用户名: 密码: 验证码:
己内酰胺废水的生物脱氮技术及水资源综合利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高含氮有机废水的脱氮技术是目前水处理及回用技术中遇到的一大难题,开发新型生物脱氮和深度处理及回用技术对缓解我国目前紧缺的水资源现状具有十分重要的应用价值和现实意义。
     锦纶生产废水是典型的高含氮有机废水,其特性是可生化性能较好,但是碳氮比失调,是目前较难处理的工业废水之一。本论文采用水解酸化—两段生物接触氧化—曝气生物滤池联合工艺对锦纶生产中废水的除碳、脱氮和深度处理进行了较系统的研究,确定了最佳运行参数,并对系统中氮元素的形态转化和脱氮机理进行了探讨;同时采用水解酸化工艺对系统污泥进行减量,并考察了影响剩余污泥减量化的因素。建立了两段生物接触氧化池生物膜增长动力学模型和曝气生物滤池底物去除动力学模型。
     实验结果表明,水力停留时间(HRT)、水力负荷、硝化液回流比、pH、容积负荷以及溶解氧(DO)均对水解酸化—两段生物接触氧化池的处理效果有较大影响。当系统HRT=12.0h、水力负荷为1135.35 mg/L、硝化液回流比为3、pH值维持在5.5~6.5,容积负荷为2.94 kg/(m3·d)、溶解氧控制在3.0~3.5 mg/L(1号生物接触氧化池)、1.8~2.3 mg/L(2号生物接触氧化池)时,为水解酸化—两段生物接触氧化池工艺处理锦纶废水的最优操作条件。
     在废水深度处理的研究中发现,气水比和水力负荷对曝气生物滤池处理效果有较大影响。当气水比为2:1时,CODCr的平均去除率可达48.35%、氨氮为84.14%、总氮去除率为42.18%。提高气水比会抑制曝气生物滤池反应器同步反硝化的脱氮能力;提高水力负荷(0.15~0.80 m3/(m2·h)),曝气生物滤池对CODCr、氨氮以及总氮的平均去除率呈现下降趋势,水力负荷为0.40 m3/(m2.h)时,CODCr、氨氮以及总氮的平均去除率分别为48.43%、84.71%和42.45%。研究还发现,在曝气生物滤池中,不同滤层高度的污染物具有不同的去除效果:对CODCr的去除主要发生在进水端后面60cm的范围内;对氨氮和总氮的去除主要发生在滤层20cm-80cm段。
     将剩余污泥回流到厌氧段的工艺可有效地实现对剩余污泥的减量。通过实验验证,选取容积负荷2.54kgCODCr/(m3·d)作为水解酸化段的最佳运行负荷。此外,水力停留时间对系统积累的惰性物质的排出影响很大。当厌氧段(A段)的水力停留时间为7.55h左右时,废水能满足达标排放要求,并可实现系统污泥的有效减量。同时,因将污泥回流到水解酸化段进行减量,污泥中所含的氮、磷等元素可以弥补锦纶生产废水中碳氮磷比例失调的缺点,并可降低向系统中添加氮、磷元素所带来的费用。
     利用红外光谱分析方法对系统各反应器中的水样进行了分析,发现各水样的红外光谱图在3500-600cm-1波数范围内有相似的特征频率,说明7个水样中均含有CO-NHR、酰胺I、CH3-R、CH2-R、C-CO-C、C-NO2、HCO3-等官能团的物质。
     最后采用理论与经验相结合的方法,建立了两段生物接触氧化池的生物膜增长动力学模型,该模型可反映生物膜增长和底物浓度之间的动力学变化关系;建立了曝气生物滤池的有机底物去除动力学模型,该模型可反映曝气生物滤池中基质浓度沿流程的动力学变化情况。
The denitrification technology of high nitrogen organic wastewater, currently, is a difficult problem. So it is necessary to put forward a feasible process that is useful for nitrogen removal and advanced treatment of high concentration nitrogen wastewater.
     Nylon-6 production wastewater has the characteristic of high concentration nitrogen and good biodegradability, the main contaminations of which are CODCr and caprolactam, as well as few oligomers and oil solution. In this paper, optimal operating parameters were achieved, nitrogen transformation and removal theory in the system were also discussed. In addition, the characteristics of the biofilm and organic substances degradation were analyzed in this paper. Furthermore, biofilm growth dynamic models were established.
     The experimental results showed that circumfluence ratio, HRT, organic loading and DO were all the important affecting factors on the system performance. When the system is HRT=12.0 h, hydraulic loading for 1135.33 mg/L, nitrification liquid reflux ratio for 3, pH value maintained at 5.5 to 6.5, volume loading for 2.94 kg/(m3·d), dissolved oxygen controlled in 3.0~3.5 (1# oxidation ponds),1.8~2.3 mg/L (2# oxidation ponds), the condition is the optimal operating conditions for hydrolysis acidification-sbr-contact oxidation-two paragraphs biological contact oxidation ponds processing polyamide wastewater.
     The results showed that DO and hydraulic loadings were the important affecting factors in the advanced treatment. When gas ratio of water is 2:1, the average removal rate of CODCr, NH3-N and TN reach maximum, respectively, are 48.30%、84.24% and 42.18%.Improving gas water has obvious inhibition in biological aerated filters synchronous denitrifying denitrification. When the hydraulic loading for 0.4 m3/(m2·h), CODCr, NH3-N and TN the average removal rate reaches maximum, respectively 48.53%,84.81% and 42.55%. High hydraulic loading, go against CODCr, NH3-N and TN removal. Moreover, different characteristics of each substance removal in UBAF were presented. COD removal mainly occurred after the influent port 60cm in UBAF, NH3-N and TN removal mainly occurred in UBAF 20-80cm range.
     Using the return sludge, the surplus sludge backflow to the anaerobic segment of the A/O1/O2 technology can effectively achieve the of the surplus sludge digestion. Comprehensive consideration of the discharge standards and the stable operation of the system, the selection of A section volume kg CODCr/m3 load in 254d around as the system runs normally load. In addition, hydraulic retention time of system accumulated inert materials the excretion of influence. The wastewater A section hydraulic retention time for 7.55 h or so, can satisfy the requirements and standards of wastewater sludge system implementation of effective reduction. Meanwhile, return sludge to A of quantity-reducing, sludge (cell) in N, P the release effective compensation polyamide fiber production wastewater C/N/P disorders faults can be greatly reduced to system add N, P nutrient expenses.
     The infrared spectrograms showed that CO-NHR, amide I, CH3-R, CH2-R, C-CO-C, C-NO2 and HCO3- were included in seven wastewater samples.
     The relationship between biofilm growth and substances concentrations was reflected in the biofilm growth dynamics model, and the varying trend of substances concentrations along with UBAF height was also reflected in the substances removal dynamic model.
引文
[1]钱正英.中国可持续发展水资源战略研究报告集第1卷.2001,中国水利水电出版社,北京:55-58.
    [2]刘平.浅谈水资源及其可持续利用.江苏环境科技,2005,(18):164-165.
    [3]中国水资源现状.http://zhidao.baidu.com//53254828.
    [4]2008年中国环境状况公报.2008,中华人民共和国环境保护部.
    [5]段正康,彭欢,李彦春等.甲苯法生产己内酰胺废液的处理和综合利用研究.精细化工,2010,(27):74-79.
    [6]Sheldon T. Chromosomal damage induced by caprolactam in human lymphocytes. Mutation Research,1989,224:325-327.
    [7]Vogel E W. Caprolactam induces genetic alterations in early germ cell stages and in somatic tissue of D melanogaster. Mutation Research,1989,224:339-342.
    [8]张汇,施祖培,唐薰.己内酰胺聚合萃取水利用工程进展.合成纤维工业,2001,(8):39-41.
    [9]刘年权,陈步宁,陈声宗.聚己内酰胺切片萃取水回用直接聚合工艺探讨.合成纤维工业,2001,(8):22-24.
    [10]张志斌.尼龙6生产回收工序中蒸发器结垢堵塞问题的研究.广州化工,1997,(3):43-45.
    [11]蔡锐,管国锋.络合萃取法处理己内酰胺废水.南京化工大学学报,2000,(9):21-23.
    [12]高兴廷.锦纶-6生产废水治理及综合利用.工业用水与废水,2001,(3):34-35
    [13]孙扬平.生物脱氮技术在低碳氮比废水中的应用.环境科学与管理,2007,32(6):411-413.
    [14]刘庆斌.锦纶6聚合废弃物的处理.化纤与纺织技术,2006,(2):34-36.
    [15]王岳涛,薛向群,宫成仁.影响己内酰胺回收量因素的分析.山东纺织科技,2000(6):15-16.
    [16]王国华,陆春明,潘晓军等.从锦纶6生产废水中回收己内酰胺技术的改进.化工环保,1999,19(1):21-23.
    [17]江群航,倪福保.尼龙6残渣回收工艺探索.合成纤维工业,2000,23(4):56-58.
    [18]邵改芹,张健飞.尼龙6生产厂己内酰胺及其低聚物废弃物的处理.合成纤维,2004(3):19-21.
    [19]胡茂刚,奚旦立,陈季华等.锦纶6生产废水的处理.工业用水与废水,2003,34(1):47-49.
    [20]王晓华,解清杰,钱望新.表曝法处理化工废水的运行参数与分析.华中科技大学学报(城市科学版),2002,19(2):90-92.
    [21]高俊发,董良飞,王晓霞等.石家庄高含氮高浓度化纤废水处理改造工程实验研究.给水排水,2002,28(9):36-39.
    [22]章文菁,杨建宏.生物脱氮处理工艺的发展.民营科技,2010,(7):27-28.
    [23]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.2004,科学出版社,北京:15-16.
    [24]常望霓,杨华南.城市污水脱氮除磷方法探讨.环境保护,2000,(11):19-20.
    [25]王如一,孙胜东.生物脱氮工艺的发展综述.广西轻工业,2010,8(8):112-113.
    [26]彭金,杨义飞,赵新.新型生物脱氮工艺的研究进展.水科学与工程技术,2009(6):23-26.
    [27]尹军,霍玉丰,焦畅等.生物脱氮技术研究进展.吉林建筑工程学院学报,2006,23(3):12-15.
    [28]刘晓琏.传统生物脱氮除磷与反硝化除磷脱氮工艺的比较.科技情报开发与经济,2010,20(25):130-132.
    [29]张景骞,张淑芳.废水生物脱氮技术探讨.环境科学与管理,2010,35(6):70-74.
    [30]Rittmann, Xue G, Wang B Z. Factors affecting simultaneous nitrification and denitrification(SND) and its kinetics model in membrane bioreactor. Journal of Hazardous Materials,2009:107-108.
    [31]雷灵琰,张雁秋,赵跃民.生物脱氮技术研究的新进展.江苏环境科技,2003,16(3):43-46.
    [32]陈婷婷,唐崇俭,郑平.制药废水厌氧氨氧化脱氮性能与毒性机理的研究.中国环境科学,2010,30(4):504-509.
    [33]胡宝兰,郑平,冯孝善.新型生物脱氮技术的工艺研究.应用于环境生物学报,1999,(5):68-73.
    [34]阮文权,邹华,陈坚.厌氧氨氧化混培菌的获得及其运行条件.重庆环境科学,2002,24(6):30-33.
    [35]孙红芳,吕永涛,白平等.短程硝化/厌氧氨氧化联合公益处理含氮废水的研究.中国给水排水,2009,2(3):37-41.
    [36]郑俊,吴浩汀.曝气生物滤池工艺的理论与工程应用.2005,化学工业出版社,北京:82-83.
    [37]Pujol R, Hamon M, Kandel X. Bio filters flexible reliable biological reactors. Water Science and Technology,1994, (29):33-38.
    [38]Canler J P, Perret J M. Biological aerated filters:assessment based on sewage treatment plants. Water Science and Technology,1994,29(10):13-22.
    [39]Rogalla F, Sibony J. Biocarbone aerated filters-ten years after, past, present and plenty of potential. Water Science and Technology,1992,26(9):97-101.
    [40]Pujol R. Process improvements for up-flow submerged biofilters. Water April, 2000:25-29.
    [41]邓俊,吴浩汀.曝气生物滤池工艺的理论与工程应用.2005,化学工业出版社, 北京:58-59.
    [42]Men L G, Stephenson T. Organic and hydraulic shock loadings on a biological aerated filter. Environmental Technology,2001,22 (3):321-330.
    [43]Yool K, Kim D J. Effects of hydraulic backwash load on effluent quality of up-flow BAF. Journal of Environmental Science and Health, Part A Toxic/Hazard Substances and Environmental Engineering,2001,36 (4):575-585.
    [44]马军,邱立平.曝气生物滤池及其研究进展.环境工程,2002,20(3):7-11.
    [45]杨跃,张金松,黄文章.复合式曝气生物滤池脱氮效果影响因素研究.给水排水,2010,36(7):140-143.
    [46]焦阳,李军,朱向东等.BAF深度处理二沉池出水的抗冲击能力研究.中国给水排水,2010,26(3):103-105.
    [47]李汝琪,钱易,孔波等.曝气生物滤池去除污染物的机理研究.环境科学,1999,20(6):50-52.
    [48]卜静,陆平,徐国勋.气水比对高分子填料BAF脱氮效能的影响.中国给水排水,2010,26(5):127-130.
    [49]张杰,曹相生,孟雪征.曝气生物滤池的研究进展.中国给水排水,2002,18(8):26-29.
    [50]Zhao Q L, Kugel G. Thermopholic/mesophilic digestion of sewage sludge and organic waste. Journal of Environment Science and Health,1996,31 (9):2211-2231.
    [51]张忠智,钟为章,穆红岩.功能微生物对炼厂剩余污泥减量化效果的效果.石油加工高等学校学报,2010,23(1):23-26.
    [52]Yu L. Strategy for minimization of excess sludge production from the activated sludge process. Biotechnology Advances,2001, (19):97-107.
    [53]仉春华,白金,白春学.剩余污泥减量化的初步实验研究.大连民族学院学报,2006(30):28-30.
    [54]Low E U, Chase H A, Milner M G, et al. Uncoupling of metabolism to reduce biomass production in the activated sludge process. Water Research,2000,34(12): 3204-3212.[55]梁鹏,黄霞,钱易.污泥减量化技术的研究进展.环境污染治理技术与设备,2003,4(1):44-51.
    [56]余杰,田宁宁,王凯军等.中国城市污水处理厂污泥处理处置问题探讨分析.环境工程学报,2007,1(1):82-86.
    [57]林山杉,管运涛.好氧/厌氧交替与循环工艺用于污泥减量化研究.工业水处理,2005,25(2):34-37.
    [58]张峥嵘,黄少斌.污水处理中污泥减量化技术的研究与应用概况.广州环境科学,2006,21(3):5-8.
    [59]关景然.锦纶—6生产中的废水处理.济南纺织化纤科技,2002(3):45-46.
    [60]贺延龄.废水的厌氧生物处理.1998,中国轻工业出版社,北京:17-18.
    [61]相会强.抗生素生产废水深度处理全流程实验研究.,哈尔滨工业大学博士学位论文,2002.
    [62]Glass C, Silverstein J, Oh J. Inhibition of denitrification in activated sludge by nitrite. Water Environmental Research,1997, (69):1086-1093.
    [63]李亚新,赵义,岳秀萍等.生物膜法A2/O2焦化废水处理系统缺氧反应器工艺特性.工业用水与废水,2008,39(1):15-19.
    [64]杜赦林.软性填料膜法A/O2脱氮系统处理腈纶废水.给水排水,1996,22(6):23-25.
    [65]余淦申.生物接触氧化处理废水技术.1991,中国环境科学出版社,北京:35.
    [66]Wanner O, Gujer W. A multispieces biofilm model. Biotechnology and Bioeng, 1986,28 (31):314-328.
    [67]Jkeisuke H. Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor. Water Research,1990,24 (3):289-296.
    [68]郑兴灿,李亚新.污水除磷脱氮技术.1998,中国建筑工业出版社,北京.
    [69]王坚,汪洋,张国柱.AO系统处理含油综合污水实验研究.交通环保,1997,18(6):24-26.
    [70]Zheng H. Greenhouse gas-N2O production during denitrification in wastewater treatment. Water Science and Technology,1993,28 (7):203-207.
    [71]Lloyd H, Ketchum. Design and physical features of sequencing batch reactors. Water Science and Technology.1997,35 (1):11-18.
    [72]郑巧东,钟丽娜,姚善泾.硝化菌与反硝化菌混合培养生物脱氮的研究.化学工程,2010,38(3):64-67.
    [73]梁书诚,赵敏,卢磊等.好氧反硝化菌脱氮特性研究进展.应用生态学报,2010,21(6):1581-1588.
    [74]王建芳,赵庆良,刘志刚等.好氧-沉淀-厌氧工艺剩余污泥减量化的影响因素.中国环境科学,2008,28(5):427-432.
    [75]邹桂香,唐文清,田亚平等.水解酸化-厌氧-好氧工艺处理罐头食品加工废水.衡阳师范学院学报,2007,28(3):75-78.
    [76]Robertson L A, Van Niel E J. Simulationeous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Applied Environmental Microbiology,1988,54 (1):2812-2818.
    [77]Van Niel E W J. Nitrification by heterotrophic denitrifications and its relationship to autotrophic nitrification.1991, Ph.D. Thesis, Delft University of Technology, Delft.
    [78]王莹,周巧红,梁威等.人工湿地高效好氧反硝化菌的分离鉴定及反硝化特性研究.农业环境科学学报,2010,29(6):1193-1198.
    [79]乔楠,刘文超,张贺等.一株好氧反硝化菌的异养硝化及脱氮性能.化工进展, 2010,29(4):767-771.
    [80]邱立平,杜茂安,冯琦.二段曝气生物滤池处理生活污水的实验研究.环境工程,2001,19(2):22-24.
    [81]朱正齐,姜佩华,陈季华.曝气生物滤池(BAF)的研究进展.净水技术,2005,24(1):57-62.
    [82]王冠平.生物接触氧化池两种不同曝气方式的充氧性能的比较研究.净水技术,1999,18(4):11-14.
    [83]郭天鹏,汪诚文,陈吕军等.升流式曝气生物滤池深度处理城市污水的工艺特性.环境科学,2002,23(1):58-61.
    [84]汤利华,许建华.生物接触氧化预处理微污染原水所需气水比探讨.给水排水,1995(6):9-11.
    [85]杨青,赵玉华,周晴等.曝气生物滤池对CODCr去除效果的实验研究.沈阳建筑大学学报(自然科学版),2005,21(2):138-141.
    [86]刘旭东,杨正松,张健.A/O一体式曝气生物滤池处理生活污水.工业安全与环保,2002,28(5):14-17.
    [87]王岽,郦和生,刘德华.曝气生物滤池去除二级出水中NH3-N的实验研究.工业水处理,2005,25(12):47-49.
    [88]黄瑞敏,王欣,林德贤等.曝气生物滤池法处理工业用微污染水源水.华南理工大学学报,2004,32(6):63-66.
    [89]陈珥,齐春对,闰立娟等.应用曝气生物滤池深度处理垃圾渗沥液.污染防治技术,2006,19(1):3-5.
    [90]曹文平,张永明,钱鲁泓.两段曝气生物滤池废水处理的研究.水处理技术,2006,32(3):62-65.
    [91]李怀正,傅威,白月华等.生物接触氧化预处理源水的设计参数.中国给水排水,2001,(17):43-45.
    [92]Lazarova V, Nogueira R, Manem J, et al. Control of nitrification efficiency in a new bio film. Water Science and Technology,1995,36 (1):31.
    [93]王微微,高路,郭子洋.废水生物脱氮工艺综述.黑龙江水利科技,2010,38(1):127-128.
    [94]Pujol R. A key point of nitrification in a up-flow biofiltration reaction. Water Science and Technology,1998,38 (3):43-49.
    [95]李汝琪,钱易,孔波等.曝气生物滤池去除污染物的机理研究.环境科学,1999,20(6):49-52.
    [96]王立立,胡勇有.曝气生物滤池去除有机物及硝化氨氮的影响因素研究.环境污染与防治,2006,28(4):257-260.
    [97]代学民.曝气生物滤池中微生物相的分析.河北建筑工程学院学报,2009,27(4):41-43.
    [98]万金保,兰辉,黄学平.曝气生物滤池滤层高度与去除率关系的研究.南昌水专学报,2004,23(2):42-45.
    [99]Raymond M. TOC Removal in Biological Filters. American Water Works Association,1995, (12):40-54.
    [100]雷国元.曝气生物滤池的工作性能与高度的关系.环境污染与防治,2002,24(1):26-28.
    [101]赵颖,杨凤林,张兴文等.两种不同填料BAF进行污水深度处理的效能及运行特征.济南大学学报(自然科学版),2005,19(1):37-40.
    [102]Chippsm J, Bauerm J, Bayley R G. Achieving enhanced filter backwashing with combined air scour and sub-fluidising water at pilot and operational scale. Elsevier Science Lid,1995,32 (1):55-62.
    [103]袁志宇,陈晓如,李传志等.悬移式气水连续反冲洗机理探讨.给水排水,1999,25(5):21-24.
    [104]凌霄,胡勇有.曝气生物滤池反冲洗关键因子的确定及机理浅析.给水排水,2005,31(10):19-23.
    [105]王占生,刘文君.微污染水源饮用水处理.1999,中国建筑工业出版社,北京.
    [106]王飞际.一种新的污水处理技术-Biopour法.给水排水,2001,27(1):11-14.
    [107]Chen J J, McCarty D, Slack D, et al. Full scale studies of a simplified aerated filter (BAF) for organic and a nitrogen removal. Water Science and Technology, 2000,41 (4-5):1-4.
    [108]徐冬梅,聂梅生,金承基.亚硝酸型硝化实验研究.给水排水,1999,25(17):37-39.
    [109]王怡,张引中,彭党聪.UASB+MEER组合工艺处理城市污水减量剩余污泥的实验研究.水处理技术,2009,9(9):69-72.
    [110]金文标,王建芳,赵庆良等.好氧-沉淀-厌氧工艺剩余污泥减量性能和机理研究.环境科学,2008,3(3):726-732.
    [111]左宁,吉芳英,黄力彦.污泥减量工艺:HA-A/A/MCO的好氧脱氮机制分析.环境科学,2008,3(3):726-732.
    [112]贺延龄.废水的厌氧生物处理.1998,中国轻工业出版社,北京.
    [113]张希衡.废水厌氧生物处理工程.1996,中国环境科学出版社,北京.
    [114]延向辉,李多松.水解酸化结合A/O与混凝沉淀法处理漂染废水.中国科技论文在线,2010,5(5):347-354.
    [115]石金田,张士金.水解酸化-接触氧化-混凝气浮工艺处理高浓度漂染废水. 环境污染治理技术与设备,2002,3(12):70-72.
    [116]崔炜,张安龙,贺延龄.水解酸化-氧化沟工艺处理造纸废水.中国给水排水,2004,20(5):78-79.
    [117]陶有胜.水解酸化-生物接触氧化工艺处理啤酒废水工程实例.环境工程,1998,16(8):20-22.
    [118]卓奋,张平,庄永强等.水解酸化-序批式活性污泥法在处理屠宰废水工程中的应用.环境工程,1998,16(8):7-9.
    [119]马乐凡,李晓林.水解酸化-活性污泥法处理制浆中段废水.中华纸业,2001,(5):51-52.
    [120]Liu X L, Liu H, Du G C, et al. Improved bioconversion of volatile fatty acids from waste activated sludge by pretreatment. Water Enviroment Reseach,2009,81 (1): 13-20.
    [121]Cai M M, Chua H, Zhao Q L, et al. Optimal production of polyhydroxya lkanoates(PHA) in activated sludge fed by volatile fatty acids (VFAs) genera ted from alkaline excess sludge fermentation. Bioresource Technology,2009,100 (3): 1399-1405.
    [122]许保玖,龙腾锐,孟宪庭等.当代给水与废水处理原理.1991,高等教育出版社,北京:248-260.
    [123]仉春华,白金,白春学.剩余污泥减量化的初步实验研究.大连民族学院学报,2006(30):28-30.
    [124]Low E U, Chase H A, Milner M G, et al. Uncoupling of metabolism to reduce biomass production in the activated sludge process. Water Research,2000,34 (12): 3204-3212.
    [125]梁鹏,黄霞,钱易.污泥减量化技术的研究进展.环境污染治理技术与设备,2003,4(1):44-51.
    [126]余杰,田宁宁,王凯军等.中国城市污水处理厂污泥处理、处置问题探讨分析.环境工程学报,2007,1(1):82-86.
    [127]林山杉,管运涛.好氧/厌氧交替与循环工艺用于污泥减量化研究.工业水处理,2005,25(2):34-37.
    [128]张峥嵘,黄少斌.污水处理中污泥减量化技术的研究与应用概况.广州环境科学,2006,21 (3):5-8.
    [129]Rocher M, Roux G, Go ma G, et al. Excess sludge reduction in activated sludge processes by integrating biomassalkaline heat treatment. Water Science and Technology,2001,44 (3):437-444.
    [130]尹军,刘涛,宋显军.污泥好氧消化的若干问题探讨.中国给水排水,2001,17(8):23-25.
    [131]沈耀良.污泥好氧消化工艺研究.污染防治技术,1994,7(1):3-9.
    [132]张洪林,李春富,姚力力等.高温厌氧法处理炼厂浮选渣运行状态研究.石油化工高等学校学报,2000,13(3):19-22.
    [133]Yin J. Study on the efficacy and mechanism of excess sludge by anaerobic digestion treatment. Journal of Solid Waste Technology and Management,1998,25 (3): 142-147.
    [134]奚旦立,孙裕生,刘秀英.环境监测(第二版).1996,高等教育出版社,北京.
    [135]国家环保局.水和废水监测分析方法(第三版).1985,中国环境科学出版社,北京.
    [136]奚旦立.环境工程手册(环境监测卷).1998,高等教育出版社,北京.
    [137]杨波.碱减量印染废水生物处理污泥减量化研究.东华大学博士学位论文,2005.
    [138]程数培,郑天凌.环境生物技术.1994,南京大学出版社,南京.
    [139]胡家骏,周群英.环境工程微生物学.1997,高等教育出版社,北京,69-72.
    [140]张自杰,周帆.活性污泥生物学及反应动力学.1989,中国环境科学出版社,北京:520-525.
    [141]Henze M, Grady C, Gujer W, et al. Activated Sludge Model NO.1. IAWPRC Task Group on Mathematical Modeling for Design and Operation of Biological and Wastewater Treatment. IAWPRC Scientific and Technical Report NO.1,1986.
    [142]李方,杨波,田晴等.水解酸化应用于剩余污泥减量的实验研究.环境学报,2008,2(9):1247-1250.
    [143]魏源送,樊耀波.污泥减量技术的研究以及应用.中国给水排水,2001,17(7):23-26.
    [144]李志东,夏进,林莉等.炼油厂剩余污泥厌氧消化优化工艺条件的确定.环境科学与技术,2008,31(4):80-84.
    [145]Talarposhti A, Mahdavi, Donnelly T, et al. Color removal from a simulated dye wastewater using a two-phase anaerobic packed bed reactor. Water Research,2001, 35 (2):3324-3335.
    [146]胡家骏,周群英.环境工程微生物学.1997,高等教育出版社,北京,86-90.
    [147]骆燕萍,冯臣.剩余污泥水解酸化的影响因素研究.能源与环境,2010,(3):64-65.
    [148]Wang X X, QIU Z F, LUA S G, et al. Characteristics of organic, nitrogen and phosphorus species released from ultrasonic treatment waste activated sludge. Hazard Mater,2010,176 (1/3):35-40.
    [149]薛涛,黄霞,郝王娟.剩余污泥热处理过程中磷、氮和有机碳的释放特性.中国给水排水,2006,22(23):22-25.
    [150]张华,周秀微,赵婷婷等.好氧消化污泥减量技术工艺参数研究.能源环境保护,2010,24(2):16-18.
    [151]Chen Y G, Jiang S, YuanH Y, et al. Hydrolysis and acidification of waste activated sludge at different pH. Water Research,2007,41 (3):683-689.
    [152]Yuan H Y, Chen Y G, Zhang H X, et al. Improved bioproduction of short in fatty acids (SCFAs) from excess sludge under alkaline conditions. Environment Science, 2006,40 (6):2025-2029.
    [153]张秀存,王伶艳.采用酸碱进行污泥减量的技术研究.化工工程与设备,2010,2(2):174-175.
    [154]中西香尔,P H索罗曼著,王绪明译.红外光谱分析100例.1984,科学出版社,北京.
    [155]刘国华,朱凤荣.基于废水生物处理的Capdeville生物膜增长动力学研究.河南机电高等专科学校学报,2008,16(1):20-23.
    [156]杨平,潘永亮,何力.废水生物处理中生物膜的形成及动力学模型研究进展.环境科学研究,2000,13(5):50-53.
    [157]Grady C P L, Daigger G T, Lim H C. Biological wastewater treatment: revised and expended. New York: Marcel Dekker Inc,1999,713-747.
    [158]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术.2000,中国建筑工业出版社,北京.
    [159]Arcangelis J P, Arvin E T. Biodegradation and bio film growth in an aerobic fixed-film reactor. Apply Biotechnoloy,1992, (37):510-517.
    [160]Trulear M G, Characklis W G. Dynamics of bio film processes. Water Pollution Control Fed,1982, (54):1288-1301.
    [161]Characklis W G, Turakhia M, Zelver N. Transport and interracial phenomena In Biofilm. USA:John Wiley and Sons Inc,1990,265-340.
    [162]Harrernoes P. The signification of pore diffusion to filter denitrification. Water pollution Control Fed,1976, (48):377-398.
    [163]Hoehn R C, Ray A D. Effects of thickness of bacterial film. Water pollution Control Fed.1973, (45):2302-2320.
    [164]La Motta E J. External mass transport in a biological film reactor. Biotechnology Bioeng,1976, (18):135-137.
    [165]格雷迪.张锡辉,刘勇弟译.废水生物处理(改编和扩充).2002,化学工业出版社,北京:471-484.
    [166]Capdeville B, Nguyen K M, Rols J L. Biofilm modeling:structural, reactional and diffusional aspects, Biofilm-science and technology,1992,251-276.
    [167]Liu Y, Capdeville B. Growth dynamics of nitrifying biofilm in biological nitrogen removal process, Water Science Technology,1994,29(7),377-380.
    [168]Moreau M, Liu Y, Capedeville B, et al. Kinetic behaviors of heterotrophic and autotrophic bio films in wastewater treatment processes. Water Science and Technology,1994,29 (10-11),385-391.
    [169]刘雨,王岐东.生物膜增长动力学模型.北京轻工业学院学报,1997,15(2):28-32.
    [170]Liu Y. Estimating minimum fixed bio mass concentration and active thickness of nitrifying biofilm. Journal of Environmental Engineering. American Society of Civil Engineers,1997,123 (2):198-202.
    [171]陈黎明,柴立和.生物膜动力学的研究现状和进展.力学进展,2005,35(3):411-416.
    [172]Colasanti R. Cellular automata models of microbial colonies. Binary.1992, (4): 191-193.
    [173]Wimpenny J W T, Colasanti R. A unifying hypothesis for the structure of microbial bio films based on cellular automaton models. FEMS Microbiology Ecology,1997, 22 (1):1-16.
    [174]Picioreanu C, Van Loosdrecht M C M, Heijnen J J. Discrete—differential modeling of biofilm structure. Water Science and Technology,1999,39 (7):115-122.
    [175]Rittmann B E, Pettis M, Reeves H W, et al. How biofilm clusters affect substrate flux and ecological selection. Water Science and Technology,1999,39 (7): 99-105.
    [176]Noguera D R, Pizarro G, Stahl D A, et al. Simulation of multi—species biofilm development in three dimensions. Water Science and Technology,1999,39 (7): 123-130.
    [177]Heijnen J, Van Loodreabt M C M, Mulder A, et al. Formation of biofilms in a biofilm air-lift reactor. Water Technology,1992,26 (5):647-654.
    [178]Characklis W C. Kinetics of microbial transformations. John Wiley and Sons Inc. 1990,233-264.
    [179]Wanner O, Gujer W. A multispecies biofilm model. Biotechnology,1986,28(3): 314-328.
    [180]Rioman B E, Mamem J A. Development and experiment evaluation of steady-state multispecies biofilm model. Biotechnology,1992,39 (9):914-922.
    [181]De Beer D, Stooedley P, Roe F, et al. Effects of biofilm structures on Oxygen distribution and mass transfer. Biotechnology,1994,43 (11):1131-1138.
    [182]Massoldeya A, Whallon J, Hrekey R F, et al. Channel structure in aerobic bio films of fixed-film reactor treating contaminates groundwater. Apply Environment Microbiology,1995,61 (3):769-777.
    [190]Stewart P S. Quantitative observation of heterogenties in psyeudotuenas aerugenesd biofilm. Apply Environment Microbiology,1993,59 (1):327-329.
    [183]De Beer D, Stoodley P, Lewandowski Z. Liquid flow in heterogenerous biofilms. Biotechnology,1994,44 (5):636-641.
    [184]Stoodley P, De Beer D, Lewandowski Z. Liquid flow in biofilm system. Apply Environment Microbiology,1994,60 (8):2711-2716.
    [185]Fnhuis L, Van Bentharm W A, Van Lodrecht M C, et al. Solids react in spherical biofilms in a biofilm effect suspension reactor. Biotechnology,1994,44 (8): 867-879.
    [186]Gjalrerna A, Arts P A M, Van Lodrecht M C. Heterogenerity of biofilm in rotating annular reactors:occurrence, structures and consequences. Biotechnology,1994, 44 (2):194-204.
    [187]Sizgenise H, Gjather W. Mass transfer mechanisms in a heterotrophic biofilm. Water research,1985,19 (12):1969-1985.
    [188]Tijhui L, Van Bentharm W A, Van Lodrecht M C, et al. Solids react in spherical biofilms in a bio film effect suspension reactor. Biotechnology,1994,44(8): 867-879.
    [189]顾夏声.废水生物处理数学模式.1982,清华大学出版社,北京:41-77.
    [190]郑元景,沈光范,邬扬善.生物膜法处理污水.1983,中国环境科学出版社,北京.
    [191]邱国华.A/O1/O2生物膜系统动力学模型的研究.环境保护科学,2008,34(5):19-22.
    [192]Man A, Fitzpatrick C S, Stephenson T. A comparison of floating and sunken media biological aerated filters using tracer study techniques. Transactions of the Institution of Chemical Engineers,1995, (73):137-143.
    [193]Logan B E, Hermanovicz S W, Parker D S. Engineering implications of a new trickling filter model. Journal of water pollution control federation,1987, (59): 1017-1028.
    [194]Logan B E, Hermanovicz S W, Parker D S. A fundamental model for trickling filter design. Journal of water pollution control federation,1987, (59): 1029-1042.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700