用户名: 密码: 验证码:
Cr8型冷作模具钢高性能化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究和发展优异耐磨性和韧性兼备的Cr8型冷作模具钢对满足我国对高品质冷作模具钢的迫切需求具有重要意义,提高Cr8型冷作模具钢的耐磨性和韧性也是冷作模具钢一个重要的发展趋势。
     本文以两种典型的Cr8型冷作模具钢Cr8WMo2V2SiNb钢和Cr8Mo2SiV钢为对象,通过合金化的方法使其高性能化。系统研究了合金元素Al、Si和Nb对Cr8型冷作模具钢的影响及作用机制。对比研究了两类钢在组织性能上的差别,为钢种的选用提供数据,促进了Cr8型冷作模具钢的系列化。深入研究了Cr8型冷作模具钢的硬化机理以及相变过程。得到主要结论如下。
     通过对两种钢材组织和性能的对比分析表明,Cr8Mo2SiV钢的铸态组织中存在M7C3和M2C型共晶碳化物,而Cr8WMo2V2SiNb钢中则存在MC, M6C和M7C3型共晶碳化物;Cr8Mo2SiV钢的淬火峰值硬度比Cr8WMo2V2SiNb高,但峰值温度较低;致使Cr8Mo2SiV钢在560℃以前的回火硬度高于Cr8WMo2V2SiNb钢,但在更高的回火温度,Cr8WMo2V2SiNb钢的回火硬度更高;Cr8WMo2V2SiNb钢比Cr8Mo2SiV钢具有更高的抗弯屈服强度和更好的耐滑动磨损性能;两种钢的冲击韧性基本相当,为了提高Cr8Mo2SiV钢的冲击韧性,提出可适当降低其碳含量。
     通过系统的研究A1对Cr8WMo2V2SiNb钢的组织和性能的影响表明,Al能够细化Cr8WMo2V2SiNb钢的铸态组织,细化碳化物,同时细化奥氏体晶粒;A1完全固溶于基体,产生固溶强化,能够提高Cr8WMo2V2SiNb钢的回火硬度、抗弯强度以及耐磨性;另外,A1能够强烈提高Acl点温度,缩小奥氏体相区。首次发现,1.2wt%的Al可将Cr8WMo2V2SiNb钢的Acl点温度提高到1000℃。并提出,在高合金钢中添加Al尤其要注意对临界点温度的影响,其添加量要考虑到与Cr和V合理的配合。
     通过系统的研究Nb对Cr8WMo2V2SiNb钢的组织和性能的影响表明,Nb提高MC型共晶碳化物的析出温度及包共晶反应温度;Nb改变MC型共晶碳化物类型,随Nb含量的升高,MC型共晶碳化物由以V为主变成含有Nb和V复合,再变成以Nb为主及Nb和V复合。复杂迷宫状的MC莱氏体减少,简单平直的NbC增多;在Cr8WMo2V2SiNb钢中以Nb替代V不仅可以降低V含量,当Nb含量达到1.32%时,还能显著提高低温淬火硬度,提高二次硬化硬度及抗回火软化能力,同时降低Nb-V总量,节约资源。
     通过系统的研究Si对Cr8Mo2SiV钢的组织和性能的影响表明,Si能够同时提高Cr8Mo2SiV钢的低温回火硬度、二次硬化效果、抗弯强度和冲击韧性;同时,Si提高Cr8Mo2SiV钢的Ac1、Ac3和Ms温度,导致低温淬火阶段Cr8Mo2SiV钢的淬火硬度随着Si含量的增加而降低,高温淬火阶段淬火硬度随着Si含量的增加而升高。
     通过深入研究Cr8Mo2SiV钢的二次硬化机理表明,Cr8型冷作模具钢的二次硬化是残余奥氏体的转变和合金碳化物的析出前期的G.P区共同作用的结果,而残余奥氏体转变的作用更大。Cr8Mo2SiV钢的二次硬化碳化物是Mo2C, Cr8WMo2V2SiNb钢则还含有VC。
     通过深入研究Cr8Mo2SiV钢回火过程中的相变行为以及回复和再结晶机制表明,Cr8Mo2SiV钢淬火后的回火过程中发生的相变即包括碳化物从过饱和马氏体中析出、预析出以及马氏体自身回复的过程。碳化物的脱溶存在如下贯序:
     Cr8Mo2SiV钢在回复过程中可以发生多边化过程以及形成位错胞过程;Cr8Mo2SiV钢回复过程中亚晶的形成过程可以分为:(1)位错胞→亚晶;(2)高密度位错界面→多边化→位错墙→亚晶。形成的小亚晶以亚晶界凸出机制迁移及亚晶聚合机制生长;Cr8Mo2SiV钢原有的和脱溶沉淀析出的大量第二相粒子会钉扎位错影响位错的相互对消和重新排列以及小角度界面的形成,从而阻碍回复和再结晶过程。弥散的第二相粒子也能钉扎亚晶界,阻碍亚晶和再结晶晶粒长大;回复再结晶后的晶粒十分细小,晶粒随保温时间的长大非常缓慢,存在如下关系:S(μm)=138.3+161.91nt。
     建立了Cr8Mo2SiV钢中M23C6碳化物的粗化动力学模型,试验结果证明其粗化过程主要是由溶质扩散所控制,存在如下关系:r(nm)=55t1/3,符合模型的t1/3规律。
The research and development of Cr8 type cold work die steel with both good wear resistance and good toughness have great significance to meet the urgently requirement of our country to high quality die steel. Meanwhile, to enhance the wear resistance and toughness of Cr8 type cold work die steel is also an important development tendency of cold work die steel.
     In this work, alloying treatments were carried out to two typical Cr8 cold work die steels. The effect and action mechanism of Al, Si and Nb on Cr8 type cold work die steels were studied. Meanwhile, the difference of microstructure and mechanical properties of the two type steels were contrast studied, which can promote the serialization of Cr8 type cold work die steel. In the end, the hardening mechanism and phase transformation of Cr8 type cold work die steel were depth studied. The main conclusions are as follows.
     The comparative study on microstructure and mechanical properties of the two type steels shows that:the as cast microstructure of steel Cr8Mo2SiV contains M2C and M7C3 type eutectic carbides, whereas the steel Cr8WMo2V2SiNb contains MC, M6C and M7C3 type eutectic carbides; The peak quenched hardness of steel Cr8Mo2SiV is higher than that of steel Cr8WMo2V2SiNb, but the peak temperature is lower; The tempered hardness of steel Cr8Mo2SiV is higher than that of steel Cr8WMo2V2SiNb when tempering below 560℃, but if the temperature is exceeding 560℃, the result is opposite; The bending strength and sliding wear resistance of steel Cr8WMo2V2SiNb are higher than that of steel Cr8Mo2SiV. The direction of optimizing the composition of steel Cr8Mo2SiV to improve the impact toughness was discussed by combining the experiment results and that is suitable decreasing the carbon content.
     The study on effect of Al on microstructure and mechanical properties of steel Cr8WMo2V2SiNb shows that Al can refine the as cast microstructure, refine carbides, and refine austenite grain size; Al completely solutes in matrix, thus produces solution strengthening, and increases the tempered hardness, bending strength and wear resistance of steel Cr8WMo2V2SiNb. In addition, Al can remarkable increase the Ac1 temperature, narrow the y region. It is especially notice that the effect of Al on critical point when adding Al in high alloy steel. And its added amount must be considered to reasonable cooperate with Cr and V.
     The study on effect of Nb on microstructure and mechanical properties of steel Cr8WMo2V2SiNb indicates that the precipitation temperature of MC-eutectic carbides and the metatectic, eutectic temperature increase with the increase of Nb content, and the improvement of their properties is closely related with Nb content; The variation in Nb/V ratio with the increase of Nb content will change the type of MC-eutectic carbides, the type of MC-eutectic carbides from mainly VC change to VC and a small amount of (Nb, V)C and then to mainly NbC and (Nb, V)C. So the shape of ledeburite is more straight. If Nb content reaches to 1.32%, the substitution of Nb for V increases quenching hardness, the peak of quenching hardness moves to low temperature region; The substitution of Nb for V is beneficial for secondary hardening in tested steels, and higher hardness and temper softening resistance can be obtained in them. More importantly, it can decrease the Nb-V total content in tested steel, thus save resources.
     The study on effect of Si on microstructure and mechanical properties of steel Cr8Mo2SiV indicates that Si can simultaneously improve the low temperature tempering hardness, secondary hardening effect, bending strength and impact toughness of steel Cr8Mo2SiV; Meanwhile, the temperatures of Ac1, Ac3 and Ms of steel Cr8Mo2SiV were also increased with the increase of Si content. Thus, the quenched hardness of steel Cr8Mo2SiV increase with the increase of Si content when quenching at low temperature range and decrease with the increase of Si content when quenching at high temperature range.
     The study on secondary hardening mechanism of steel Cr8Mo2SiV indicates that the secondary hardening mechanism of steel Cr8Mo2SiV is the combination of the transformation of retained austenite and the early stage of Mo2C-carbide precipitation, and the role of transformation of retained austenite is more obvious. The secondary hardening carbide of steel Cr8Mo2SiV is Mo2C, but the steel Cr8WMo2V2SiNb also contains VC.
     The study on phase transformation and recovery and recrystallization mechanism of steel Cr8Mo2SiV during tempering process indicates that the transformation of steel Cr8Mo2SiV during tempering process contains the processes of carbides precipitated, pre-precipitated from martensite and own recovery of martensite. The order of precipitation of carbides is as follows:
     During the tempering process, both polygonization and formation of dislocation cell could occur for steel Cr8Mo2SiV. The process of formation for sub-grain:(a) dislocations cells→sub-grains; (b) deforming bands→boundaries of high dence dislocations→polygonization→dislocation walls→sub-grains. Sub-grains grew through the mechanisms of grain boundary bulge or consolidation; the original and precipitated carbides can pin dislocations and influence the cancel each other and re-arrange of dislocation and the formation of small angle interface, and then inhabit the recovery and recrystallization process. Distributed secondary particles can also pin sub-grain boundary, thus inhabit the growth of sub-grain and recrystal grain; the grain size after recovery and recrystallization is very fine, the growth of grain is very slowly with the holding time, there is the following relationship:S(μm)=0.1383+0.1619Int.
     The coarsening kinetic model of M23C6-carbide in steel Cr8Mo2SiV was also presented. The experiment results prove that the coarsening process of M23C6-carbide is mainly controlled by solute diffusion. It is exist the following relationship between carbide size with holding time that r(nm)= 55t1/3. It meets the t1/3 law of the model.
引文
[1]陈再枝,蓝德年.模具钢手册.北京:冶金工业出版社,2002
    [2]马党参,陈再枝,刘建华.我国模具钢的发展机遇与挑战.金属加工,2008,(8):71-75
    [3]崔崑.中国模具钢现状及发展(Ⅰ).机械工程材料,2001,25(1):1-10
    [4]中国模具工业协会.“十一五”模具行业关键原材料需求规划.中国模具信息,2005,58(7):5-12
    [5]陈再良,陈蕴博,佟晓辉,等.典型冷作模具钢性能与失效关系的探讨.金属热处理,2006,31(2):87-93
    [6]徐进,姜先畲,陈再枝,等.模具钢.北京:冶金工业出版社,1998
    [7]E. C. Bain:Functions of the alloying elements in steel. California:ASM,1939
    [8]邓玉昆,陈景榕,王世章.高速工具钢.北京:冶金工业出版社,1998
    [9]冶金部钢铁研究总院.合金钢手册上册第一分册.北京:中国工业出版社,1971
    [10]金属世界http://www.shsm.org.cn/detail.asp?id=7706
    [11]郭耕三.高速钢及其热处理.北京:机械工业出版社,1985
    [12]郑双七,王豫.铝对高速钢(HSS)红硬性的影响.热处理,2005,20(3):3-10
    [13]徐祖耀.铝在高速钢中的作用.机械工程材料,1993,17(2):4-6
    [14]李彦军,姜启川,何镇明,等.A1对M2高速钢凝固过程的作用.材料研究学报,1997,11(2):216-218
    [15]杨瑞成,赵丽美,王彬,等.铝在合金钢中作用机理的价电子理论分析.材料热处理学报,2009,30(4):185-188
    [16]朱宗元.我国热作模具钢性能数据集(续Ⅻ).机械工程材料,2002,26(1):41-43
    [17]R. Riedl, S. Karagoz, H. Fischmeister, et al. Developments in high speed tool steels. Steel Research, 1987,58:339-351
    [18]K. Hulka, J. R. C. Guimaraes. The role and emerging use of niobium in tool steels. CBMM Report, 1993,(2):1-16
    [19]M. J. Codden, J. Beech. The M2C→M6C transformation in steels containing molybdenum. J. Iron Steel Inst,1970,208:168-174
    [20]潘复生,周守则,丁培道.硅在高速钢中的使用原则及含硅高速钢的发展,钢铁,1996,31(9):75-79
    [21]U. Masahide, S. Tomoaki, K. Kunio. Effect of silicon content on tempered hardness, high temperature strength and toughness of hot working tool steels. Tetsu to Hagane.2003,89(6): 673-679
    [22]D. Delagnesa, P. Lamesle, M. H. Mathon, et al. Influence of silicon content on the precipitation of secondary carbides and fatigue properties of a 5%Cr tempered martensitic steel. Materials Science and Engineering A,2005,394:435-444
    [23]N. Gomi, T. Shioda, H. Morikawa. Improvement of the toughness and wear resistance by decreasing silicon and vanadium contents of a hot working tools steel. Electric Furnace Steel,2007, 78:299-306
    [24]R. I. Shukyurov, Z. G. Mamedov, I. K. Kagramanov. Effect of titanium and silicon on the phase composition and properties of a high-chromium tool steel. Metal Science and Heat Treatment,1989, 31(3):203-206
    [25]G. A. Roberts, R. A. Cary. Tool Steels (4th Edition). New York:American Society for Metals,1980
    [26]清永欣吾.陈洪真,沈梨庭译.工具钢—作为日本产业基础的工具钢发展史.北京:冶金工业出版社,2003
    [27]Teledyne VASCO. Tool & Special Steel Guide. VASCO,1980
    [28]崔崑.国内外模具用钢发展概况.金属热处理,2007,32(1):1-11
    [29]ASM. Metals Handbook (9th Edition), Vol.3. Ohio:ASM,1980
    [30]华觉明.世界冶金发展史.北京:科学技术文献出版社,1985
    [31]杨宽.中国古代炼铁技术发展史.上海:上海人民出版社,1982
    [32]殷瑞钰主编.钢的质量现代进展下篇-特殊钢.北京:冶金工业出版社,1995
    [33]马党参,陈再枝,刘建华,等.国内模具钢的市场前景及生产现状.宽厚板,2004,10(1):1-6
    [34]姜祖赓,陈再枝,张震亚.模具钢.北京:冶金工业出版社,1988
    [35]孙培桢,赵建生,潘小泉,等.新型高强韧低合金冷模具钢6CrNiMnSiMoV的研制及应用.钢铁,1990,25(11):47-51
    [36]陈钰秋,孙培桢,潘小泉.高韧性冷作模具钢(DS钢)的研究及应用.特殊钢,2000,21(4):28-31
    [37]潘金芝,任瑞铭,戚正风.国内外模具钢发展现状.金属热处理,2008,33(8):10-15
    [38]杨凌平,杨有才.火焰淬火技术及模具火焰淬火.模具制造,2002,6:53-56
    [39]彭卫东7CrSiMnMoV钢的性能及其在冷挤压模中的应用.模具制造,2004,2:68-69
    [40]崔崑.国内外模具用钢发展概况.金属热处理,2007,32(7):1-11
    [41]郝松涛,郝志凯.我国冷作模具钢的发展和应用.现代制造工程,2005,(6):124-126
    [42]周家文.GM钢的特性与应用特点.汽车科技,2000,(5):20-24
    [43]张嘉立,孙祖予,金志坚,等.ER5钢沉淀相组织及耐磨性能研究.第五届环太平洋国际模具钢会议论文集.上海PRICTS,1998
    [44]韩秀英.高强韧模具钢7Cr7Mo2V2Si简介.柴油机设计与制造,1995,(4):35-40
    [45]马党参,刘建华,陈再枝,等.热处理工艺对新型Cr8Mo2VSi和D2冷作模具钢扁钢组织和力学性能的影响.钢铁,2008,43(9):67-70
    [46]刘建华,马党参,张占普等.铌含量对Cr8WMo2V2SiNb钢组织和性能的影响.特殊钢,2008,29(6):55-57
    [47]K. Kuo. Carbides in chromium, molybdenum and tungsten steels, J Iron Steel Inst,1953,173: 363-375
    [48]K. Bungardt, E. Kunze, E. Horn. Investigation of the structure of the iron-chromium-carbon system. Arch Eisenhuttenw,1958,29:193-203
    [49]N. Yamanaka, K. Kusaka, Influence of vanadium and molybdenum on the properties of air-hardening die steel containing 1.5% carbon and 12.0% chromium. Tetus-to-Hahane,1955,41: 613-620
    [50]S. Koshiba, S. Nagashima. Effect of tungsten on the high-carbon high-chromium die steel. Tetus-to- Hahane,1953,39:119-122
    [53][日]阿部源隆,中村秀樹,调英夫.高硬度·高靭性冷間工具钢「QCM 8 」の开発.日本金属学会会报,1986,25(5):438-440
    [55]Bohler K340, Kaltarbeitsstahl mit hoher Druckfestigkeit und Verwendung dieses Stahles, Ost. Patent AT 393 387 B; Marz 1991, Erfinder K. Leban, and H. Schweiger
    [56]K. Leban, M. Gstettner, K. Hulka, et al. Characteristic features of a new high performance tool material with Al-and Nb-additions. In, New Materials, Processes, Experiences for Tooling, Interlaken/Switzerland 1992,355-368
    [57]H. Schweiger, H. Lenger, A. Stix, New problem solution for severely stressed precision cold working tools Bohler K 340 Ecostar. In, Progress in Tool Steels, Proceedings 4th Int. Conference on Tooling, Bochum/Germany 1996,103-111
    [58]Bohler K 340 Ecostar, leaflet printed DE-04.2000-2000N, Kapfenberg/Austria
    [59]Bohler K 360, Metallischer Werkstoff mit hoher Harte, hohem Verschleiβwiderstand und hoher Zahigkeit, Ost. Patent, AT 407 648 B; Sept.2000, Erfinder W. Liebfahrt, G. Lichten-egger, and H. Schweiger
    [60]W. Liebfahrt, G. Lichtenegger, H. Schweiger, et al. Development of a new ledeburitic cold work tool steel with excellent wear resistance and toughness properties. In, Tool Steels in the next Century,5th Int. Conference on Tooling, Leoben/Austria 1999,753-759
    [61]W. Liebfahrt, G. Lichtenegger, H. Schweiger, et al. Development of a new ledeburitic cold work tool steel with excellent wear resistance and toughness properties. BHM,2000,145:103-105
    [62]S. A. Catalogue Thyssen France. Tool steels for plastic moulds:the new generation. FOR 821/Thyrodur 2393, June 1999, Maurepas Cedex/France
    [63]刘任凯译.模具材料的现状和最近的动向.太钢译文,1994,(4):74-81
    [64]S. Z. Wei, J. Zhu, L. J Xu. Research on wear resistance of high speed steel with high vanadium content. Materials Science and Engineering A,2005,404(1-2):138-145
    [65]S. Z. Wei, J. Zhu, L. J Xu. Effects of vanadium and carbon on microstructures and abrasive wear resistance of high speed steel. Tribology International,2006,39(7):641-648
    [66]胡赓祥,蔡殉.材料科学基础.上海:上海交通大学出版社,2000
    [67]H. Fredriksson, S. Brising. The formation of carbides during solidification of high-speed steels. Scandinavian Journal of Metallurgy,1976,5(6):268-275
    [68]E. S. Lee, W. J. Park, J. Y. Jung, et al. Solidification microstructure and M2C carbide decomposition in a spray-formed high-speed steel. Metallurgical and Materials Transactions A,1998,29(5): 1395-1404
    [69]迟宏宵,马党参,吴立志,等.M2高速钢中M2C共晶碳化物的相变行为.金属热处理,2010,35(5):19-22
    [70]崔忠圻.金属学与热处理.北京:机械工业出版社,2007
    [71]G. Hoyle. High speed steel. London:London Boston Durban Singapore Sydney Toronto Wellington, 1988
    [72]肖纪美.高速钢的金属学问题.北京:冶金工业出版社,1976
    [73]吴元昌.铝高速钢的生产及应用近况.工具技术,1994,28(3):5-8
    [74]郑双七,王豫.铝对高速钢(HSS)红硬性的影响.热处理,2005,20(3):3-10
    [75]崔崑.中国模具钢现状及发展.机械工程材料,2001,25(1):1-10
    [76]徐祖耀.铝在高速钢中的作用.机械工程材料,1993,17(2):4-6
    [77]Касатки О Г. Calculation model of determine critical point of steel. MuTOM,1983, (01):163-167
    [78]钟群鹏,田永江.失效分析基础知识.北京:机械工业出版社,1990
    [79]刘荣运,肖纪美.铝高速钢微偏聚及其影响研究.重特技术,1990,1(02):1-5
    [80]L. Meyer. History of niobium as microalloyed element. In:Minerals, Metals and Materials Society, ed., Proceedings of the International Symposium Niobium 2001, Orlando:Niobium 2001 Ltd,2002: 359-377
    [81]东涛.推进我国微合金化技术开发和应用新局面.微合金化技术,2001,1(1):241-254
    [82]东涛.中国铌微合金化钢发展方向.微合金化技术国际研讨会论文集.北京:中信微合金化技术中心,2002,129-138
    [83]Y. A. Geller, Y. L. Grishina. Effect of micro-alloying in improving the properties of R6M5 steel. Machine and Tooling,1976,47(6):30-31
    [84]J. Pacyna, M. Strack. The effect of niobium on the structure and properties of the quenched matrix of the 6-5-2 type high speed steels. Archives of Metallurgy,1992,37:387-395
    [85]L. A. Dobrzanski, A. Zarychta. Phase transformations during heat treatment of W-Mo-V 11-2-2 type high-speed steel with increased contents of Si and Nb or Ti. J. Materials Processing Technology, 1995,53(1-2):109-120
    [86]L. A. Dobrzanski, A. Zarychta, M. Ligarski. High-speed steel with addition of niobium or titanium. J. Materials Processing Technology,1997,63(1-3):531-541
    [87]L. A. Dobrzanski, A. Zarychta, M. Ligarski. Phase the structure and properties of W-Mo-V high-speed steel with increased contents of Si and Nb after heat treatment. J. Materials Processing Technology,1998,77(1-3),180-193
    [88]S. R. Keown, E. Kudielka, F. Heisterkamp. Replacement of vanadium by niobium in S6-5-2 high speed tool steels. Metals Technology,1980,7(2):50-57
    [89]F. Jeglitsch. Niobium in tool steels and cemented carbides. In:Minerals, Metals and Materials Society, ed., Proceedings of the International Symposium Niobium 2001, Bridgeville:Niobium 2001 Ltd,2002,1001-1039
    [90]K. Leban, M. Gstettner, K. Hulka, et al. Characteristic features of a new high performance tool material with Al- and Nb-additions. In:New Materials, Processes, Experiences for Tooling, Interlaken,1992,355-368
    [91]H. Schweiger, H. Lenger, A. Stix. New problem solution for severely stressed precision cold working tools Bohler K 340 Ecostar. In:Progress in Tool Steels, Proceedings 4th Int. Conference on Tooling, Bochum,1996,103-111
    [92]刘劲松.基体钢65Nb在冷作模具上的应用.模具制造,2002,(6):49-50
    [93]R. Riedl, S. Karagoz, H. Fischmeister, et al. Developments in high speed tool steels. Steel Res, 1987,58:339-352
    [94]师瑞霞,杨瑞成,尹衍升,等.合金元素对12Cr1MoV钢中Fe的自扩散和C的扩散能力的影响.钢铁研究,2004,2:34-37
    [95]雍岐龙.钢铁材料中的第二相.北京:冶金工业出版社,2006
    [96]P. Payson, A. E. Nehrenberg. New steel features high strength and high toughness, The Iron Age, 1948,12(12):239-242
    [97]R. I. Shukyurov, Z. G. Mamedov, I. K. Kagramanov. Effect of titanium and silicon on the phase composition and properties of a high-chromium tool steel. Metal Science and Heat Treatment.1989, 31(3):203-206
    [98]黄光晖,曹念荪,孙培祯,等.Ni和Si在高强韧低合金冷作模具钢GD钢中的作用.材料研究学报,1994,8(2):134-141
    [99]P. Fusheng, Z. Shouze, D. Peidao, et al. Metastable austenite transformation in low alloy high speed steels containing silicon, Scripta. Metall. Mater.,1992,27(9):1145-1150
    [100]潘复生,丁培道,周守则.高速钢中(M5Si)C碳化物研究.材料科学进展,1990,4(6):298-302
    [101]潘复生,周守则,丁培道.硅在低合金高速钢中的若干作用规律.兵器材料科学与工程,1989,99(12):1-9
    [102]崔忠圻.金属学与热处理.北京:机械工业出版社,2007
    [103]潘复生,丁培道,周守则.低合金高速钢回火过程的电镜研究(二)—M3C碳化物的沉淀及 其转化.材料科学进展,1988,2(1):7-8
    [104]潘复生,丁培道,周守则.低合金高速钢回火过程的电镜研究,重庆大学学报,1988,11(2):114-119
    [105]A. G. Allten, P. Payson. The effect of silicon on the tempering of martensite, Transactions of the A. S. M.1953,45:498-525
    [106]丁培道,潘复生,周守则.低合金钢回火过程中特殊碳化物沉淀的电镜研究.金属学报,1987,23A:285-404
    [107]陈鹰,陈再枝,董瀚,等.合金工模具钢Fe-M-C淬火马氏体回火的二次硬化研究进展.特殊钢,2004,25(2):35-38
    [108]Charlie R. Brooks. Principles of the austenitization of steels. London:Elsevier Applied Science,1992
    [109]陈鹰,陈再枝,董瀚,等.经深冷处理的4Cr5MoSiV1钢的同火组织和力学性能.钢铁研究学报,2006,18(5):29-32
    [110]郭可信.合金钢中的碳化物.金属学报,1957,2(3):303-3 1 9
    [111]E. C. Bain. Alloy Elements in Steels. Cleveland:American Society for Metals,1939
    [112]K. Kuo. Recent progress in the study of the structure of martensite and its decomposition products in carbon steels. Jernkontorets Annaler,1956,140:854-904
    [113]K. Kuo. Alloy carbides precipitated during the fourth stage of tempering. J. Iron and Steel Inst, 1956,18:258-268
    [114]陈景榕,李承基.金属与合金中的固态相变.北京:冶金工业出版社,1997:86
    [115]王毛球,董瀚,王琪,等25Cr3Mo3NiNb二次硬化钢中的碳化物.钢铁研究学报,2003,15(6):42-46
    [116]D. M. Davies, B. Ralph. Field-ion microscopic study of quenched and tempered Fe-Mo-C. Journal of the Iron and Steel Institute,1972,210:262-266
    [117]凌斌.高合金超高强度钢的微观组织及强韧化机制的研究[博十学位论文].北京,北京航空材料研究院.1996
    [118]M. Grujicic. Coherent precipitation of M2C carbides in AF1410 steel. Materials Science and Engineering A,1989,117(9):215-220
    [119]赵振业,凌斌,钟平,等.用场离子显微镜和原子探针研究23NiCo钢中M2C的回火析出机制.金属热处理学报,2000,21(2):14-23
    [120]刘庆冬,刘文庆,王泽民,等.回火马氏体中合金碳化物的3D原子探针表征Ⅰ.形核.金属学报.2009,45(11):1281-1287
    [121]刘庆冬,刘文庆,王泽民,等.回火马氏体中合金碳化物的3D原子探针表征Ⅱ.长大.金属学报.2009,45(11):1288-1296
    [122]胡正飞,吴杏芳,王春旭.二次硬化钢中多组元强化相M2C碳化物的粗化动力学研究.金属学报.2003,39(6):585-591
    [123]IO,A.盖列尔.卢湘译.工具钢.北京:中国工业出版社,1961
    [124]D. V. Shtansky, G. Inden, Phase transformation in Fe-Mo-C and Fe-W-C steels-Ⅰ. the structural evolution during tempering at 700 ℃, Acta mater.,1997,45:2861-2878
    [125]D. V. Shtansky, G. Inden, Phase transformation in Fe-Mo-C and Fe-W-C steels-Ⅱ. eutectoid reaction of M23C6 carbide decomposition during austenitization. Acta mater.,1997,45:2879-2895
    [126]D. V. Shtansky, K. Nakai, Y. Ohmori. Formation of austenite and dissolution of carbides in Fe-8.2Cr-C alloys. Z. Metallkd.,1999,90(1):25-37
    [127]D. V. Shtansky, K. Nakai, Y. Ohmori. Mechanism and crystallography of ferrite precipitation from cementite in an Fe-Cr-C alloy during austenitization. Phil. Mag. A,1999,79(7):1655-1669
    [128]J. Janovec, A. Vyrostkova, M. Svoboda. Influence of tempering temperature on stability of carbide phase in 2.6Cr-0.7Mo-0.3V steel with various carbon content. Metall. Mater. Trans.,1994, 25A:267-275
    [129]余永宁.金属学原理.北京:冶金工业出版社,1997
    [130]冯端.金属物理学,第三卷,金属理学性能.北京:科学出版社,1999
    [131]I. M. Lifshitz, V. V. Slyozov. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids,1961,19:35-50
    [132]C. Wagner. Theorie der Alterung von Niederschlagen durch Umlosen (Ostwald-reifung). Z. Elektrochem,1961,65:581-591
    [133]胡心彬,李麟,吴晓春4Cr5MoSiV1热作模具钢热疲劳过程中碳化物粗化动力学分析.材料与热处理学报.2005,26(1):57-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700