用户名: 密码: 验证码:
新型微孔吸附剂—超细活性碳纤维的制备及其室内甲醛吸附行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醛,最简单的羰基化合物,无色挥发性气体。甲醛可在木制品、油漆、绝缘材料等许多室内产品中存在,即使空气中的体积分数在10-7浓度条件下,甲醛也可导致呕吐、胸闷、呼吸困难、皮疹和过敏反应等症状,并且甲醛也被认为是潜在的致癌物质。随着生活设施的现代化,甲醛由建筑装修等方式排入室内空气中的情况逐年增加,去除室内甲醛成为了广大居民的强烈愿望,也是许多环保工作者的重要努力方向之一。
     目前可采用的室内甲醛控制技术有吸附法、热破坏法、吸收法、光催化法、光化学氧化法等。这其中,吸附法因为成本相对较低、操作简单等优势而应用最为广泛。但普通吸附剂在实际应用中存在吸附效果差,吸附剂饱和需脱附或更新等问题。因此,开发应用新型高效甲醛吸附材料,并在工艺上解决吸附剂饱和问题成为当前室内甲醛处理研究的重点。
     超细活性碳纤维(Ultra-Fine Activated Carbon Fiber,UFACF)是活性碳纤维的特殊形式。UFACF与普通活性碳纤维的最大区别在于纤维直径,其小得多的纤维直径和纤维间网孔大小使得UFACF具有比表面积大、微孔容积大、吸附速度快等优点,相对于一般吸附材料在过滤和吸附性能上都有明显的优势,是一种具有潜力的甲醛吸附材料。
     本课题以混合试剂法聚合制备了不同分子量的聚丙烯腈(PAN),以PAN为原料,依次采用高压静电纺丝技术、预氧化、碳化热处理技术、水蒸气活化技术制备了新型微孔吸附剂-UFACF;并以空气中甲醛为对象,研究了UFACF的甲醛吸附性能和吸附行为。由于臭氧低压汞灯技术光化学氧化技术采用非接触方式光化学氧化降解甲醛等气态有机污染物,是一种较好的甲醛处理技术,课题将UFACF吸附与光化学氧化技术结合,组成吸附-光化学氧化耦合工艺,考察研究了吸附-光化学氧化耦合作用下的甲醛处理效果。
     本文意在摸索和开发可以用于吸附室内甲醛的新型吸附剂UFACF,探索UFACF的制备条件和甲醛吸附应用影响因素,为UFACF的产业化提供数据和理论支持。吸附-光化学氧化耦合工艺的提出和研究可为室内甲醛乃至整个VOCs的处理方法提供新的思路。
     本课题主要具体研究内容包括:PAN基静电纺超细纤维毡的制备;超细纤维毡的预氧化、碳化研究;UFACF制备;UFACF甲醛静态吸附研究;UFACF甲醛动态吸附行为研究;吸附与光化学氧化耦合工艺处理甲醛研究等。
     在聚丙烯腈基静电纺超细纤维毡的制备研究中,采用DMSO/H2O混合溶剂法制备了5种不同分子量的PAN,并以PAN为原料,DMF为溶剂,配成纺丝溶液,通过高压静电纺丝技术制备超细纤维毡(UFFM)。研究表明:聚合制备PAN,相同单体组成和浓度、相同反应条件情况下,随着混合溶剂中水含量的增加,生成的PAN粘均分子量相应增加,其转化率也增加。而且不同分子量PAN的热重分析显示,随着PAN分子量的增加,热重曲线的剧烈失重区会越来越明显,而且剧烈失重区的失重率也呈增加的趋势;高压静电纺丝研究中发现,PAN-4和PAN-5纺丝溶液由于分子量过高而不可纺,其原因是由于PAN-4和PAN-5纺丝液浓度低,纺丝液溶剂不能及时挥发,沾有溶剂的纤维在到达收集屏前并丝造成。另外研究中还发现:较高的纺丝电压有利于纤维直径的减小,但相应的纺丝稳定性减小,导致纤维直径分布的离散度增加。
     超细纤维毡的预氧化、碳化研究中以静电纺制备的三种超细纤维毡(UFFM-1、UFFM-2、UFFM-3)为原料制备超细碳纤维毡,并考察相应产品性能,以确定制备UFACF的原料。其中,预氧化的目的是使线状PAN结构经环化、脱氢作用转化为耐高温的梯形结构,以便在高温碳化过程中,超细纤维能保持纤维状态。碳化目的是去除预氧化毡中的非碳元素以生成含碳量高的超细碳纤维。研究中发现:UFFM预氧化热处理后制备的超细预氧化纤维毡是吸水性较好的材料;预氧化、碳化过程复杂的化学反应使得超细纤维的结构和元素含量发生巨大变化,相应地使得纤维质量减小;通过UFCFM纤维束拉伸性能分析,原料PAN粘均分子量越高,制备出的超细碳纤维力学性能越好,由于UFFM-3经过预氧化、碳化热处理后得到的UFCFM-3质地柔软,有更好的机械强度,可作为制备UFACF的原料。
     超细活性碳纤维的制备研究中,以水蒸气为活化剂进行活化正交实验,并分别以电加热和微波加热两种加热方式制备出了两类UFACF (UFACF(D)、UFACF(W)),通过对活化收率、比表面积的测定,分析了两种加热方式对UFACF制备效果的影响。研究中发现:两种加热方式均能制备出高比表面积且孔径分布集中在微孔的UFACF,其中电加热法制备的UFACF(D)最大比表面积达1075.1m2/g,微波加热法制备的UFACF(W)最大比表面积达1107.4 m2/g;由于UFACF(W)采用微波碳化、微波活化法制备,在制备成本和效率上要优于电加热制备的UFACF(D)。
     UFACF甲醛静态吸附研究目的主要是比较两种加热方法制备出的UFACF甲醛吸附性能的差异。研究在相同湿度条件下进行,实验中不仅对UFACF(D)-7和1JFACF(W)-5两种吸附剂的甲醛吸附容量进行测定,而且还采用全自动比表面和孔径分布分析仪对两种UFACF的微孔孔径分布进行表征。研究中发现:由于有大量极微孔的存在,两种超细活性碳纤维均有较好的低浓度甲醛吸附性能,其中,相对湿度40%条件下,UFACF(D)-7的甲醛平衡吸附量达0.50mg/g,UFACF(W)-5的甲醛平衡吸附量为0.36mg/g;在比表面积和微孔孔径分布差不多的情况下,JFACF(D)-7对甲醛和水蒸气的吸附性能优于UFACF(W)-5,其原因是含氧官能团存在于UFACF(D)-7结构中。
     UFACF(W)-5甲醛动态吸附行为研究发现:相同初始甲醛浓度和气体流量条件下,相对湿度越大,甲醛动态吸附性能越差。其中,相对湿度70%条件下,UFACF甲醛动态平衡吸附量为0.31 mg/g,而相对湿度30%条件下,UFACF甲醛动态平衡吸附量为0.41 mg/g;相同初始甲醛浓度且相对湿度均50%条件下,气体流量越大,甲醛有效吸附量和平衡吸附量越小。其中气体流量为1.0 L/min时,甲醛平衡吸附量仅0.23 mg/g,而气体流量为0.6 L/min时,甲醛平衡吸附量达0.50mg/g。通过对Wheeler-Jonas方程的模拟和预测发现:Wheeler-Jonas方程的模拟曲线与实验值曲线在穿透时间后和饱和时间前时间段内相似程度较高,并且,预测的平衡时间和平衡吸附量也与实验值接近。但穿透时间、有效吸附量和吸附带高度等关键数据与实验值仍然有一定的差距。
     吸附与光化学氧化耦合工艺处理甲醛研究中发现:低压汞灯光化学氧化作用可以产生羟基自由基,吸附-光化学氧化耦合工艺去除甲醛效果要优于单一吸附工艺或单一光化学氧化工艺。如:相对湿度50%条件下,90 min时,单一光化学氧化工艺、单一吸附工艺和吸附-光化学氧化耦合工艺的甲醛去除率分别为68.8%、37.0%和95.2%;而且相对湿度对于吸附-光化学氧化耦合工艺去除甲醛有重要影响;吸附与光化学氧化耦合工艺既可减弱光化学氧化作用二次污染问题又可解决吸附剂饱和问题,是一种新型室内空气净化技术,对室内空气品质的改善有应用价值。
     本课题研究的创新性成果有:
     1)由sciencedirect文献检索发现,UFACF的制备是一个较新的研究方向,而将UFACF应用到甲醛吸附领域则鲜有报道,本课题的研究有一定领先性。
     2)超细碳纤维毡制备研究中,就PAN聚合物分子量大小对UFCFM产品性能的影响进行了探讨,结论可为UFCFM或碳纤维制备产品机械性能的改善提供参考。
     3)微波加热进行碳化和活化研究制备UFACF,此类研究较少见诸报道,研究结论对碳吸附材料活化工艺加热方式的选择有重要价值。
     4)在Wheeler-Jonas方程对动态甲醛吸附行为的模拟和预测研究中发现:模拟预测出的穿透时间、有效吸附量和吸附带高度等关键数据与实验值有一定的差距,这说明Wheeler-Jonas方程对UFACF气体动态吸附行为准确预测有局限性。UFACF动态吸附行为的研究可为UFACF实际应用中工作参数的确定提供参考。
     5)课题以“吸附与光化学氧化耦合工艺”处理甲醛,提出了吸附剂“原位脱附”和吸附质“原位降解”概念。与单一吸附或单一光化学氧化方法相比,耦合工艺有较好的甲醛处理效果,在室内空气净化领域具有应用价值。
Formaldehyde (HCHO), one of the simplest carbonyl compounds, is colorless volatile gas. HCHO exists in many products for home use, such as wood products, paint, insulation materials. Even if the concentration of HCHO is less than 0.1ppm, it could cause vomit, chest tightness, shortness of breath, skin rashes, allergic reactions and other symptoms. Moreover, formaldehyde is a potential carcinogen. As modern living facilities and construction enter into the house, the formaldehyde concentration in indoor air is increasing year by year and exceeds the national standard. Removal of indoor formaldehyde is the strong desire of the residents, and is also one of the important research directions for environmental researcher.
     Currently, the technology that could be used to deal with indoor formaldehyde included adsorption, thermal destruction, absorption, photocatalysis, photochemical oxidation method, etc. Among them, adsorption is most widely used because of the relatively lower cost, simpler operation, higher removal efficiency and other advantages. The common adsorbent has poor formaldehyde adsorption capacity and need to be desorbed or replaced after work time.Thereforc, the development and application of new efficient adsorbents for indoor formaldehyde and to solve the saturated problem of adsorbent became the research focus for indoor air purification.
     Ultra-fine activated carbon fiber (UFACF) is a special form of carbon fiber, the biggest difference between UFACF and ordinary carbon fiber is the fiber diameter. UFACF has much smaller fiber diameter and fiber mesh. UFACF has many adsorption advantages such as large surface area, large pore volume and fast adsorption. Because the distinct advantage in filtration and adsorption, UFACF can be used as a potential adsorbent material for formaldehyde.
     In this paper, polyacrylonitriles (PAN) with different molecular weight were polymerized. Taking the PAN as a material, the electrospinning technology, pre-oxidation, carbonization heat treatment technology, steam activation technology were applied for the preparation of UFACF, which was a new microporous adsorbent for indoor formaldehyde removal; And taking the indoor formaldehyde as target, the formaldehyde adsorption behaviors of UFACF were studied in different conditions; In addition, through the introduction of photochemical oxidation, the effect of adsorption-photochemical oxidation coupling technology on formaldehyde removal was studied too.
     The research purpose of paper was to prepare the UFACF which was nice for indoor formaldehyde adsorption and find out optimization of preparation conditions of UFACF, and the influence factors for the application of formaldehyde adsorption of UFACF were investigated in the paper too. The optimization research results of preparation conditions for UFACF could be useful to the preparation of carbon adsorbent material; the influence factors for the application of formaldehyde adsorption of UFACF could provide reference for practical application of UFACF and open a new way for air purification.
     This paper was consisted with several parts, which included:the preparation of electrospinning UFFM from PAN; pre-oxidation and carbonization study of UFFM; study on the preparation of UFACF; formaldehyde static adsorption of UFACF; formaldehyde dynamic adsorption behavior study of UFACF; the formaldehyde remove study of adsorption-pHotochemical oxidation technology.
     In the research for the preparation of UFFM, five kinds of PAN with different molecular weight were polymerized via DMSO/H2O mixed solvent method, and the PAN was dissolved into the spinning solution with DMF as solvent and electrospun into UFFM. The polymerization results showed that viscosity average molecular weight and conversion rate of PAN would increase with higher H2O ratio in mixed solvent in the same monomer concentration and environment conditions. From the TG analysis, dramatic weight loss zone would appear and the weight loss ratio would larger with PAN molecular weight increasing. Electrospinning results showed that the spinning solution could not be electrospun into ultra-fine fiber if the molecular weight of PAN was too high, and the higher electrospinning voltage was favorable for finer fiber diameter but cause larger dispersion of fiber diameter distribution with the electrospinning stability decreasing.
     UFFM-1、UFFM-2、UFFM-3 were taken as materials to prepare UFCFM in the research of pre-oxidation and carbonization, the purpose of the experiments was to determine the raw material for the preparation of UFACF. The results of the pre-oxidation experiments showed that the UFPFM could be made from UFFM after pre-oxidation process, and which was a nice steam adsorbent. In the process of pre-oxidation and carbonization, the mass of the fibers reduced, many complex chemical reactions occurred and UFFM fiber structure and element content significantly changed. From the analysis of fiber bundles tensile properties, UFCFM-3 had high mechanical strength and could be taken as the raw material for the preparation of UFACF.
     In the preparation research of UFACF, two kinds of UFACF (UFACF (D) and UFACF (W)) were separately made via electric heating orthogonal activation experiments and microwave heating orthogonal activation experiments. From measuring and characterization, the optimal conditions for UFACF preparation were analyzed. Where, the maximum specific surface area of UFACF (D) reached 1075.1 m2/g and the maximum specific surface area of UFACF (W) reached 1107.4 m2/g. From the pore size distribution and infrared spectra characterization of UFACF which were made from the different heating methods were explored. To be specified, the cost and efficiency of UFACF (W) preparation were advantage than UFACF (D)
     In the research for static formaldehyde adsorption of UFACF, the formaldehyde adsorption performance of UFACF (D)-7 and UFACF (W)-5 were tested at same relative humidity. And automatic surface area and pore size distribution analyzer was used to investigate the micropore size distribution. From the test results, both UFACF (D)-7 and UFACF (W)-5 had nice formaldehyde adsorption properties because there were a large number of ultramicropore existing in them. But in the case of similar surface area and micropore size distribution, formaldehyde adsorption performance of UFACF (D)-7 was better than UFACF (W)-5, the presence of the oxygen groups in the UFACF (D)-7 explained the reason. Where, on the condition of relative humidity 40%, formaldehyde equilibrium adsorption capacity of UFACF (D)-7 and UFACF (W)-5 was separately 0.50mg/g and 0.36mg/g.
     In the research for dynamic adsorption behavior of UFACF, some experiments results were get:on the condition of same initial concentration of formaldehyde and the gas flow, larger relative humidity caused worse formaldehyde adsorption performance; on the condition of same initial concentration of formaldehyde and relative humidity, with the gas flow increasing, formaldehyde effective amount of adsorption and equilibrium adsorption were decreasing. Where, on the condition of relative humidity 70% and 30% with same gas flow rate, formaldehyde equilibrium adsorption capacity were 0.31 mg/g and 0.41 mg/g. and on the condition of gas flow rate 1.0 L/min and 0.6 L/min with relative humidity 50%, the formaldehyde equilibrium adsorption capacity were 0.23 mg/g and 0.50 mg/g. According to Wheeler-Jonas equation' modeling and prediction for dynamic adsorption process, the simulation curves of Wheeler-Jonas equation were similarity with experimental data curve between breakthrough time and saturation time, and adsorption equilibrium time and equilibrium adsorption capacitance were close to the actual experimental data, but the breakthrough time of adsorption, the effective adsorption and adsorption band length were quite different with the actual experimental data.
     From the research of adsorption-photochemical oxidation coupling technology, the photooxidation of low-pressure mercury light in air could produce hydroxyl radicals, and the formaldehyde removal efficiency of adsorption-photochemical oxidation coupling technology was better than single absorption process or single photochemical oxidation process. Where, on the condition of relative humidity 50%, at 90 min, the formaldehyde removal efficiency of the single photochemical oxidation technology, the single adsorption process and the adsorption-photochemical oxidation coupling process were 68.8%,37.0% and 95.2%. Adsorption-photochemical oxidation technology was a new air purifying technology, which could solve the problem of secondary photochemical pollution and adsorbent saturation. The technology was one of directions for improving indoor air quality.
     The innovative research results of this paper were summarized as follows:
     1) With the literature search results from the sciencedirect, the preparation of UFACF was a relatively new research field, and that UFACF was applied to the adsorption of formaldehyde was rarely reported. This research projects was advanced.
     2) In the research of preparation of UFCFM, the influence of the PAN molecular weight to UFCFM product performance were discussed, the related analysis could provide reference for improving the mechanical properties of UFACF or carbon fiber.
     3) The research about the preparation of UFACF via microwave heating was rarely reported, the related experiment conclusions could be valuable for the choice of heating method of porous carbon materials preparation.
     4) From the Wheeler-Jonas equation simulation and prediction results about the dynamic adsorption behavior of formaldehyde, the simulated breakthrough time of adsorption, the effective adsorption and adsorption band length were quite different with the actual experimental data, which verified the wheeler-Jonas equation was limited for predicting gas dynamic adsorption behavior of UFACF. The conclusion could be useful to the adsorption applications of UFACF.
     5) The adsorption-photochemical oxidation coupling technology was studied in this paper. And the conception of the fixed position desorption of adsorbent and the fixed position degradation of adsorbate were proposed. From the experiment results, the coupling technology was advantage for the formaldehyde remove and had potentiality for air purification.
引文
[1]孟彩云.我国甲醛生产现状与技术进展[J],化学工程与装备,2010(9):160-162
    [2]Cogliano V. J., Grossem Y., Baan R.A., Straif K., Secretan M.B.,Ghissassi F.E.. Meeting report:summary of IARC monograpHs on formaldehyde,2-butoxyethanol, and 1-tert-butoxy-2-propanol[J]. Environ Health Perspect 2005; 113(9):205-208.
    [3]Hauptmann M, Lubin JH, Stewart PA, Hayes RB, Blair A.Mortality from solid cancers among workers in formaldehyde industries[J]. Am J Epidem 2004;15(12):1117-30.
    [4]H.E. Hesketh, F.L. Cross, Odor Control Including Hazardous/Toxic Odors[J],Technomic Publishing Company,Lancaster,PA,1989:86.
    [5]Kawai T, Othsuki C, Kamitakahara M,Miyazaki T,Sakaguchi Y,Konagaya S. Removal of formaldehyde by hydroxyapatite layer biomimetically deposited on polyamide film[J], Environ Sci Technol 2006; 40(13):4281-4285.
    [6]Rong HQ,Ryu ZY,Zheng JT,Zhang YL. Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde[J]. J Colloid Interf Sci 2003; 261(2):207-212.
    [7]Song Y.,QiaoW,Yoon S-H,Mochida I.Guo Q,Liu L. Removal of formaldehyde at low concentration using various activated carbon fibers. J Appl Polym Sci 2007; 106(4): 2151-2157.
    [8]邵明坤.胶合板甲醛释放机理及降低措施[J],淮阴工学院学报,2003,12(1):80-82
    [9]浮爱青,胡峰,卢小海.室内空气污染物甲醛污染状况研究[J],科技信息,2010(25):501,527
    [10]孙德桥.天津市新装修居室甲醛污染调查与防治措施[J],长春工业大学学报(自然科学版),2009,30(2):154-157.
    [11]于慧俐,茅清希.光化学、吸附和光催化对甲醛降解作用的对比研究[J],建筑热能通风空调,2007,26(2):71-77
    [12]荣海琴,吕永根,吴琪琳,潘鼎.活性碳纤维对甲醛吸附转化性能的研究[J],合成纤维,2006(6):11-15
    [13]Yan N Q,Wu Z C,TanT. Modeling o fformaldehyde destruetion under pulsed diseharge plasma[J]. J. Environ. Sci. Health A,2000,35(10):1951-1964.
    [14]LI Jing,LI Zhong,LIU Bing,XIA Qibin,XI Hongxia. Effect of Relative Humidity on Adsorption of Formaldehyde on Modified Activated Carbons [J],Chinese Journal of Chemical Engineering,2008,16(6):871-875
    [15]Yuanwei Lu, Dinghui Wang, Chongfang Ma, Hongchang Yang. The effect of activated carbon adsorption on the pHotocatalytic removal of formaldehyde[J],Building and Environment,45 (2010):615-621
    [16]Liping Yang, Zhenyan Liu, Jianwei Shi, Yunqian Zhang, Hai Hu, Wenfeng Shangguan. Degradation of indoor gaseous formaldehyde by hybrid VUV and TiO2/UV processes[J],Separation and Purification Technology,2007 (54):204-211
    [17]Virote Boonamnuayvitaya, Srisuda Sae-ung, Wiwut Tanthapanichakoon,Preparation of activated carbons from coffee residue for the adsorption of formaldehyde[J],Separation and Purification Technology 42 (2005):159-168
    [18]梅凡民,傅成诚,杨青莉,周亮.活性炭表面酸性含氧官能团对吸附甲醛的影响[J].环境污染与防治,2010.32(3):18-22
    [19]Lingling Wang,WenKai Chen,Density functional theory for adsorption of HCHO on the FeO(100) surface[J],Journal of Natutal gas Chemistry,2010(19):21-24
    [20]Ruoxi Wanga, Rongxiu Zhu,Dongju Zhang. Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes[J],Chemical PHysics Letters 467 (2008):131-135
    [21]卢辛成,蒋剑春.挥发性有机物的治理以及活性炭的应用研究进展,生物质化学工程,2009,43(1):45-51
    [22]Michio Inagaki,Pores in carbon materials-importance of their control[J],New Carbon Materials,2009,24(3):193-232.
    [23]游咏妍,陈凡植,黄树杰.活性炭纤维吸附挥发性有机化合物的研究进展,,工业催化,2006,14(4):63-66
    [24]近藤精一,石川达雄,安部郁夫.吸附科学[M],北京:化学工业出版社,2005.10:230
    [25]Mohamed F Sh,Khater W A,Mostafa M R. Characterization and phenols sorptive properties of carbons activated by sulpHuric acid[J].Chemical Enginerring Journal,2006,116(1):47-52.
    [26]Fabing Su,Lu Lv,Tee Meng Hui,X.S. Zhao. Phenol adsorption on zeolite-templated carbons with different structural and surface properties,Carbon 43 (2005):1156-1164
    [27]解立平,林伟刚,杨学民.废弃物基活性炭对VOCs废气的治理[J],环境工程,2006,24(2):34-36
    [28]M.A. Lillo-ROdenas,A.J.Fletcher,K.M. Thomas.Competitive adsorption of a benzene-toluene mixture on activated carbons at low concentration[J],Carbon 44 (2006):1455-1463
    [29]Lei Li,Patricia A. Quinlivan,Detlef R.U. Knappe. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution[J],Carbon 40 (2002):2085-2100
    [30]Yu-Chun Chiang, Pen-Chi Chiang, Chin-Pao Huang. Effects of pore structure and temperature on VOC adsorption on activated carbon[J],Carbon 39 (2001):523-534
    [31]Gil-Young,Oh Young-Wan J, Hong-Ryun Jung,Preparation of the novel manganese-embedded PAN-based activated carbon nanofibers by electrospinning and their toluene adsorption[J],J. Anal. Appl. Pyrolysis 81 (2008):211-217
    [32]Vivekanand Gaur, Ashutosh Sharma, Nishith Verma. Preparation and characterization of ACF for the adsorption of BTX and S02[J],Chemical Engineering and Processing 45 (2006):1-13
    [33]Mekala Bikshapathi, AshishSharma, AshutoshSharma, NishithVerma. Preparation of carbon molecular sieves from carbon micro and nanofibers for sequestration of CO2[J],chemical engineering research and design xxx (2010):xxx-xxx
    [34]Mabel V.M.,Callejas R.L.,Gehr R.,et al. Heavymetal removal with Mexican clinoptilolite multi-component ionic exchange[J]. Water Res.,2001,35(2):373-378.
    [35]Razee S.,Masujima T., Up take monitoring of anilines and phenols using modified zeolites[J]. Anal. Chim. Acta.,2002,46(4):1-5.
    [36]Chica A, Strohmaier K,Iglesia E. Adsorption, desorption and conversion of thiophene on H-ZSM-5[J].Langmuir,2004,20(25):10982-10991
    [37]Hernandez-Maldonado A J,Yang R T. Desulfurization of diesel fuels by adsorption via pai-complexation with vapor exchanged Cu(I)-Y zoelites[J]. J Am.Chem. Soc.,2004, 126(4):992-993
    [38]Yang R T,Herandez-Maldonado A J,Yang F H.Desulfurization of Transportation Fuels with Zeolites Under Ambient Conditions[J].Science,2003,301(4):79-81
    [39]Ihara Y. Adsorption of anionic surfactants and related compounds from aqueous solution onto activated carbon and synthetic adsorbent[J]. J.Appl.Polym.Sci.,1992,44:1837-1840
    [40]Weiming Zhang,Changhong Hong, Bingcai Pan etc. a comparative study of the adsorption properties of 1-napHthylamine by XAD-4 and NDA-150 polymer resins[J],Colloids and surfaces A:Physicochemical and Engineering Aspects,331(2008):257-262
    [41]Bingcai Pan,Xinqing Chen,Bingjun Pan,ect. Preparation of an aminated macroreticular resin adsorbent and its adsorption of p-nitrophenol from water[J],Journal of Hazardous Materials B137(2006):1236-1240
    [42]Krishnaiah Abburi. Adsorption of pHenol and p-chloro-phenol from their single and bisolute aqueous solutions on amberlite XAD-16 resin[J]. Journal of Hazardous Materials, 2005,105:143-156.
    [43]Jae-Wook Lee,Heung-Joe Jung,Dong-Huei Kwak etc,Adsorption of dichloromethane from water onto ahydropHobic polymer resin XAD-1600[J],water research 39(2005):617-629
    [44]Majumdar S,Bhaumik D,Sirkar K K ect. A pilot-scale demonstration of a membrane-based adsorption-stripping process for removal and recovery of volatile organic compounds[J]. Environmental Process,2001,20(1):27-35.
    [45]Zhenyu yu,Jingtang Zheng,Maozhang Wang. Nitrogen adsorption studies of PAN-based activated carbon fibers Prepared by different activation methods[J].Journal of Colloid and Interface Science,2000,230:312-319
    [46]Jia Guo,Aik Chong Lua. Characterization of adsorbent Prepared from Oil-Palm shell by CO2 activation for removal of gaseous pollutants[J].Materials letters,2002(55):334-339
    [47]陈红香,张志梅,张纪领.活性碳纤维对VOCs的吸脱附性能研究[J],舰船科学技术,2008.30(6):266-269
    [48]Marsh H.,Rand B.Critique and experimental observation of the applicability to microposity of the Dubinin equation of adsorption[J].Carbon,1970,8(1):7-17
    [49]岳中仁,曾汉民.活性炭纤维的炭化活化机理[J],合成纤维工业,1995,4:31-36
    [50]马建标,李晨曦.功能高分子材料[M]],北京:化学工业出版社,2000
    [51]Paul T. Williams,Anton R. Reed. High grade activated carbon matting derived from the chemical activation and Pyrolysis of natural fibre textile waste[J]. Journal of Applied Polymer Science,2004,71:971-986
    [52]Zhonghua Hu,M. P. Srinivasan,Yaming Ni. Novel activation Process for Preparing highly microporous and mesoporous activated carbons[J].Carbon,2001,39:877-886
    [53]Zhongren Yue,James Economy,Christian L. M.. Preparation of fibrous Porous materials by chemical activation 2. H3PO4 activation of Polymer coated fibers[J].Carbon,2003,41: 1809-1817
    [54]黄正宏,康飞宇,郝吉明.KOH活化与COZ活化的ACF的孔结构[J],炭素,2005,1:23-26
    [55]安丽,顾国维,陈祖奇.活性炭纤维及其在环境保护领城中的应用[J],四川环境,2000,19(1):23-26
    [56]陈水挟,刘进荣,曾汉民.载银磷酸活化剑麻基活性炭纤维的抗菌性能研究[J],离子交换与吸附,2002,18(4):289-295
    『57]吴军良,尹华强,刘勇军等.活性炭纤维在环境保护中的应用及前景[J],环境污染治理技术与设备,2001,2(4):65-71
    [58]Zheng-Ming Huang,Y.Z. Zhang, M. Kotaki, S. Ramakrishna,A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J].Composites Science and Technology 2003 (63):2223-2253
    [59]Nandana Bhardwaj,Subhas C. Kundu,Electrospinning:A fascinating fiber fabrication technique[J],Biotechnology Advances.2010 (28):325-347
    [60]Dzenis Y Wen. "Continuous carbon nanofibers for nanofiber composites" Materials Research Society[J],Advanced Fibers, Plastics, Laminates and Composites(USA),2UU2: 173-178
    [61]于美杰.聚丙烯腈纤维预氧化过程中热行为与结构演变[D],山东大学,博十学位论文,济南,2007(4):3-9
    [62]Dalea G,Abhiraman A. A mathematical model of solid state thermoxidative stabilization of acrylic fibers[J]. Carbon,1992,30(3):451-457
    [63]季敏霞.PAN原丝在预氧化和碳化过程中微观结构的演变[D],山东大学,博士学位论文,济南,2008(5):50-73
    [64]Ji Sun Im.Soo-Jin Park,Tae Jin Kim,Young Ho Kim,Young-Seak Lee.The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption[J].Journal of Colloid and Interface Science 318 (2008):42-49
    [65]Chan Kim.Yeong-Og Choi.Wan-Jin Lee,Kap-Seung Yang, Supercapacitor performances of solutions[J],electrochimica Acta 50(2004):883~887 activated carbon fiber webs prepared by electrospinning of PMDA-ODA poiy(amic acid)
    [66](?)Kim Voung-Seak Lee Sno-iin Park.A studv on pore-opening behaviors of Interface,2007(306):454-458 grapHite nanofibers by a chemical activation process [J],Journal of Colloid and
    [67]Ji Sun Im,Soo-Jin Park,Tae Jin Kim,The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption[J],Journal of Colloid and Interface science 318 (2008):42-49
    [68]Chan Kim.Sang-Hee Park.Wan-Jin Lee,Kap-Seung Yang. Characteristics of supercapaitor electrodes of PBI-based carbon nanofiber web prepared by eiectrospinning[J]. Electrochimica Acta 50 (2004):877-881
    [69]Gil-Young Oh.Young-Wan Ju,Hong-Ryun Jung,Wan-Jin Lee. Preparation of the novel manganese-embedded PAN-based activated carbon nanotibers by eiecirospinning and men toluene adsorption[J]. J. Anal. Appl. Pyrolysis 81 (2008):211-217
    [70]Xiaofeng Sons.Zhaoiie Wang,Zhenyu Li,Ce Wang. Ultrafine porous carbon fibers for SO2 adsorption via electrospinning of polyacrylonitnle solution[J]. journal of Cofloud and Interface Science 327 (2008):388-392
    [71]刘桂芳.表面改性活性炭吸附酚类内分泌干扰物的性能与机理研究[D],哈尔滨工业大学工学博士学位论文,2008(6):10-11
    [72]章燕豪,吸附作用[M],上海,上海科学技术文献出版社,1988,12:49-51
    [73]Duong D. Do,Adsorption analysis:equilibria and kinetics-series on chemical engineering Vol.2[M],London,Imperial College Press,1998:11-336
    [74]李海龙,李立清,郜豫川,张剑峰,高招,唐琳.用微孔填充理论研究活性炭对有机气体的吸附性能[J],化工环保,2007,27(2):113-1 16
    [75]C.Nguyen,D.D.Do.The Dubinin-Radushkevich equation and the underlying microscopic adsorption description[J]. Carbon 39 (2001):1327-1336
    [76]Matias A. Monsalvo,Alexander A. Shapiro. Modeling adsorption of binary and ternary mixtures on microporous media[J]. Fluid PHase Equilibria 254 (2007):91-100
    [77]ZHANG Ji-xing,YUAN Shu-ping,SI Hong-zong. DFT Investigation of NOx Interaction with Cu+Ion-exchanged Zeolites[J],Science Technology and Engineering,2010.10(12): 2813-2819
    [78]Taylor G1. Electrically driven jets. Proc Roy Soc London A,1969,313:453-475
    [79]Haghi AK,Akbari M. Trends in electrospinning of natural nanofibers[J]. Phys Status Solidi,2007,204:1830-1834.
    [80]Deitzel JM, Kleinmeyer J, Harris D, Tan NCB. The effect of processing variables on the morpHology of electrospun nanofibers and textiles[J]. Polymer 2001,42:261-272.
    [81]Gupta P,Elkins C,Long TE,Wilkes GL. Electrospinning of linear homopolymers of poly(methylmethacrylate):exploring relationships between fiber formation,viscosity, molecular weight and concentration in a good solvent[J]. Polymer 2005,46:4799-4810.
    [82]Hayati I,Bailey AI,Tadros TF. Investigations into the mechanisms of electrohydrodynamic spraying of liquids.1. Effect of electric-field and the environment on pendant drops and factors affecting the formation of stable jets and atomization[J]. J Colloid Interface Sci,1987; 117:205-221.
    [83]Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Structure and process relationship of electrospun bioadsorbable nanofiber membrane[J]. Polymer 2002a;439:4403-4412.
    [84]Geng X, Kwon OH, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials,2005,26:5427-5432.
    [85]O.S. YOrdem,M. Papila,Y.Z. Menceloglu. Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter:An investigation by response surface methodology[J]. Materials and Design 29 (2008):3444
    [86]张旺玺.丙烯睛与衣康酸的共聚和[J],山东工业大学学报,1998,28(5):401-406
    [87]Zhang Wangxi,DMSO/H2O process for preparing high-tensile strength carbon fiber[J], China synthetic fiber industry,2005,28(2):38-39.
    [88]Y.H.BANG,S.LEE,H.H.CHO,Effect of MethylAcrylate Composition on the Microstructure Changes of High Molecular Weight Polyacrylonitrile for Heat Treatment[J],J.Appl.Polym.Sci.,1998,68:2205
    [89]Shinghua Chang,Thermal Analysis of Acrylonitrile Copolymers Containing Methyl Acrylate[J].Appl.Polym.Sci.,1994,54:405-407
    [90]郑昌仁编.高聚物分子量及其分布[M],北京:化学工业出版社,1986.7
    [91]张旺玺,李木森等.丙烯腈与衣康酸在DMSO/H2O中的聚合及聚合物性能表征,高分子 学报[J],2003(1):83-87
    [92]Pushpa B,Sreekumar T V.Kushal S. Thermal behavinnr of acrvlonitrile copolvmers baving methacrylic and itaconic acid comonomers[J]. Journal of Applied Polymer Science, 2001,79:1640-1652
    [93]Song Wang,Zhao-Hui Chen. et al.Influence of heat treatment on physical-chemical properties of PAN-based carbon fiber [J]. Ceramics International.2006(32):291-295
    [94]贺福.碳纤维及其应用技术,北京:化学工业出版社[M],2004:68-69
    [95]Darrell H. Reneker,Alexander L. Yarin. Electrospinning Jets and polymer nanofibers[J]. Polymer 49(2008):2387-2425
    [96]Fong H,Chun I,Reneker D H,Beaded nanafibers formed during electrospinning[J]. Polymer,1999,40:4585-4592
    [97]覃小红,王善元.Taylor锥多喷头静电纺丝机,CN101210352,2008
    [98]T.Jarusuwannapoom,W.Hongrojjanawiwat,S.Jitjaicham, L.Wannatong, M.Nithitanakul, C.Pattamaprom, P.Koombhongse, R.Rangkupan, P.SupapHol. Effect of solvents on electrospinnability of polystyrene solutions and morpHological appearance of resulting electrospun polystyrene fibers[J]. European polymer Journal,2005.41(3):409-421
    [99]P.Gupta,C.Elkins,T.E.Long,G.L.Wilker. Electrospinning of linear homopolymers of poly(methyl methacrylate):Exporing relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent[J],Polymer,2005.46(13):4799-4810
    [100]钱人元.高分子凝聚态的几个基本物理问题[J],中国科学院院刊,2000(3):174-177
    [101]李强,杨颖,贾志东等.电纺制备PEO纳米纤维过程参数的试验研究[J],高电压技术,2007.2:186-189
    [102]顾德,吴丽莉,刘丽芳,俞建勇.静电纺丝过程中的非稳定性研究[J],合成纤维工业,2006,29(2):43-45
    [103]Gupta A K,Maiti A K. Effect of heat treatment on the strueture and mechanical properties of polyaerylonitrile fibers[J]. Journal of Applied Polymer Scienee,1982,27:2409-2416,
    [104]Nandana Bhardwaj,Subhas C. Kundu,Electrospinning:A fascinating fiber fabrication technique[J],Biotechnology Advances 28 (2010):325-347
    [105]Miyoshi Kaburagi. et al. Small angle X-ray scattering from voids within fibers during the stabilization and carbonization stages [J],Carbon 41 (2003):915-926
    [106]梁颖琳,岳奇伟, 秦显营,李志宏,吴自玉,吕永根,巩雁军.X射线小角散射研究碳纤维原丝预氧化过程中的微孔结构[J],光散射学报,2009,21(4):341-344
    [107]K.Sen,P.Bajaj,T.V.Sreekumar.Thermal behavior of drawn acrylic fibers[J]. Polymer science: Part B:Polymer PHysics,2003,41:2949-2958
    [108]Bahrami S H,Bajaj P,Sen K.Thermal behavior of acrylonitrile carboxylic acid copolymers[J],Journal of Applied Polymer Science,2003(88):685
    [109]Rahaman M S A,Ismail A F,Mustafa A. A review of heat treatment on polyacrylonitrile fiber[J]. Polymer Degradation and Stability,2007,92(8):1421-1432
    [110]于美杰,王威强,王启芬,马婕,,胡秀颖,王成国.聚丙烯腈预氧丝皮芯结构的影响因素与防控措施[J],,功能材料,2010,41(6):1019-1022
    [111]钱伯章.国内外碳纤维应用领域、市场需求以及碳纤维产能的进展(2)[J],高科技纤维与 应用,2010,35(1):43-46
    [112]金立国.我国碳纤维工业现状和碳纤维应用[J],合成纤维,2009(10):1-6
    [113]Rahaman M S A,Ismail A F,Mustafa A. A review of heat treatment on Polyaerylonitrile fiber. Polymer Degradation and Stability,2007,92(8):1421-1432.
    [114]T.H.Ko,C.Y.Chen. Raman spectroscopic study of the microstructure of carbon films developed from cobalt chloride-modified polyacrylonitrile[J]. J. Appl. Polym. Sci.1999,71: 2219-2225
    [115]王俊,朱本松.沥青预氧化丝在碳化过程中的红外分析[J],合成纤维工业,1995,18(5):30-33
    [116]X.D.Liu,W.Ruland. X-ray studies on the structure of polyacrylonitrile fibers [J]. Macromolecules,1993,26:3030-3036.
    [117]M.Sokot,J.Grobelny,E.Turska. Investigation of structural changes of polyacrylonitrile on swelling,wide-angle X-ray scattering study[J]. Polymer,1987(28):843-846.
    [118]R.A.Allen,I.M.Ward.An investigation into the possibility of measuring an" X-ray modulus"and new evidence for hexagonal packing in polyacrylonitrile [J].Polymer. 1994,35(10):2063-2071
    [119]Gil-Young Oh,Young-Wan Ju,Mi-Young Kim,Hong-Ryun Jung,Hyung Jin Kima,b, Wan-Jin Lee. Adsorption of toluene on carbon nanofibers prepared by electrospinning[J],Science of the total environment,2008(393),341-347
    [120]Ji Sun Im,Soo-Jin Park,Tae Jin Kim,Young Ho Kim,Young-Seak Lee. The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption [J],Journal of Colloid and Interface Science,318 (2008):42-49
    [121]叶新强,干占湖,付宣.应用前景广阔的微波处理技术[J],山东环境,1998(1):21-23
    [122]立本英楼,安部郁夫,高尚愚.活性炭的应用技术:其维持管理及存在问题[M],第一版,东南大学出版社,南京,2002:68-70
    [123]沈曾民,张文辉,张学军.活性炭材料的制备与应用[M],第一版,化学工业出版社,北京,2006:280-282
    [124]袁志发,周静芋.试验设计与分析[M],北京:高等教育出版社,2000:292-296
    [125]季涛,倪朝晖,徐山青,等.静电纺PAN纤维微波活化技术及其吸附性能[J],纺织学报,2006(27)3,16-20
    [126]I.Martin-Gullon,R.Andtews,M.Jagtoyen, etc., PAN-based activated carbon fiber composites for sulfur dioxide conversion:influence of fiber activation method[J], Fuel 80(2001):969-977
    [127]刘振宇,郑经堂,王茂章,张碧江.PAN基ACF的孔结构表征[J], 材料研究学报,1999.13(5):477-482
    [128]Georges Grevillot,JosePH D.Wander,K.James Hay.Activated Carbon Fiber Cloth Eleetrothermal Swing Adsorption System.Environ[J].Sei.Teehnol.,2004,38(18):4865-4877
    [129]S.J. Gregg, K.S.W. Sing, Adsorption Surface Area and Porosity[M].Academic Press,1882: 206-217
    [130]邹继兆,曾燮榕,熊信柏,黎晓华,唐汉玲,李龙.炭纤维预制体的微波加热性能及其加热机理探讨[J],无机材料学报,2007,22(6):1165-1168
    [131]金燕,蒋文举,江霞,朱晓帆.微波加热对活性炭表面基团及其对S02吸附性能的影响[J],环境污染治理技术与设备,2003.4(4):35-38
    [132]汪政德,张茂林,梅海燕,孙良田,李士伦,吴清松.毛细凝聚和吸附-脱附回路的物理化学解释[J],新疆石油地质,2002,23(6):233-235
    [133]艾艳玲,李铁虎,冀勇斌.微波加热与传统加热制备高比表面积活性炭的对比研究,西北工业大学学报,2009,27(4):527-531
    [134]立本英机,安部郁夫(高尚愚译编).活性炭的应用技术-其维持管理及存在问题[M],南京,东南大学出版社,2002:33-35
    [135]仲亚娟,孙亚娟,于万秋,等.PAN基炭纤维微孔结构的研究[J], 吉林师范大学学报(自然科学版),2005(3):16-18
    [136]RalpH T. Yang. Adsorbentsfundamentals and applications[M], A john wiley & sons, inc.,publication,USA,2003:105-106
    [137]Nabais J.M.V.,Carrott P.J.M. Ribeiro Carrott M.M.L.,et al. Preparation and modification of activated carbon fibres by microwave heating[J].Carbon,2004,42:1315-1320
    [138]Carrott P.J.M.,Nabais J.M.V.,Ribeiro Carrott M.M.L.,et al. Thermal treatments of activated carbon fibres using a microwave furnace[J]. Microporous and Mesoporous Materials,2001,47:243-252
    [139]Menendez J.A., Menendez E.M.,Iglesias M.J.,et al. Modification of the surface chemistry of active carbons by means of microwave-induced treatments[J].carbon,1999,37:1115-1121
    [140]P.J.M. Carrott J.M.V. Nabais,M.M.L. Ribeiro Carrott,J.A. Men_endez. Microwave heating as a novel method for introducing molecular sieve properties into activated carbon fibres[J],Carbon 42 (2004):219-238
    [141]Krisztina Laszlo,Characterization and adsorption properties of polymer-based microporous carbons with different surface chemistry[J], Microporous and Mesoporous Materials,80 (2005):205-211
    [142]Ji Sun Im, Soo-Jin Park, Tae Jin Kim, Young Ho Kim, Young-Seak Lee.The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption [J] Journal of Colloid and Interface Science 318 (2008):42-49
    [143]何爱桃,杨胜园,李程.株洲市室内空气甲醛污染调查及防治措施[J],实用预防医学,2009,16(1):140-141
    [144]Zhenyu ryu,Jingtang Zheng,maozhang Wang. Porous structure of PAN-based activation carbon fibers[J],Carbon,1998,36(4):427-432
    [145]Horvath G,Kawazoe K. Method for the calculation of effective pore size distribution in molecular sieve carbon[J]. J Chem Eng Japan,1983,16(8):470-475
    [146]陆安慧,郑经堂,王茂章,樊彦贞.H-K法研究ACFs的微结构[J],新型炭材料,2000,15(1):23-27
    [147]许颖,金东日,王清珊.改性粉煤灰对甲醛和氨吸附量的研究[J],延边大学学报(自然科学版),2008.34(2):128-130
    [148]N. Azouaoua, Z. Sadaou, A. Djaafri, H. Mokaddem. Adsorption of cadmium from aqueous solution onto untreated coffee grounds:Equilibrium, kinetics and thermodynamics [J], Journal of Hazardous Materials,184 (2010):126-134
    [149]何小超,郑经堂,于维钊等.活性炭臭氧化改性及其对噻吩的吸附热力学和动力学[J],石油学报,2008,24(4):426-432
    [150]魏瑞霞,陈连龙,陈金龙,等,高等学校化学学报[J],2004,25(11):2095
    [151]T.S. Anirudhan,P.G. Radhakrishnan. Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell, J. Chem. Thermodynamics 40 (2008):702-709
    [152]王丽莉,RF气凝胶的制备、掺杂及分子结构理论研究[D],四川大学,硕士学位论文,成都,2004(6):42-49
    [153]杨全红,郑经堂,王茂章,张碧江.活性炭纤维极微孔对极低分压吸附质的吸附初步分析[J],炭素,2000(3):9-11
    [154]Seiki Tanada,Naohito Kawasaki, Takeo Nakamura, Mamiko Araki, Masahiko Isomura, Removal of Formaldehyde by Activated Carbons Containing Amino Groups [J], Journal of Colloid and Interface Science 214 (1999):106-108
    [155]沈曾民,张文辉,张学军.活性炭材料的制备与应用[M],北京,化学工业出版社,2006.7:6-8
    [156]陈慧.活性炭柱吸附带长与设计流速的相关性分析[J],化工给排水设计,1998(3):14-16
    [157]Lodewyckx, P., Wood, G.O., Ryu, S.K.. The Wheeler-Jonas equation:a versatile tool for the prediction of carbon bed breakthrough times[J].2004,Carbon 42,1351-1355.
    [158]YOON Y H,J H Nelson.A Theoretical model for respirator cartridge service life[J].Am Ind Hyg Assoc J,1984,45(8):509-516.
    [159]陈占营,王旭辉,常印忠.氙在活性炭纤维吸附床上穿透的动力学模型[J],无机化学学报,2008,24(3):351-356
    [160]G.O. Wood,A review of the effects of covapors on adsorption rate coefficients of organic vapors adsorbed onto activated carbon from flowing gases [J],Carbon 40 (2002):685-694
    [161]P. Lodewyckx,G.O. Wood,S.K. Ryu. The Wheeler-Jonas equation:a versatile tool for the prediction of carbon bed breakthrough times[J]. Carbon 42 (2004):1351-1355
    [162]Jufang Wu, Ola Claesson,Ingrid Fangmark, Lars-Gunnar Hammarstrom. A systematic investigation of the overall rate coefficient in the Wheeler-Jonas equation for adsorption on dry activated carbons[J]. Carbon 43 (2005):481-490
    [163]李左江,贺福,王茂章.PAN基活性炭纤维床层上有机溶剂蒸汽的穿透特性[J],离子交换与吸附,1997,13(3):232-238.
    [164]Liu Jun,Huang Zheng-hong,Wang Zhan-sheng,et al.Gas pHase tricholoethylene removal at low concentration using activated carbon fiber[J]. Journal of Environmental Science,2004,16 (1):53-55.
    [165]樊惠玲,金国杰,上官炬,等.水气氛下活性炭固定床对二硫化碳的吸附动力学行为[J],环境科学学报,1999,19(5):489-493
    [166]高华生,王大晕,叶芸春.空气湿度对低浓度有机蒸气在活性炭上吸附平衡的影响[J],环境科学学报,2002,22(2):194-198
    [167]P. Lodewyckx, G.O. Wood, S.K. Ryu,The Wheeler-Jonas equation:a versatile tool for the prediction of carbon bed breakthrough times[J],Carbon 42 (2004):1351-1355
    [168]Yang R.T.,Gas Separation by Adsorption Processes[M],Butterworths:Boston,1987:50-101
    [169]Mayfield P.L.J.,Do D.D., Measurement of the Single-Component Adsorption Kinetics of Ethane,Butane,and Pentane onto Activated Carbon Using a Differential Adsorption Bed[D],Ind.Eng.Chem.Res.,1991,30(6):1262-1270
    [170]唐运雪.有机废气处理技术及前景展望[J],湖南有色金属,2005,21(5):31-35
    [171]裴冰.活性炭吸附净化低浓度甲苯气体工艺改进研究[D],上海:同济大学,2008
    [172]张运乾,刘震炎,施建伟,上官文峰.真空紫外灯动态降解空气中低浓度甲醛的研究[J],环境污染治理技术与设备,2006,7(2):130-133
    [173]朱大庆,林忠平.病床表面杀菌消毒的试验研究,质控与安全[J],2008.8:115-117
    [174]Chen Feiyan, S.O. Pehkonen, Madhumita B. Ray,Kinetics and mechanisms of UV-pHotodegradation of chlorinated organics in the gas pHase[J],Water Research 36 (2002):4203-4214
    [175]Pengyi Zhang, Juan Liu, Zhongliang Zhang.VUV pHotocatalytic degradation of toluene in the gas pHase[J]. Chemistry Letters,2004,33(10):1242-1243
    [176]Juyoung Jeonga, Kazuhiko Sekiguchia, Wookeun Leeb. PHotodegradation of gaseous volatile organic compounds(VOCs) using TiO2 pHoto irradiated by an ozone-producing UV lamp:Decomposition characteristics, identification of by-products and water-soluble organic intermediates[J]. Journal of PHotochemistry and PHotobiology A:Chemistry, 2004,169(3):277-285
    [177]Fukui S.,HanasakiY.,Ogawa S. High-performance liquid chromatograpHic determination ofinethanesulpHinic acid as a method for the determination of hydroxyl radicals[J], Journal of Chromatography A,1993,630:187-193
    [178]储金宇,吴春笃,陈万金,陈志刚.臭氧技术及应用[M],化学工业出版社,第一版,北京,2002.5:69-73
    [179]高华生,,汪大军,叶芸春,谭天恩.空气湿度对低浓度有机蒸气在活性炭上吸附平衡的影响[J],环境科学学报,2002,22(2):194-198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700