用户名: 密码: 验证码:
Ti-Ag基合金的组织结构与生物性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,钛及钛合金由于其优异的抗腐蚀性与良好的生物安全性在医用领域得到了越来越广泛的应用,目前临床应用的主要有纯钛、Ti-6Al-4V合金、Ti-Ni合金等。但在临床使用中,钛及钛合金也暴露出一定的问题,例如纯钛的强度、耐磨性不足,Ti-6Al-4V合金含有元素Al、V,在植入人体后会持续溶出有毒的Al离子、V离子,对人体造成不利影响。同时,钛及钛合金暴露于含有氟离子的生理溶液中时,由于其表面钝化膜遭到破坏,抗腐蚀性下降明显。
     针对以上问题,本论文用合金化的方法,选用Ag作为钛的第二组元来提高钛的强度、耐磨性与抗腐蚀性。此外,添加Fe、Ni等第三组元,进一步改善合金的各项生物学性能。采用光学组织观察、X射线衍射分析、透射电子显微观察、扫描电子显微观察、拉伸、压缩实验、摩擦实验、电化学实验、表面X射线光电子能谱分析、离子溶出测试、细胞毒性测试和溶血测试研究了Ti-Ag系合金、Ti-Ag-Fe系合金及Ti-Ni-Ag系合金的微观组织、相组成、力学性能、抗腐蚀性及生物相容性,主要考察合金元素(Ag、Fe、Ni)、处理工艺和使用环境对Ti-Ag基合金生物性能的影响规律。此外,还考察了Ti-Ni-Ag合金的抑菌性能。论文取得了如下研究成果:
     设计并制备了Ti-Ag二元合金,通过固溶强化等机制提高了合金的强度与耐磨性;热-机械处理工艺对Ti-Ag合金的力学性能影响很大,950℃固溶处理的合金力学性能匹配最好,950℃固溶处理的Ti-20Ag合金拉伸屈服强度约620 MPa,延伸率10%。由于纯银较高的腐蚀电位,Ag的加入明显促进了钛的钝化,提高了合金的抗腐蚀性。同时,对Ti-Ag合金进行了进一步的热氧化处理,热氧化处理Ti-Ag合金的抗腐蚀性明显提高。
     根据钛合金中合金元素对合金力学性能影响的规律,利用Fe元素生物安全性好、β稳定能力强等特点,在Ti-Ag二元合金的基础上,设计并制备了Ti-Ag-Fe三元合金。Fe元素能明显的稳定Ti-Ag合金的β相,当Fe元素含量达到5wt%时可以得到全β相的组织。Ti-5Ag-xFe合金在强度、耐磨性大幅度提高的同时,兼具良好的抗腐蚀性与生物安全性,Ti-5Ag-2.5Fe合金由于其合适的合金元素含量、双相组织结构,拉伸屈服强度约870MPa,延伸率约7%,强度与韧性的匹配最好,可能作为高强度牙科钛合金而得到应用。
     采用铜坩埚冷却的真空非自耗熔炼炉制备了Ti-Ni-Ag块体合金,通过急冷制备工艺,解决了高Ag含量的Ti-Ni-Ag块体不易制备的问题,制备出的Ti-Ni-Ag块体合金中存在弥散分布的Ag单质颗粒。Ti-Ni-Ag合金的力学性能、抗腐蚀性、细胞毒性与Ti-Ni二元合金相当。对制备的Ti-Ni-Ag合金进行了抑菌性能评价,同Ti-Ni合金相比,Ti-Ni-Ag合金表现出了明显的抑制细菌黏附的能力。结合合金的微观组织结果、表面分析结果和离子溶出结果,可以认为在Ti-Ni-Ag合金与体液接触时,其中的金属Ag与体液反应,变为离子态的Ag进入体液。而Ag离子具有良好的广谱抗菌特性,在几微克/升的浓度下就能起到明显的抗菌特性,可以穿透细菌的细胞膜,同细菌的DNA起反应,从而导致细菌死亡。
Titanium and its alloys have been widely used as biomaterials due to its light weight, high corrosion resistance and excellent biocompatibility. Commercially pure Ti and Ti-6Al-4V alloy are most commonly used titanium materials for implant applications. However, the insufficient strength and poor wear resistance of unalloyed titanium was often complained. Furthermore, more and more concerns are raised due to the toxicity of aluminum and vanadium released from Ti-6A1-4V alloy. In addition, it has been reported that corrosion resistance of titanium and its alloys may be significantly reduced in environments containing fluoride ions, and fluoride ions often exist in oral environments.
     In this study, the optical microsturcture, phase constitution, mechanical properties, corrosion resistance, and biocompatilbity of the three series of Ti-Ag, Ti-Ag-Fe, and Ti-Ni-Ag alloys are systematically investigated. The influence of the alloying elements and the heat treatment on these properties is revealed by optical microsope, X-ray diffrictation, scanning electron microscope (SEM), Transmission electron microscope (TEM), tensile and compression test, wear test, electrochemical measurments and biocompatibility evaluations. Moreover, the antibacterial activity of Ti-Ni-Ag alloys is investigated.
     Ti-Ag alloys consist of single a phase at room temperature. Ti-Ag alloys show slightly higer strength and hardness values than that of CP Ti. Moreover, the wear resistance of Ti-Ag could be largely improved. The lower corrosion current and higher open circuit potential indicate that Ti-Ag alloys have better corrosion resistance in artificial saliva solution with and without NaF. They are corrosion-resistant metal and exhibit very low ion release amount in 1% lactic acid solution and 0.1 mol/1 H2O2+0.9% NaCl+de-ionized water solution. In vitro cytotoxicity tests indicate that these alloys do not present any cytotoxic effect and exhibite as excellent biocompatibility as CP Ti. The homogeneous single-phase nature of the Ti-Ag alloys leads to the formation of a uniform passive film which is able to separate the bulk of the alloy from an aggressive environment and, hence, is responsible for the low ion release rate and excellent cellular response.
     Ti-5Ag-xFe alloys are prepared andβphase could be retained by Fe addition. Ti-5Ag-xFe alloys show much larger compression strength and hardness values than that of CP Ti. Moreover, the wear resistance of Ti-5Ag-xFe could be largely improved by Fe addition. They also exhibit similar or improved corrosion resistance compared to that of CP Ti. The excellent corrosion resistance and low ion release rate can be mainly attributed to the TiO2 film on the surface. The cytocompatibility tests show that Ti-5Ag-xFe alloys indicate similar cell viability than that of CP Ti. Therefore, Ti-5Ag-xFe alloys may be good candidate as dental materials because of their superior mechanical properties, excellent corrosion resistance, low ion release rate and good biocompatibility.
     Ti-Ni-Ag ternarys alloy are successfully fabricated with arc-melting method with water cooling Cu bath. The Ag particles precipitated within the Ti-Ni alloy matrix, with the size ranging from several tens of nanometers to several micrometers. The tensile tests show that Ti-Ni-Ag alloy has higher strength than that of Ti-Ni binary alloy. Compared with Ti-Ni alloy, Ti-Ni-Ag alloy possesses similar corrosion resistance and cyto-biocompatibility. Moreover, Ti-Ni-Ag alloy exhibits reduced bacteria adhesion when compared with Ti-Ni binary alloy. The antibacterial effect is attributed to the release of Ag ions from the tiny Ag precipitates. Therefore Ti-Ni-Ag alloy is believed to be a functional biomaterial which combines antibacterial activity and shape memory effect, and is likely to broaden the range of the biomedical application of Ti-Ni alloy system.
引文
[1]浦素云.金属植入材料及其腐蚀M].北京:北京航空航天出版社.1990:10页
    [2]郑玉峰,李莉.生物医用材料学[M].哈尔滨:哈尔滨工业大学出版社.2006:1页
    [3]杨大智,吴明雄.Ni-Ti形状记忆合金在生物医学领域中的应用[M].北京:冶金工业出版社.2003:1-10页
    [4]李世普,生物医用材料导论[M],武汉:武汉工业大学出版社.2000:12页
    [5]郑玉峰,赵连城.生物医用镍钛合金[M].北京:科学出版社.2004:10页
    [6]Hench LL. Biomaterials: a forecast for the future[J]. Biomaterials,1998,19: 1419-1423P
    [7]Williams DF. On the mechanisms of biocompatibility[J]. Biomaterials.2008,29: 2941-2953P
    [8]Mockers O, Deroze D, Camps J. Cytotoxicity of orthodontic bands, brackets and archwires in vitro[J]. Dental Materials.2002,18:311-317P
    [9]Hsu HC, Yen SK. Evaluation of metal ion release and corrosion resistance of ZrO2 thin coatings on the dental Co-Cr alloys[J]. Dental Materials.1998,14:339-346P
    [10]Matkovic T, Matkovic P, Malina J. Effects of Ni and Mo on the microstructure and some other properties of Co-Cr dental alloys[J]. J Alloys and Compounds.2004,366: 293-297P
    [11]Watanabe I, Ohkubo C, J.P. Ford JP, Atsuta M, Okabe T. Cutting efficiency of air-turbine burs on cast titanium and dental casting alloys[J]. Dental Materials.2000, 16:420-425P.
    [12]Srimaneepong V, Yoneyama T, Kobayashi E, Doi H, Hanawa T. Comparative study on torsional strength, ductility and fracture characteristics of laser-welded α+β Ti-6A1-7Nb alloy, CP Titanium and Co-Cr alloy dental castings [J]. Dental Materials. 2008,24:839-845P.
    [13]Matsuno H, Yokoyama A, Watari F, Uo M, Kawasaki T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium[J]. Biomaterials.2001,22:1253-1262P.
    [14]Hodgson AWE, Mueller Y, Dominic Forster D, Virtanen S. Electrochemical characterisation of passive films on Tialloys under simulated biological conditions[J]. Electrochimica Acta.2002,47:1913-1923P
    [15]Zheng YF, Wang BL, Wang JG, Li, C Zhao LC. Corrosion behaviour of Ti-Nb-Sn shape memory alloys in different simulated body solutions[J]. Materials Science and Engineering: A.2006,439-330:891-895P
    [16]Gapido CG, Kobayashi H, Miyakawa O, Kohno S. Fatigue resistance of cast occlusal rests using Co-Cr and Ag-Pd-Cu-Au alloys[J]. Journal of Prosthetic Dentistry.2003, 90:261-269P
    [17]Patro TK, Singh BP, Singh V. Corrosion behaviour of an indigenous Ag-Sn-Cu cast dental alloy in artificial saliva[J]. Journal of Oral Rehabilitation.1998,25:292-298P
    [18]Niemi L, Syrjanen S, Hensten-Pettersen A. The biocompatibility of a dental Ag-Pd-Cu-Au-based casting alloy and its structural components[J]. Journal of Biomedical Materials Research.1985,19:535-548P
    [19]Koike M, Ferracane JL, Adey JD, Fujii H, Okabe T. Initial mercury evaporation from experimental Ag-Sn-Cu amalgams containing Pd[J]. Biomaterials.2004,25: 3147-3153P
    [20]Mante F, Greener EH, Gilbert J, Lin JH. The effect of matrix phase morphology on the structure of Ag-Cu-Pd dispersed phase dental amalgam[J]. Journal of Oral Rehabilitation.1995,22:711-715P
    [21]Herda E, Higuchi-Rusli R, Parangtopo. Effects of palladium on the thermal behavior of the yl-phase of the Ag-Sn-Cu dental amalgam[J]. Materials Letters.1997,30, 347-350P
    [22]Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. Antibacterial coatings on titanium implants [J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials.2009,91:470-480P
    [23]Lee D, Cohen RE, Rubner MF. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles[J]. Langmuir.2005,21:9651-9659P
    [24]Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH. Antimicrobial effects of silver nanoparticles[J]. Nanomedicine.2007,3:95-101P
    [25]Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus[J]. Journal of Biomedical Materials Research.2000,52:662-668P
    [26]Yamamoto K, Ohashi S, Aono M, Kokubo T, Yamada I, Yamauchi J. Antibacterial activity of silver ions implanted in SiO2 filler on oral streptococci[J]. Dental Materials. 1996,12:227-229P
    [27]Yoshinari M, Oda Y, Kato T, Okuda K. Influence of surface modifications to titanium on antibacterial activity in vitro[J]. Biomaterials.2001,22:2043-2048P
    [28]Shimazaki T, Miyamoto H, Ando Y, Noda I, Yonekura Y, Kawano S, Miyazaki M, Mawatari M, Hotokebuchi T. In vivo antibacterial and silver-releasing properties of novel thermal sprayed silver-containing hydroxyapatite coating[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials.2010,92:386-389P
    [29]Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating[J]. Biomaterials.2006,27:5512-5517P
    [30]Atiyeh BS, Costagliola M, Hayek SN, Dibo SA. Effect of silver on burn wound infection control and healing: Review of the literature[J]. Burns.2007,33:139-148P
    [31]Klasen HJ. Historical review of the use of silver in the treatment of burns. Ⅰ. Early uses[J]. Burns.2001,26:117-130P
    [32]Klasen HJ. A historical review of the use of silver in the treatment of burns. Ⅱ. Renewed interest for silver[J]. Burns.2000,26:131-138P
    [33]Blaker JJ, Nazhat SN, Boccaccini AR. Development and characterisation of silver-doped bioactive glass coated sutures for tissue engineering and wound healing applications[J]. Biomaterials.2004,25:1319-1329P
    [34]Poon VK, Burd A. In vitro cytotoxity of silver: implication for clinical wound care[J]. Burns.2004,30:140-147P
    [35]Bosetti M, Masse A, Tobin E, Cannas M. Silver coated materials for external fixation devices:in vitrobiocompatibility and genotoxicity[J]. Biomaterials.2002,23: 887-892P
    [36]Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ. Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite[J]. Journal of Materials Science: Materials in Medicine.1998,9:129-134P
    [37]Alt V, Bechert T, Steinrucke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement[J]. Biomaterials.2004,25:4383-4391P
    [38]Zhao J, Cai XM, Tang HQ, Liu T, Gu HQ, Cui RZ. Bactericidal and biocompatible properties of TiN/Ag multilayered films by ion beam assisted deposition[J]. Journal of Materials Science: Materials in Medicine.2009, Suppl 1:S101-5P
    [39]Zhao J, Feng HJ, Tang HQ, Zheng JH. Bactericidal and corrosive properties of silver implanted TiN thin films coated on AISI317 stainless steel[J]. Surface and Coatings Technology.2007,201:5676-5679P
    [40]Necula BS, Fratila-Apachitei LE, Zaat SA, Apachitei I, Duszczyk J. In vitro antibacterial activity of porous TiO2-Ag composite layers against methicillin-resistant Staphylococcus aureus[J]. Acta Biomaterialia.2009,5:3573-3580P
    [41]Feng QL, Kim TN, Wu J, Park ES, Kim JO, Lim DY, Cui FZ. Antibacterial effects of Ag-HAp thin films on alumina substrates[J]. Thin Solid Films,1998,335:214-219P
    [42]Amin SA, Pazouki M, osseinnia A. Synthesis of TiO2-Ag nanocomposite with sol-gel method and investigation of its antibacterial activity against E. coli[J]. Powder Technology.2009,196:241-245P
    [43]Wassall MA, Santin M, Isalberti C, Cannas M, Denyer SP. Adhesion of bacteria to stainless steel and silver-coated orthopedic external fixation pins[J]. Journal of Biomedical Materials Research.1997,36:325-330P
    [44]Masuda N, Kawashita M, Kokubo T. Antibacterial activity of silver-doped silica glass microspheres prepared by a sol-gel method[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials.2007,83:114-120P
    [45]Kawashita M, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K. Antibacterial silver-containing silica glass prepared by sol-gel method[J]. Biomaterials. 2000,21:393-398P
    [46]Catauro M, Raucci MG, De Gaetano F, Marotta A. Antibacterial and bioactive silver-containing Na2O x CaO x 2SiO2 glass prepared by sol-gel method[J]. Journal of Materials Science: Materials in Medicine.2004,15:831-837P
    [47]Chen W, Oh S, Ong AP, Oh N, Liu Y, Courtney HS, Appleford M, Ong JL, Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process[J]. Journal of Biomedical Materials Research Part A. 2007,82:899-906P
    [48]Jing H, Yu Z, Li L. Antibacterial properties and corrosion resistance of Cu and Ag/Cu porous materials[J]. Journal of Biomedical Materials Research Part A.2008,87: 33-37P
    [49]Shirkhanzadeh M, Azadegan M, Liu GQ. Bioactive delivery systems for the slow release of antibiotics:incorporation of Ag+ ions into micro-porous hydroxyapatite coatings[J]. Materials Letters.1995,24:7-12P
    [50]Jeon HJ, Yi SC, Oh SG. Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method[J]. Biomaterials.2003,24:4921-4928P
    [51]D.P. Dowling, A.J. Betts, C. Pope, M.L. McConnell, R. Eloy, M.N. Arnaud, Anti-bacterial silver coatings exhibiting enhanced activity through the addition of platinum. Surface and Coatings Technology 163-164 (2003) 637-640
    [52]Radhesh Kumar, Helmut M.unstedt. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26 (2005) 2081-2088
    [53]Maria Bellantone, Huw D. Williams, and Larry L. HenchBroad-Spectrum Bactericidal Activity of Ag2O-Doped Bioactive Glass. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, June 2002, p.1940-1945
    [54]Maria Bellantone, Nichola J. Coleman, Larry L. Hench. Bacteriostatic action of a novel four-component bioactive glass. J Biomed Mater Res,51,484-490,2000.
    [55]I. Ahmed et al./Antimicrobial effect of silver-doped phosphate-based glasses. J Biomed Mater Res 79A:618-626,2006
    [56]Geetha M, Singh AK, Asokamani R and Gogia A K. Ti based biomaterials, the ultimate choice for orthopaedic implants-Areview[J]. Progress in Materials Science. 2009,54:397-425P
    [57]Hench LL, Polak JM. Third-generation biomedical materials[J]. Science.2002,295: 1014-1017P
    [58]He G, Eckert J, Dai QL, Sui ML, Loser W, Hagiwara M, Ma E. Nanostructured Ti-based multi-component alloys with potential for biomedical applications [J]. Biomaterials.2003,24:5115-5120P
    [59]Niinomi M. Mechanical properties of biomedical titanium alloys[J]. Materials Science and Engineering: A.1998,243:231-236P
    [60]Liu XY, Chu PK, Ding CX. Surface modification of titanium, titanium alloys, and related materials for biomedical applications [J]. Materials Science and Engineering: R. 2004,47:49-121P
    [61]Hao YL, Li SJ, Sun BB, Sui ML, Yang R. Ductile titanium alloy with low Poisson's ratio[J]. Physical Review Letters.2007,98 (21):216405P
    [62]Branemark P I, Hansson B O, Adell R, Breine U, Lindstrom J, Hallen O, Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period[J]. Scandinavian journal of plastic and reconstructive surgery and hand surgery. Supplementum.1977,16:1-132P
    [63]Watanabe I, Ohkubo C, Ford JP, Atsuta M, Okabe T. Cutting efficiency of air-turbine burs on cast titanium and dental casting alloys[J]. Dental Materials.2000,16: 420-425P
    [64]Ohkubo C, Watanabe I, Ford JP, Nakajima H, Hosoi T, Okabe T. The machinability of cast titanium and Ti-6Al-4V[J]. Biomaterials.2000,21:421-428P
    [65]Shukla AK, Balasubramaniam R, Bhargava S. Properties of passive film formed on CP titanium, Ti-6A1-4V and Ti-13.4Al-29Nb alloys in simulated human body conditions[J]. Intermetallics.2005,13:631-637P
    [66]Wang TJ, Kobayashi E, Doi H, Yoneyama T. Castability of Ti-6Al-7Nb alloy for dental casting[J]. Journal of Medical and Dental Sciences.1999,46:13-19P
    [67]Lavos-Valereto IC, Konig B, Rossa C Jr, Marcantonio E Jr, Zavaglia AC. A study of histological responses from Ti-6Al-7Nb alloy dental implants with and without plasma-sprayed hydroxyapatite coating in dogs[J]. Journal of Materials Science: Materials in Medicine.2001,12:273-276P
    [68]Kobayashi E, Wang TJ, Doi H, Yoneyama T, Hamanaka H. Mechanical properties and corrosion resistance of Ti-6Al-7Nb alloy dental castings[J]. Journal of Materials Science: Materials in Medicine.1998,9:567-74P
    [69]Mukherjee B, Patra B, Mahapatra S, Banerjee P, Tiwari A, Chatterjee M. Vanadium--an element of a typical biological significance[J]. Toxicology Letters.2004, 150:135-143P
    [70]Guglielmotti MB, Renou S, Cabrini RL, A histomorphometric study of tissue interface by laminar implant test in rats[J]. The International Journal of Oral & Maxillofacial Implants.1999,14:565-570P
    [71]Yumoto S, Ohashi H. Aluminium neurotoxicity in the rat brain[J]. International Journal of PIXE.1992,2:493-504P
    [72]Toumelin-Chemla F, Rouelle F, Burdairon G. Corrosive properties of fluoride-containing odontologic gels against titanium[J]. Journal of Dentistry.1996, 24:109-115P
    [73]Probster L, Lin W, Hutteman H. Effect of fluoride prophylactic agents on titanium surface[J]. The International Journal of Oral & Maxillofacial Implants.1992,7: 390-394P
    [74]Reclaru L, Meyer JM. Effects of fluorides on titanium and other dental alloys in dentistry[J]. Biomaterials.1998,19:85-92P
    [75]Buehler WJ, Gilfrich JW, Wiley RC. Effect of Low - Temperature Phase Changes on the Mechanical Properties of Alloys near Composition Ti-Ni[J]. Journal of Applied Physics.1963,34:1475-1477P
    [76]Duerig T, Pelton A, Stockel D. An overview of nitinol medical applications[J]. Materials Science and Engineering: A.1999,273-275:149-160P
    [77]El Feninat F, Laroche G, Fiset M, Mantovani D. Shape memory materials for biomedical Applications[J]. Advanced Engineering Materials.2002,4(3):91-104P
    [78]Machado LG and Savi MA. Medical applications of shape memory alloys[J]. Brazilian Journal of Medical and Biological Research.2003,36:683-691P
    [79]Moorleghem WV, Chandrasekaran M, Reynaerts D, Peirs J, Brussel HV, Shape memory and superelastic alloys:the new medical materials with growing demand[J]. Bio-Medical Materials and Engineering.1998,8:55-60P
    [80]Torrisi L. The NiTi superelastic alloy application to the dentistry field[J]. Bio-Medical Materials and Engineering.1999,9:39-47P
    [81]Morgan NB. Medical shape memory alloy applications - the market and its products[J]. Materials Science and Engineering: A.2004,378:16-23P
    [82]Thierry B, Merhi Y, Bilodeau L, Trepanier C, Tabrizian M. Nitinol versus stainless steel stents:acute thrombogenicity study in an ex vivo porcine model[J]. Biomaterials. 2002,23:2997-3005P
    [83]Shabalovskaya SA. Surface, corrosion and biocompatibility aspects of nitinol as an implant material[J]. Bio-Medical Materials and Engineering.2002,12:69-109P
    [84]Pelton AR, Stockel D Duerig TW. Medical uses of nitinol[J]. Materials Science Forum,2000,327-328:63-70P
    [85]Zheng YF, Wang QY, Li L. The electrochemical behavior and surface analysis of Ti49.6Ni45.1Cu5Cr0.3 alloy for orthodontic usage[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials.2008,86B:335-340P
    [86]Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys[J]. Progress in Materials Science.2005,50:511-678P
    [87]Tsuji K, Nomura K. The influence of cold working on transformation properties of Ni-Ti-Cu alloys[J]. Scripta Metallurgica et Materialia.1990,24:2037-2042P
    [88]Wanga ZG, Zua XT, Huob Y. Effect of heating/cooling rate on the transformation temperatures in Ti-NiCu shape memory alloys[J]. Thermochimica Acta.2005,436: 153-155P
    [89]Wu SK, Wayman CM. Martensitic transformations and the shape memory effect in Ti50Nil0Au40 and Ti50Au50 alloys[J]. Metallography.1987,20:359-376P
    [90]Frenzel J, Pfetzing J, Neuking K, Eggeler G. On the influence of thermomechanical treatments on the microstructure and phase transformation behavior of Ni-Ti-Fe shape memory alloys[J]. Materials Science and Engineering: A.2008,481-482:635-638P
    [91]Takahashi M, Kikuchi M, Takada Y, Okuno O. Mechanical properties and microstructures of dental cast Ti-Ag and Ti-Cu alloys[J]. Dental Materials Journal. 2002,21:270-80P
    [92]Shim HM, Oh KT, Woo JY, et al. Corrosion resistance of titanium-silver alloys in an artificial saliva containing fluoride ions[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials.2005,73:252-259P
    [93]Sun ZG, Hou HL, ZhouWL, Wang YQ, Li ZQ. The effect of hydrogen on microstructures evolution and deformation behaviors of Ti-6Al-4V alloys[J]. Journal of Alloys and Compounds.2009; 476:550-555P
    [94]Takahashi M, Kikuchi M, Okuno O. Mechanical properties and grindability of experimental Ti-Au alloys[J]. Dental Materials Journal.2004,23:203-210P
    [95]Oh KT, Kang DK, Choi GS, Kim KN. Cytocompatibility and Electrochemical Properties of Ti-Au Alloysfor Biomedical Applications [J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials.2007,83:320-326P
    [96]Hsu HC, Wu SC, Chiang TY, et al. Structure and grindability of dental Ti-Cr alloys[J]. Journal of Alloys and Compounds.2009,476:817-825P
    [97]Takemoto S, Hattori M, Yoshinari M,et al. Corrosion mechanism of Ti-Cr alloys in solution containing fluoride[J]. Dental Materials.2009,25:467-472P
    [98]Ohkubo C, Shimura I, Aoki T, et al. Wear resistance of experimental Ti-Cu alloys[J]. Biomaterials.2003,24:3377-3381P
    [99]Osorio WR, Cremasco A, Andrade PN, Garcia A,Caram R. Electrochemical behavior of centrifuged cast and heat treated Ti-Cu alloys for medical applications[J]. Electrochimica Acta.2010,55:759-770P
    [100]Ning C, Ding D, Dai K, Zhai W, Chen L. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys[J]. Biomedical Materials.2010,5:045006P
    [101]Nakagawa M, Matono Y, Matsuya S, et al. The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride-containing environments [J]. Biomaterials,2005,26:2239-2246P
    [102]Lin CW, Ju CP, Chern Lin JH. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys[J]. Biomaterials.2005,26: 2899-2907P
    [103]Oliveira NTC, Guastaldi AC. Electrochemical behavior of Ti-Mo alloys applied as biomaterial[J]. Corrosion Science.2008,50:938-945P
    [104]Gu YW, Tay BY, Lim CS, Yong MS. Biomimetic deposition of apatite coating on surface-modified NiTi alloy[J]. Biomaterials.2005,26:6916-6923P
    [105]张玉梅,郭天文,李佐臣.牙科用Ti-Zr合金的研制及性能特点[J].华西口腔医学杂志,1999,17(4):329-330P
    [106]Dobromyslov AV, Elkin VA. Martensitic transformation and metastable β-phase in binary titanium alloys with d-metals of 4-6 periods[J]. Scripta Materialia.2001,44: 905-910P
    [107]Ho WF, Ju CP, Lin JH. Structural and properties of cast binary Ti-Mo alloys[J]. Biomaterials.1999,20:2115-2122P
    [108]Lin DJ, Chuang CC, Chern Lin JH, Lee JW, Ju CP, Yin HS. Bone Formation at the Surface of Low Modulus Ti-7.5Mo Implants in Rabbit Femur[J]. Biomaterials.2007, 28:2582-2589P
    [109]Lin DJ, Lin JH, Ju CP. Structure and Properties of Ti-7.5Mo-xFe alloys[J]. Biomaterials.2002,23:1723-1730P
    [110]Lin DJ, Chern Lin JH, Ju CP. Effect of chromium content on structure and mechanical properties of Ti-7.5Mo-xCr alloys[J]. Journal of Materials Science: Materials in Medicine.2003,14:1-7P
    [111]Kikuchi M, Takada Y, Kiyosue S, Yoda M, Woldu M, Cai Z, Okuno O, Okabe T. Mechanical properties and microstructures of cast Ti-Cu alloys[J]. Dental Materials. 2003; 19:174-181P
    [112]Kikuchi M, Takahashi M, Okuno O. Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys[J]. Dental Materials.2006,22:641-646P
    [113]Kang DK, Moon SK, Oh KT, Choi GS, Kim KN. Properties of experimental titanium-silver-copper alloys for dental applications[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials.2009,90:446-51P
    [114]Oh KT, Kang DK, Choi GS, Kim KN. Cytocompatibility and Electrochemical Properties of Ti-Au Alloysfor Biomedical Applications[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials.2007,83:320-326P
    [115]Zhu J, Kamiya A, Yamada T, Shi W, Naganuma K. Influence of boron addition on microstructure and mechanicalproperties of dental cast titanium alloys [J]. Materials Science and Engineering: A.2003,339:53-62P
    [116]Oh KT, Joo UH, Park GH, Hwang CJ, Kim KN. Effect of silver addition on the properties of nickel-titanium alloys for dental application[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials.2006,76:306-314P
    [117]Zamponi C, M. Wuttig and E. Quandt. Ni-Ti-Ag shape memory thin films[J]. Scripta Materialia.2007,56:1075-1077P
    [118]Quandt E, Zamponi C. Superelastic NiTi thin films for medical applications[J]. Advances in Science and Technology.2008; 59:190-197P
    [119]Koike M, Ohkubo C, Sato H, Fujii H, Okabe T. Evaluation of cast Ti-Fe-O-N alloys for dental applications[J]. Materials Science and Engineering: C.2005,25:349-356
    [120]Hsu HC, Wu SC, Hong YS, Ho WF. Mechanical properties and deformation behavior of as-cast Ti-Sn alloys[J]. Journal of Alloys and Compounds.2009,479:390-394P
    [121]张玉梅,王勤涛,郭天文.牙科用Ti-Zr合金的生物安全性评价[J].生物医学工程学杂志,2001,18:9-11P
    [122]Ho WF, Chen WK, Wu SC, Hsu HC. Structure, mechanical properties, and grindabilityof dental Ti-Zr alloys[J]. Journal of Materials Science:Materials in Medicine.2008,19:3179-3186P
    [123]Sato H, Kikuchi M, Komatsu M, Okuno O, Okabe T. Mechanical Properties of Cast Ti-Hf Alloys[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2005,72:362-367P
    [124]Cai Z, Koike M, Sato H, Brezner M, Guo Q, Komatsu M, Okuno O, Okabe T. Electrochemical characterization of cast Ti-Hf binary alloys[J]. Acta Biomaterialia. 2006,2:353-356P
    [125]Hsu HC, Wu SC, Chiang TY, Wen-Fu Ho WH. Structure and grindability of dental Ti-Cr alloys[J]. Journal of Alloys and Compounds.2009,476:817-825P
    [126]Ho WF, Chiang TY, Wu SC, Hsu HC. Mechanical properties and deformation behavior of cast binary Ti-Cr alloys[J]. Journal of Alloys and Compounds.2009.468: 533-538P
    [127]Hattori M, Takemoto S, Yoshinari M, Kawada E, Oda Y. Effect of chromium content on mechanical properties of casting Ti-Cr alloys[J]. Dental Materials Journal.2010,29: 570-574P
    [128]裘松波,郭天文.新型钛合金Ti-75的体外细胞相容性试验[J].实用口腔医学杂志,1995,11:179-181P
    [129]张玉梅,郭天文.铸模温度对Ti-75合金铸流率的影响[J].实用口腔医学杂志,2000,16(2):105-107P
    [130]张新平,于思荣,何镇明,韩秋华.新型Ti-Fe-Mo-Mn-Nb-Zr系钛合金的力学性能[J].中国有色金属学报,2002,12:78-82P
    [131]Long M and Rack HJ. Titanium alloys in total joint replacement- a materials science perspective[J]. Biomaterials,1998,19:1621-1639P
    [132]Wang K. The use of titanium for medical applications in the USA[J]. Materials Science and Engineering: A.1996,213:134-137P
    [133]Niinomi M. Recent research and development in titanium alloys for biomedical applications andhealthcare goods[J]. Science and Technology of Advanced Materials, 2003,4:445-454P
    [134]Hao YL, Li SJ, Sun SY, Zheng CY, Q. M. Hu QM, Yang Y. Super-elastic titanium alloy with unstable plastic deformation[J]. Applied Physics Letters.2005,87:091906P
    [135]刘金城,高勃,郝玉琳,王珏踽,李丽.牙用低弹性模量钛铌锆锡合金的机械性能研究[J].实用口腔医学杂志.2006年,22(1):57-59P
    [136]高勃,刘金城,郝玉琳,李丽.铸模温度对牙科用钛铌锆锡合金铸流率影响的研究[J].口腔医学研究.2006,22:113-115P
    [137]王冉,高勃,高阳,郝玉林,李述军.新型钛铌锆锡合金生物安全性评价[J].临床口腔医学杂志.2007,23(6):328-331P
    [138]Saito T, Furuta T, Hwang JH, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation Mechanism[J]. Science.2003,300:464-467P
    [139]He G, Eckert J, Loser W, Schultz L. Novel Ti-base nanostructure-dendrite composite with enhanced plasticity[J]. Nature Materials.2003,2:33-37P
    [140]Mato S, Alcala G, Woodcock TG, Gebert A, Eckert J, Schultz L. Corrosion behaviour of a Ti-base nanostructure-dendrite composite[J]. Electrochimica Acta,2005,50:2461-2467P
    [141]Oak JJ, Louzguine-Luzgin DV, Inoue A. Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial, and investigation of its mechanical properties, corrosion, and crystallization behavior[J]. Journal of Materials Research,2007,22:1346-1353P
    [142]Oaka JJ, Inoue A. Attempt to develop Ti-based amorphous alloys for biomaterials[J]. Materials Science and Engineering: A.2007,449-451:220-224P
    [143]Cai Z, Shafer T, Watanabe I, Nunn ME, Okabe T. Electrochemical characterization of cast titanium alloys[J]. Biomaterials.2003,24:213-218P
    [144]Assis SL, Wolynec S, Costa I. Corrosion characterization of titanium alloys by electrochemical techniques [J]. Electrochimica Acta.2006,51:1815-1819P
    [145]Contu F, Elsener B, Bohni H. A study of the potentials achieved during mechanical abrasion and the repassivation rate of titanium and Ti6A14V in inorganic buffer solutions and bovine serum[J]. Electrochimica Acta.50:33-41P
    [146]Tamilselvi S, Raman V, Rajendran N. Corrosion behaviour of Ti-6Al-7Nb and Ti-6A1-4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy[J]. Electrochimica Acta.2006,52:839-846P
    [147]Marino CEB, Biaggio SR, Rocha-Filho RC, Bocchi N. Voltammetric stability of anodic films on the Ti6A14V alloy in chloride medium[J]. Electrochimica Acta.2006, 51:6580-6583P
    [148]Rondelli G. Corrosion resistance tests on NiTi shape memory alloy[J]. Biomaterials. 1996,17:2003-2008P
    [149]Wever DJ, Veldhuizen AG, de Vries J, Busscher HJ, Uges DR, van Horn JR. Electrochemical and surface characterization of a nickel-titanium alloy[J]. Biomaterials.1998,19:761-769P
    [150]Figueira N, Silva TM, Carmezim MJ, Fernandes JCS. Corrosion behaviour of NiTi alloy[J]. Electrochimica Acta.2009,54:921-926P
    [151]Nakagawa M, Matsuya S, Udoh K. Effect of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys[J]. Dental Materials Journal.2002,21:83-92P
    [152]Huang HH, Lee TH. Electrochemical impedance spectroscopy study of Ti-6A1-4V alloy in artificial saliva with fluoride and/or bovine albumin[J]. Dental Materials.2005, 21:749-755
    [153]Li X, Wang J, Han EH, Ke W. Influence of fluoride and chloride on corrosion behavior of NiTi orthodontic wires[J]. Acta Biomaterialia.2007,3:807-815P
    [154]Huang HH. Variation in surface topography of different NiTi orthodontic archwires in various commercial fluoride-containing environments [J]. Dental Materials.2007,23: 24-33P
    [155]Brossia CS, Cragnolino GA. Effect of palladium on the corrosion behavior of titanium[J]. Corrosion Science.2004,46:1693-1711P
    [156]Oliveira NTC, Guastaldi AC. Electrochemical behavior of Ti-Mo alloys applied as biomaterial[J]. Corrosion Science.2008,50:938-945P
    [157]Kumar S, Narayanan TS. Corrosion behaviour of Ti-15Mo alloy for dental implant applications[J]. Journal of Dentistry.2008,36:500-507P
    [158]Shimizu A. Studies on titanium alloys for dental casting. Part Ⅰ. Effects of Pd and Cr on titanium properties[J]. Journal of Japanese Society for Dental Materials and Devices.1986,5:122-132P
    [159]Noguchi T, Takemoto S, Hattori M, Yoshinari M, Kawada E, Oda Y. Discoloration and dissolution of titanium and titanium alloys with immersion in peroxide- or fluoride-containing solutions[J]. Dental Materials Journal.2008,27:117-123P
    [160]Takemoto S, Hattori M, Yoshinari M, Kawada E, Asami K, Oda Y. Corrosion behavior and surface characterization of Ti-20Cr alloy in a solution containing fluoride[J]. Dental Materials Journal.2004,23:379-386P
    [161]Mareci D, Chelariu R, Gordin DM, Ungureanu G, Gloriant T. Comparative corrosion study of Ti-Ta alloys for dental applications[J]. Acta Biomaterialia.2009,5: 3625-3639P
    [162]Al-Mayouf AM, Al-Swayih AA, Al-Mobarak NA, Al-Jabab AS. Corrosion behavior of a new titanium alloy for dental implant applications in fluoride media[J]. Materials Chemistry and Physics.2004,86:320-329P
    [163]Saldana L, Mendez-Vilas A, Jiang L, Multigner M, Gonzalez-Carrasco JL, Perez-Prado MT, Gonzalez-Martin ML, Munuera L, Vilaboa N. In vitro biocompatibility of an ultrafine grained zirconium[J]. Biomaterials.2007,28: 4343-4354P
    [164]Es-Souni M, Es-Souni M, Brandies HE On the transformation behaviour, mechanical properties and biocompatibility of two niti-based shape memory alloys:NiTi42 and NiTi42Cu7[J]. Biomaterials.2001,22:2153-2161P
    [165]Wever DJ, Veldhuizen AG, Sanders MM, Schakenraad JM, van Horn JR. Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy[J]. Biomaterials.1997,18: 1115-1120P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700