coupling with Mox (M=V, W, Ce) and the effects on photocatalytic activity [J].Thin Solid Films,2005,486 (1-2):20-23.
    [89]马正先,韩跃新,郑龙熙,等.纳米氧化锌的制备与应用研究进展[J].矿产保护与利用,2002,1:37-43.
    [90]程敬泉,严会娟,魏雨.氧化锌超细粒子的制备及应用[J].河北师范大学学报(自然科学版),2000,24(4):509-512.
    [91]祖庸,雷闰盈,王训,等.纳米ZnO的奇妙用途[J].化工新型材料,1999,27(3):14-16.
    [92]梁忠友.纳米材料的性能及应用展望[J].陶瓷研究,1999,14(1):13-17.
    [93]徐滨士.纳米表面工程[M].北京:化学工业出版社,2004.
    [94]Lyu S C, Zhang Y, Lee C J, et al. Low-Temperature Growth of ZnO Nanowire Array by a Simple Physical VaPor-DePosition Method [J]. Chem Mater,2003, 15(17):3294-3299.
    [95]Lu J F, Zhang Q W, Wang J, et al. Synthesis of N-DoPed ZnO by grinding and subsequent heating ZnO-ureamixture [J]. Powder Teehnol,2006,162(1):33-37.
    [96]Tani T, Madler L, Pratsinis E. Homogeneous ZnO nanoPartieles by flames Pray Pyrolysis [J]. J Nanoparticle Res,2002,4(4):337-343.
    [97]Li F, Ding Y, Gao P X, et al. Single-erystal Hexagona 1 Disksand Rings of ZnO: Low-temPerature, Large-scale Synthesis and Growth Meehanism [J]. Angew Chem Int Ed,2004,43(39):5238-5242.
    [98]张永康,刘建本,易保华.常温固相反应合成纳米氧化锌[J].精细化工,2000,17(6):343-344.
    [99]Barbeni M, Pramauro E, Pelizzetti E, et al. Photodegradation of pentachlorophenol catalyzed by semiconductor particles [J]. Chemosphere,1985,14(2):195-208.
    [100]Sharma A, Rao P, Mathur R P, et al. Photocatalytic reactions of xylidine poneeau 011 semiconducting zinc oxide powder [J]. J Photochem and Photobio A:Chem,1995, 86(1-3):197-200.
    [101]Poulios I, Tsachpinis I. Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides [J]. J Chem Technol Biot,1999,74(4):349-357.
    [102]Wang H H, Xie C H, Zhang W, et al. Comparison of dye degradation efficiency using ZnO powders with various size scales. J Hazardous Mater,2007,141(3):645-652.
    [103]Selli E, De G A, Bidoglio G Humie Acid-Sensitized Photoreduction of Cr(VI) on ZnO Particles [J]. Environ Sci Technol,1996,30(2):598-604.
    [104]Yatmaz H C, Akyol A, Bayramoglu M. Kinetics of the Photocamlytic Decolorization of an Azo Reactive Dye in Aqueous ZnO Suspensions [J]. Ind Eng Chem Res,2004, 43(19):6035-6039.
    [105]Ye C, Bando Y, Shen G, et al. Thickness-Dependent Photocatalytic Performance of ZnO Nanoplatelets [J]. J Phys Chem:B,2006,110(31):15146-15151.
    [106]Marci G, Augugliaro V, Lopez-Mtmoz, et al. Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems.2. Surface, Bulk Characterization, and 4-Nitrophenol Photodegradation in Liquid-Solid Regime [J]. J Phys Chem:B,2001,105(5):1033-1040.
    [107]Pauporte T, Rathousky J. Electrodeposited Mesoporous ZnO Thin Films as Efficient Photocatalysts for the Degradation of Dye Pollutants [J]. J Phys Chem C,2007, 111(21):7639-7644.
    [108]Xu F, Zhang P, Navrotsky A, et al. Hierarchically Assembled Porous ZnO Nanoparticles:Synthesis, Surface Energy, and Photocatalytic Activity [J]. Chem Mater, 2007,19(23):5680-5686.
    [109]Kuo T J, Lin C N, Kuo C L, et al. Growth of Ultralong ZnO Nanowires on Silicon Substrates by Vapor Transport and Their Use as Recyclable Photocatalysts [J]. Chem Mater,2007,19(21):5143-5147.
    [110]Zheng Y, Chen C, Zhan Y, et al. Luminescence and Photocatalytic Activity of ZnO Nanocrystals:Correlation between Structure and Property [J]. Inorg Chem,2007, 46(16):6675-6682.
    [111]Yao K X, Zeng H C, et al. ZnO/PVP Nanocomposite Spheres with Two Hemispheres [J]. J Phys Chem C,2007,111:13301-13308.
    [112]Hong R Y, Li J H, Chen L L, et al. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles [J]. Powder Technol,2009,189:426-432.
    [113]Chang S L, Park M C, Kuang Q, et al. Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization [J]. J Am Chem Soc,129 (40): 12096-12097.
    [114]马丽果,杨秀华,谢继丹,等.微乳液法制备纳米铜粉及其在润滑油中的应用研究[J].润滑与密封,2004,4:87-88.
    [115]Suryanara R. Mechamical properties of nanocrystalline copper produced by solution phase synthesis [J]. J Mater Res,1996,11(2):439-448.
    [116]Lisicecki J. Synthesis of copper nanoparticles in gethed micromulsion and in reverse micelles [J]. J Mol Liq,1997,72(1):251-261.
    [117]Huang C Y, Sheen S R. Synthesis of nanocrystalline and monodispersed copper particles of uniform spherical shape [J]. Mater lett,1997,30:357-361
    [118]黄东,南海,吴鹤,等.纳米铜粉的制备进展[J],金属功能材料,2004,11(2):30-34.
    [119]刘志杰,赵斌,张宗涛.以抗坏血酸为还原剂的超细铜粉的制备及其稳定性[J].华东理工大学学报,1996,22(5):548-553.
    [120]Cason J P, Christoppher B R. Metallic copper nanoparticles synthesis in AOT reverse micelles in compressed propane and supercritical ethane solutions [J]. J Phys Chem B, 2000,104:1217-1221.
    [121]Okuda S., Kobiyama M. Thermal stability of nanocrystalline gold and copper prepared by gas deposition method [J]. Scripta mater,2001,44:2009-2012.
    [122]朱协彬,段学臣.超声电解法制备超细金属粉的研究[J].金属功能材料,1997,3:115-118.
    [123]Dorda F. A method of obtaining ultra-dispersive copper powder by supplying copper nitrate solution into nitrogen plasma [P]. Russ Ru 2064369 C,1996-07-27.
    [124]Ding J. Ultrafine Cu particles prepared by mechanochmical process [J]. J Alloy compd, 1996,234:1-3.
    [125]Chen Q, Boothroyd C, Tan G H, et al. Silica coating of nanoparticles by the sonogel process [J]. Langmuir,2008,24(3):650-653.
    [126]Jackelen A L, Jungbauer M, Glavee G N. Nanoscale Materials Synthesis.1. Solvent Effects on Hydridoborate Reduction of Copper Ions [J]. Langmuir,1999,15(7): 2322-2326.
    [127]吴秀华,赵斌,邵佳敏,不同形貌Cu-Ag双金属粉的制备及性能[J],华东理工大学学报,2002,28(4):402-405
    [128]Zhu C C, Zhang X H, He X D. Self-propagating high-temperature synthesis, microstructure and mechanical properties of TiC-TiB2-Cu composites [J]. J Mater Sci Technol,2006,22(1):78-82.
    [129]高闰丰,梅炳初,朱教群,等.弥散强化铜基复合材料的研究现状与展望[J].稀有金属快报,2005,24(8):1-7.
    [130]Morris D G, Morris M A. The mechanical behavior of some titamium trialuminide intermetallics prepared using mechanical milling techniques [J]. Mater Sci Eng,1991: 1418.
    [131]Valtchev V, Mintova S. Layer-by-layer preparation of zeolite coatings of nanosized crystals [J]. Microp Mesop Mater,2001,43:41-45.
    [132]Olinda C, Monteiro A, Catarino C, et al. The synthesis of SiO2@CdS nanocomposites using single-molecule precursors [J]. Chem Mater,2002,14:2900.
    [133]Kwork H N, Penner R M. Electrodeposition of silver-copper bimetallic particles having two archetypes by facilitated nucleation [J]. J Electroanaletical Chem,2002,522(1): 86-94.
    [134]滕枫,唐爱伟,高银浩,等.水溶胶CdSe/CdS核/壳结构纳米晶制备及光学性质的研究[J].光谱学与光谱分析,2005,5(25):65.
    [135]Yang C L, Liu H Z, Guan Y P, et al. Preparation of magnetic poly (methylmethacrylate-divinybenzene-glycidymethacrylate) microspheres by spraying suspension polymerization and their use for protein adsorption [J]. Journal of Magn Magn Mater,2005,293:187-192.
    [136]陈建峰,郭楷,郭奋,张鹏远,邵磊,宋云华,毋伟,初广文.超重力技术及应用-新一代反应应与分离技术[M].化学工业出版社.2003.
    [137]Chen J F, Wang Y H, Guo F, et al. Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation [J]. Ind Eng Chem Res,2000,39(4):948-954.
    [138]Wang M, Zou H K, Shao L, et al Controlling factors and mechanism of preparing needlelike CaCO3 under high-gravity environment [J]. Powder Technol,2004, 142(2-3):166-174.
    [139]Shao L, Chen J F. Synthesis and application of nanoparticles by a high gravity method [J]. China Particuology.2005,3(1-2):134-135.
    [140]Shen Z G, Chen J F, Yun J. Preparation and characterizations of uniform nanosized BaTiO3 crystallites by the high-gravity reactive precipitation method [J]. J Cryst Growth,2004,267(1-2):325-335.
    [141]Wang Z, Chen J F, Le Y, et al. Preparation of ultrafine beclomethasone dipropionate drug powder by antisolvent precipitation [J]. Ind Eng Chem Res,2007,46 (14): 4839-4845.
    [142]骆广生,陈桂光,徐建鸿,等.微混合技术---颗粒材料制备的关键之一[J].现代化工,2004,24(7):17-19.
    [143]Karnik R, Gu F, Basto P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles [J].Nano Lett,2008,8 (9):2906-2912.
    [144]Poe S L, Cummings M A, Haaf M P, et al. Solving the clogging problem: precipitate-forming reactions in flow [J]. Angew Chem Int Ed,2006,45(10): 1544-1548.
    [145]Zhao Y, Chen G, Yuan Q. Liquid-Liquid Two-Phase Flow Patterns in a Rectangular Microchannel [J]. AIChE J.2006,52(12):4052-4060.
    [146]Song Y J, Hormes J, Kumar C S S R. Microfluidic synthesis of nanomaterials [J]. Small.2008,4 (6):698-711.
    [147]李斌.微反应器在精细化工中的应用[J].精细化工,2006,23(1):1-7.
    [148]郑亚锋,赵阳,辛峰.微反应器研究及展望[J].化工进展,2004,23(5):461-467.
    [149]关婷婷,郑成,苏育志.微型化工过程的研究现状和发展趋势[J].广东化工,2005,(12):8-10.
    [150]Chambers R D, Spink R C H. Microreactors for elemental fluorine [J]. Chem Commun, 1999,999(10):883-884.
    [151]Zhao H, Wang J X, Wang Q A, et al. Controlled liquid antisolvent precipitation of hydrophobic pharmaceutical nanoparticles in a microchannel reactor [J]. Ind Eng Chem Res,2007,46(24):8229-8235.
    [152]Zhang S H, Yun J X, Shen S C, et al. Formation of solid lipid nanoparticles in a microchannel system with a cross-shaped junction [J]. Chem Eng Sci,2008,63(23): 5600-5605.
    [153]Kamik R, Gu F, Basto P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles [J]. Nano Lett,2008,8(9):2906-2912.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700