用户名: 密码: 验证码:
复杂网络上个体的不同行为导致多样的整体行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对近年兴起的复杂网络及其上动力学行为的研究受到越来越多的关注,这是由于真实世界中的很多复杂系统都可以抽象为相互作用的个体组成的网络。例如:人与人之间的社会关系网、航空网、万维网、Internet网、电力网、科学家合作网、新陈代谢网、基因调控网等等。因此,对复杂网络的统计特征以及其上的动力学行为的研究成为复杂性科学中的一个研究热点。
     本论文主要研究复杂网络上各种个体行为对网络整体动力学行为的影响,包括网络上的传染病动力学和演化博弈动力学。具体包括以下几个方面:
     一、研究自愿接种机制下个体行为和网络结构对传播过程以及预防控制效果的影响。
     1,研究自愿接种机制在不同网络上产生的不同效果。由于在自愿接种机制下每个个体能认识到自己被感染的风险正比与自身的度,所以度大的节点更愿意采取接种。因此自愿接种机制在无标度网络上的效果比在随机网络上的效果好。
     2,利用动态规划方法建立两种不同的风险评价体系,然后研究这两种评价体系对个体行为产生的影响,进而对动力学特征的影响。一种评价体系是统一评价体系——所有个体认为被感染的风险是一样的,即与节点度无关,另外一种风险评价体系是偏爱性评价体系——个体认为被感染的风险正比与自身的节点度。通过研究发现两种风险评价体系会对传播动力学产生本质的差别。
     二、研究复杂网络上的传播动力学和网络的共同演化。当疾病爆发的时候人们会减少和外面的接触,一旦疾病的风险减低时他们又会恢复原来的生活方式。因此我们假设网络中个体根据对疾病风险的了解程度决定是断边还是恢复一部分原来被断的边。同时研究了时间滞后性对传播行为的影响。通过研究发现网络结构和疾病的动力学过程在一定条件下会通过霍夫分岔从稳定状态转化到周期演化。
     三、研究具有记忆能力的模仿机制对整体的接种范围和传播范围的影响。通过研究发现个体具有记忆能力的模仿机制对社会是一把双刃剑。当接种代价比较小的时候,记忆能力越强,接种范围越广,因而感染比例越少。反之,当接种代价比较大的时候,记忆能力越强反而会降低接种的积极性,从而不能有效的抑制疾病传播。
     四、假设易感染者根据他们了解到的疾病信息可以在两种不同状态-----无保护态( S_u)和保护态( S_p)之间相互转化。从S_u到S_p的转移概率随着感染人数的增加而增加,反之,从S_p到S_u的转移概率随着感染人数的增加而减小。同时,我们假设个体对疾病风险信息的了解具有一定的时间滞后性。通过Monte Carlo方法和Markov chain方法研究发现,基于滞后信息的状态转化会导致传染病的周期爆发。
     五、个体的期望收益对演化博弈中合作行为的影响。
     1,对于囚徒困境博弈,定义网络中个体的学习意愿与自身对收益的期望值有关,期望收益越高则学习意愿越高,反之则越小。通过研究发现适当的期望值可以促进最优的合作频率。同时研究了噪音对合作频率的影响,发现随机共振现象。
     2,考虑到很多大型公司往往在不同的地区都有他们的业务。如果在某个地区的业务不能达到他们预期的期望值,这些公司很有可能取消在这个地区的业务而转投到其他的地区。受此启发,我们假定空间公共物品博弈上断边重连的概率依赖于个体的期望收益,当期望收益比较低的时候,断边概率很小,反之断边重连概率大。研究发现适当的期望收益可以促进最优的合作频率。同时通过研究网络的度分布,我们发现适当的期望对应的网络是一个异质性的网络,因此可以很好的解释出现最优合作频率的原因。
In recent years, the newborn of complex networks and the dynamics of complex networks have been paid more and more attentions by researchers. It is because that many complex systems in real world can be described in forms of complex networks. Typical examples include social networks among population, airport networks, World Wide Web, Internet, power grids networks, collaboration networks, metabolic networks and genetic regulatory networks and so on. Therefore, the study on the statistical characteristics of complex networks and their dynamic behaviors become a research hotspot in the science of complexity.
     In this thesis, the effects of individuals’different behaviors on the overall behaviors on complex networks are studied, including the spread of epidemic on complex networks and evolutionary game on complex networks, respectively. Concretely, it includes several aspects as follows:
     Firstly, the effects of individual behaviors and the structures of networks on the dynamics of epidemic and the control effects under voluntary vaccination mechanism are investigated.
     1, the influence of the voluntary vaccination mechanism on different topologies of networks is studied. Under voluntary vaccination mechanism, each individual knows that the risk of being infected is proportional to its degree, so the nodes with large degrees (hub nodes) are more willing to take vaccination. Thus, in such case, the control effects on scale-free network are better than on the random network.
     2, two different risk assessment systems are established by the technique of dynamic programming, and then study the impacts of the two different systems on the individual behaviors, consequently, on the dynamics of epidemic. One is that each individual estimates the risk of infection in a uniform way, that is, irrelevant to the degrees of nodes. Another is that the risk of being infected for each individual is related to the degree of itself. By investigating the two different estimation systems, we find that the two different estimation systems can yield distinct effects on the dynamics of epidemic and control efforts.
     Secondly, the co-evolution of the spread of epidemic and the contact network is studied. Facing the outbreaks of infectious diseases, people often reduce the outside activities to avoid the risk of being infected. However, once the prevalence of disease is minimal, people will recover their norm life. So we assume that individuals adjust their contact patterns according to the perceived risk from disease. Some links are cut if the risks of infection are high, whereas, some original broken links will be recover again. Meanwhile the effects of the lag of information of disease for individuals on the dynamics of epidemic are also considered. We find that, under certain conditions, both structure of network and the transmission of epidemic can pass from steady state to periodic oscillation via Hopf bifurcation.
     Thirdly, the effects of the memory-based learning capability on the coverage of vaccination and on the final epidemic size are considered. By investigations, we find that individual’s memory-based learning capability is a double-edged sword for society. If the cost of vaccination is low, the larger of the learning capabilities of individuals, the higher coverage of vaccination and then lower coverage of diseases. Yet, if the cost of vaccination is high, the zeal of vaccination is hindered for stronger learning capability, so the outbreaks of diseases.
     Fourthly, we assume that susceptible individuals can switch their states between the unprotected state ( S_u) and the protected state ( S_p) relying on their perceived risk of diseases. The transition probability from S_uto S_pincreases with the number of infections they acquired. On the contrary, the transition probability from S_pto S_pdecreases with the number of infections they acquired. Meanwhile, we assume that the acquired information by individuals has a certain time lag. By Monte Carlo method and Markov chain method, we find that the time-delayed information of diseases can induce the periodic outbreaks of infectious diseases.
     Fifthly, how the aspiration of individuals affects the frequency of cooperation on evolutionary games is studied.
     1, for prisoner's dilemma game, individuals learning motivation are defined relying on their aspiration payoffs. The higher the aspiration payoffs and the higher learning motivation of individuals, otherwise opposite situation occurs. We find that moderate aspiration can induce the highest level of cooperation, yet too large or too small aspiration is not favorable to cooperation. Also the impact of noise on the frequency of cooperation is studied and find that there exits the stochastic resonance phenomenon.
     2, some large corporations often extend their business to different regions to pursue their maximal profit. However, once the profit gained from one region is undesirable, they will withdraw the investment partially or entirely, and then transfer to other regions. Inspired by such interesting phenomena, we consider a co-evoluation model in spatial public goods game where the probability of reconnection depends on the aspiration payoffs of individuals. Namely, the reconnection probability is proportional to the aspiration payoffs of individuals. We find that the highest frequency of cooperation can emerge when the aspiration payoff is proper given. At the same time, by investigating the degree of networks, we find the network is a heterogeneous network, so the optimal phenomenon can be well explained.
引文
[1] R. Albert, A. L. Barabási, Statistical mechanics of complex networks, Reviews of Modern Physics, 74, 47-97, 2002.
    [2] S. N.Dorogovtsev, J. F. F. Mendes, Evolution of networks, Advances in Physics, 51, 1079-1187, 2002.
    [3] M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45, 167-256, 2003.
    [4]郭雷,许晓鸣,史定华等.复杂网络.上海科技教育出版社,上海, 2006.
    [5]汪小帆,李翔,陈关荣.复杂网络理论及其应用.清华大学出版社,北京,2006.
    [6] S. Boeealetti, V. Latora, Y. Moreno, M. Chavez, D. U. Hwang,Complex networks: Structure and dynamics, Physics Reports, 424, 175, 2006.
    [7] P. Erd(o|¨)s, A. Rényi, Publications Mathematical, 6, 290-297, 1959.
    [8] P. Erd(o|¨)s, A. Rényi, Publications of the Mathematical Institute of the Hungarian Academy of Science, 5, 17-61, 1960.
    [9] S. H.Strogatz, Exploring complex networks, Nature, 410, 268-276, 2001.
    [10] A. L. Barabasi, R.Albert, Emergence of scaling in random networks, Science, 286, 509-512, 1999.
    [11] S. Milgram,The small world problem, Psychology Today, 1, 61-67, 1967.
    [12]王文旭,复杂网络的演化动力学及网络上的动力学过程研究,Ph.D thesis,中国科学技术大学,2007.
    [13] A. Vespignani, Reaction-diffusion processes and epidemic metapopulation models in complex networks, Eur. Phys. J. B 64, 349–353, 2008.
    [14] J. D. Noh, H. Rieger, Random Walks on Complex Networks, Phys. Rev. Lett., 92, 118701, 2004.
    [15] A. Arenas, A. D. Guilera, J. Kurths, Y. Moreno, C. S. Zhou,Synchronization in complex networks, Physics Reports, 469, 93-153, 2008.
    [16]赵明,汪秉宏,蒋品群,周涛,复杂网络上动力系统同步的研究进展,物理学进展, 25, 273-295, 2006.
    [17]赵明,复杂网络上动力现象的研究,Ph.D thesis,中国科学技术大学,2007.
    [18] R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E,63,066117,2001.
    [19] R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys.Rev. Lett., 86, 3200, 2001.
    [20] R. Pastor-Satorras and A. Vespignani, Epidemic dynamics in finite size scale-free networks, Phys. Rev. E, 65, 035108(R), 2002.
    [21] R .M. May and A.L. Lloyd, Infection dynamics on scale-free networks, Phys. Rev. E, 64, 066112, 2001.
    [22] Y. Moreno, M. Nekovee, A. F. Pacheco, Dynamics of rumor spreading in complex networks, Phys. Rev. E, 69, 066130, 2004,
    [23] S. G. Suo, Y. Chen, The dynamics of public opinion in complex networks, JASSS, 11, 2-12, 2008.
    [24]马知恩,周义仓,王稳地等.传染病动力学的数学建模与研究,北京,科学出版社,2004.
    [25] J. Von Neumann, O. Morgenstern, Theory of Games and Economic Behaviour, Princeton University Press, 1944.
    [26] J. M. Smith, Evolution and the Theory of Games, Cambridge University Press, 1982.
    [27] C .H. Papadimitriou , Algorithms, games, and the internet, in Conference Proceedings of the Annual ACM Symposium on Theory of Computing, 749-753, 2001.
    [28] N. Nisan, A. Ronen, Algorithmic mechanism design, Games and Economic Behavior, (1-2), 166-196, 2001.
    [29] J. W. Weibull, Evolutionary Game Theory, MIT Press, 1996.
    [30] R. Axelrod, The Evolution of Cooperation, New York, Basic Books, 1984.
    [31] M. A. Nowak , A. Sasaki, C. Taylor, et al., Emergence of cooperation and evolutionary stability in finite populations, Nature,428, 646-650,2004.
    [32]荣智海,复杂网络上的演化博弈与机制设计研究,Ph.D thesis,上海交通大学,2008.
    [33]方锦清,汪小帆,刘曾荣,略论复杂性问题与非线性复杂网络系统的研究,科学导报,2,9-12,2004.
    [34]吴金闪,狄增如,从统计物理学看复杂网络研究,物理学进展,24, 16-46, 2004.
    [35]严钢,复杂网络上扩散与传输的若干问题研究,Ph.D thesis,中国科学技术大学,2010.
    [36] G. Yan, T. Zhou, B. Hu, Z. Q. Fu, B. H. Wang, Efficient routing on complex networks, Phys, Rev. E, 73, 046108, 2006.
    [37] C. M. Schneider, T. Mihaljev, S. Havlin, H. J. Herrmann, Restraining Epidemics by Improving Immunization Strategies, arXiv:1102.1929v1.
    [38]李天华,邹艳丽,唐贤健,陈超,欧启标,加权无标度网络的免疫策略研究,36,计算机工程,159-162,2010.
    [39] M. Chavez, D.-U. Hwang, A. Amann, H. G. E. Hentschel, and S. Boccaletti, Synchronization is enhanced in weighted complex networks, Phys. Rev. Lett., 94, 218701,2006.
    [40] L. F. Wang, Q. L. Wang, Y. W. Jing, H. Yu, Enhancing complex network synchronization based on the node betweenness, Proceedings of the 17th World Congress The International Federation of Automatic Control, Seoul, Korea,13282-13286,2008.
    [41] M. E. J. Newman, Assortative Mixing in Networks, Phys. Rev. Lett.,89, 208701, 2002 .
    [42] (美)皮特-布鲁克史密斯(译者:马永波),未来的灾难:瘟疫复活与人类生存之战,海南出版社,1999.
    [43]周涛,傅忠谦,等,复杂网络上传播动力学研究综述,自然科学进展, 15(5), 513-518, 2006.
    [44] R. M. Anderson, R. M. May, Infectious Diseases of Humans, Oxford University Press, 1991.
    [45] H .W. Hethcote, The mathematics of infectious diseases.Siam Review, 42(4):599-653, 2000.
    [46]倪顺江,基于复杂网络理论的传染病动力学建模与研究, Ph.D thesis,清华大学,2009.
    [47] C. Moore, M. E. J. Newman, Epidemics and percolation in small-world networks, Phys. Rev. E, 61, 5678, 2000.
    [48]周海平,复杂网络的演化模型及传播动力学研究,Ph.D thesis,贵州大学,2009.
    [49] Z. H. Liu, B. B. Hu, Epidemic spreading in community networks, Europhys. Lett. , 72, 315, 2006.
    [50] W. Huang, C. C. Li, Epidemic spreading in scale-free networks with community structure, J. Stat. Mech., P01014, 2007.
    [51] D. F. Zheng, P. M. Hui, S. Trimper, B. Zheng, Epidemics and dimensionality in hierarchical networks, Physica A, 352, 659, 2006.
    [52] A. Grabowski, R. A. Kosiński, The SIS model of epidemic spreading in a hierarchical social network, Acta. Phys. Pol.A, 36, 1579-1593, 2005.
    [53] X. J. Xu, X. Zhang, J. F. F. Mendes, Impacts of preference and geography on epidemic spreading, Phys. Rev. E, 76, 056109, 2007.
    [54] W.P. Guo, X. Li, X. F.Wang, Epidemics and immunization on Euclidean distance preferred small-world networks, Physica A, 380, 684-690, 2007.
    [55] V.Colizza, A. Vespignani, Invasion Threshold in Heterogeneous Metapopulation Networks,Phys. Rev. Lett., 99, 148701, 2007.
    [56] V. Colizza, R. Pastor-Satorras, A. Vespignani, Reaction-diffusion processes and metapopulation models in heterogeneous networks, Nature Physics 3, 276-282, 2007.
    [57] V. Colizza, A.Barrat, M. Barthelemy, A. Vespignani, Epidemic predictability inmeta-population models with heterogeneous couplings: the impact of disease parameter values, International Journal of Bif. and Chaos. 17, 2491-2500, 2007.
    [58] M. Tang, Z. H. Liu, and B. W. Li, Epidemic spreading by objective travel, Europhys. Lett. , 87, 18005, 2009.
    [59] S. Meloni, A. Arenas, Y. Moreno, Traffic-driven epidemic spreading in finite-size scale-free networks, Proc. Natl Acad. Sci. USA, 106, 16897, 2009.
    [60] S. J. Ni,W. G. Weng, Impact of travel patterns on epidemic dynamics in heterogeneous spatial metapopulation networks, Phys. Rev. E, 79,016111, 2009.
    [61] T. Gross, C. J. D. D'Lima, B. Blasius, Epidemic dynamics on an adaptive network, Phys. Rev.Lett. , 96, 208701, 2006.
    [62] T. Gross, B. Blasius, Adaptive coevolutionary networks: a review, J. R. Soc. Interface, 5, 259-271, 2008.
    [63] T. Gross, I. G. Kevrekidis, Robust Oscillations in SIS Epidemics on Adaptive Networks: Coarse graining by automated moment closure, Europhys. Lett. 82, 38004, 2008.
    [64] S. Risau-Gusmsán, D. H. Zanette, Contact switching as a control strategy for epidemic outbreaks, J. Theor. Biol., 257, 52-60, 2009.
    [65] D. H. Zanette, S. Risau-Gusmsán, Infection spreading in a population with evolving contacts, J. Biol. Phys., 34, 135-148, 2008.
    [66] L. B. Shaw and I. B. Schwartz, Fluctuating epidemics on adaptive networks, Phys. Rev. E,77, 066101, 2008.
    [67] L. B. Shaw and I. B. Schwartz, Enhanced vaccine control of epidemics in adaptive networks, Phys. Rev. E, 81, 046120, 2010.
    [68] S. V. Segbroeck, F. C. Santos, J. M. Pacheco, Adaptive contact networks change effective disease infectiousness and dynamics, PLoS. Comput. Biol., 6(8), e1000895, 2010.
    [69] V. Marceau, P. A. No(e|¨)l, L. H. Dufresne, A. Allard, L. J. Dubé, Adaptive networks: Coevolution of disease and topology, Phys. Rev. E , 82, 036116, 2010.
    [70] H. F. Zhang, M. Small, X. C. Fu, G. Q. Sun, B. H. Wang, Modeling the influence of information on the coevolution of contact networks and the dynamics of infectious diseases, submitted.
    [71] R.Cohen, S. Havlin, D. ben-Avraham, Efficient immunization strategies for computer networks and populations, Phys.Rev. Lett., 91, 247901, 2003 .
    [72] J. Müller, B. Sch(o|¨)nfisch, M. Kirkilionis, Ring Vaccination, J. Math. Biol., 41, 143-171, (2000) .
    [73] Y. Chen, G. Paul, S. Havlin, F. Liljeros, H.E. Stanley, Finding a Better ImmunizationStrategy, Phys. Rev. Lett., 101, 058701,2008.
    [74] P. Holme, Efficient local strategies for vaccination and network attack, Europhys. Lett. 68, 908, 2004 .
    [75] R. Pastor-Satorras, A. Vespignani, Immunization of complex networks, Phys. Rev. E, 65, 036104,
    [76] V. Colizza, A. Barrat, M. Barthelémy, A.Vespignani, Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study, BMC Medicine ,5, 34, 2007.
    [77] V. Colizza, A. Barrat, M. Barthelémy, A. J. Valleron, A.Vespignani, Modeling the worldwide spread of Pandemic Influenza: Baseline Case and Containment Interventions, PloS Medicine 4(1) , e13, 2007.
    [78] D. Balcan et al, Seasonal transmission potential and activity peaks of the newinfluenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility, BMC Medicine 7 , 45, 2009.
    [79] P. Wang, M.C. González, C.A. Hidalgo, A. L. Barabási, Understanding the spreading patterns of mobile phones viruses,Science, 324,1071-1076, (2009) ,
    [80] M. Small, and C. K. Tse, Clustering model for transimission of the SARS virus: application to epidemic control and risk assessment, Physica A, 351, 499-511, (2005) .
    [81] J. Gómez-Garde(n|~)es, V. Latora, Y. Moreno, E. Profumo, Spreading of sexually transmitted diseases in heterosexual populations, Proc. Natl. Acad Sci. USA, 105,1399-1404, 2008.
    [82]林国基,贾珣,欧阳硕,用小世界网络模型研究SARS病毒的传播,北京大学学报(医学版),35, 66-69, (2003).
    [83] C. T. Bauch, A. P. Galvani, D. J. D. Earn, Group interest versus self-interest in smallpox vaccination policy, Proc. Natl. Acad Sci. USA, 100, 10564-10567, 2003.
    [84] C. T. Bauch, D. J. D. Earn, Vaccination and the theory of games, Proc. Natl. Acad Sci. USA, 101, 13391-13394, 2004.
    [85] D. M. Cornforth, T. C. Reluga, E. Shim, C. T. Bauch, A. P. Galvani, L. A. Meyers, Erratic Flu Vaccination Emerges from Short-Sighted Behavior in Contact Networks, PLoS Comput Biol, 7(1), e1001062, 2011.
    [86] C. T. Bauch, Imitation dynamics predict vaccinating behaviour, Proc. Roy. Soc. B, 272, 1669-1675, 2006.
    [87] F. Fu , D. I. Rosenbloom, L. Wang ,M. A. Nowak , Imitation dynamics of vaccination behavior on social networks, Proc. R. Soc. B, 278, 42-49, 2011.
    [88] J. Omic, A. Orda, P.V. Mieghem, Protecting against network infectious: A game theoreticperspective, In IEEE INFOCOM, 2009.
    [89] T.Philipson,Economic Epidemiology and Infectious Diseases, NBER Working Paper 7037,1999.
    [90] P.Geoffard, T.Philipson, Rational Epidemics and their public control, Int. Econ. Rev. 37(3) , 603-624, 1996.
    [91] P.Geoffard, T.Philipson, Disease eradication: Public vs private vaccination, Am. Econ. Rev. 87(1) , 222-230,1997.
    [92] I. Z. Kiss, J. Cassel , M. Recker, P. L. Simon, The impact of information transmission on epidemic outbreaks. Math. Bios., 225, 1-10, 2010.
    [93] H. F.Zhang , J. Zhang , C. S. Zhou , M. Small ,B. H. Wang , Hub nodes inhibit the outbreak of epidemic under voluntary vaccination, New Journal of Physics, 12, 023015, 2010.
    [94] H. F. Zhang, J. Zhang, P. Li, M. Small, B. H. Wang, Risk estimation of infectious diseases determines the effectiveness of the control strategy, Physica D, 240, 943-948, 2011.
    [95] S. Funk, E. Gilad, C. Watkins, V. A.A. Jansen, The spread of awareness and its impact on epidemic outbreaks, Proc. Natl. Acad Sci. USA, 106, 6872-6877, 2009.
    [96] S. Funk, M. Salathé, V. A. A. Jansen , Modelling the influence of human behaviour on the spread of infectious diseases: a review. J. R. Soc. Interface, 50, 1257-1274, 2010.
    [97] F. H. Chen, Modeling the effect of information quality on risk behavior change and the transmission of infectious diseases, Math. Bios., 217, 125-133, 2009.
    [98] A. d' Onofrio, P.Manfredi, E.Salinelli, Vaccinating behavior, information, and the dynamics of SIR vaccine preventable disease, Theor. Popul. Biol., 71, 301-317, 2007.
    [99] B. Buonomo. A. d’Onofrio, and D. Lacitignola, Global stability of an SIR epidemic model with information dependent vaccination, Math. Bios., 216, 9-16, 2008.
    [100] X.P. Han, Disease spreading with epidemic alert on small-world networks, Phys. Lett. A, 365, 1-5, 2007.
    [101] E. Klein, R. Laxminarayan, D.L. Smith, C. A. Gilligan, Economic incentives and mathematical models of disease, Environment and Development Economics, 12, 707-732, 2007.
    [102] G. Szabó, G. Fáth, Evolutionary games on graphs, Phys. Rep. 446, 97-216 (2007).
    [103]吴枝喜,荣智海,王文旭,复杂网络上的博弈,力学进展,38,794-804,2008.
    [104]王龙等,复杂网络上的演化博弈,智能系统学报,2,1-10,2007.
    [105] J. F. Nash, Equilibrium points in n-person games, Proc. Natl. Acad Sci. USA, 36(1), 48-49, 1950.
    [106] G. Szabó, C. Hauert, Evolutionary prisoner’s dilemma games with voluntary participation, Phys. Rev. E, 062903, 2002.
    [107] C. Hauert, F. Michor, M. Nowak, M. Doebeli, Synergy and discounting of cooperation in social dilemmas, J. Theor. Biol, 239, 195-202, 2006.
    [108] T. H. Clutton-Brock, G. A. Parker, Punishment in animal societies, Nature, 373, 209-216, 1996.
    [109] E. Fehr, S. G?chter, Altruistic punishment in humans. Nature 415, 137–140, 2002.
    [110] A. Traulsen, C. Hauert, H. D. Silva, M. A. Nowak, K.Sigmund, Exploration dynamics in evolutionary games, Proc. Natl. Acad Sci. USA, 106, 709-712, 2009.
    [111] M .A. Nowak, Five rules for the evolution of cooperation, Science, 314, 1560-1563, 2006.
    [112] W. D. Hamilton,The genetical evolution of social behaviour.I, J. Theor. Biol.,7(1),1-16, 1964.
    [113] W. D. Hamilton, The genetical evolution of social behaviour.II, J. Theor. Biol.,7(1), 17-52, 1964.
    [114] R. L. Trivers, The evolution of reciprocal altruism, Q. Rev. Biol., 46, 35-57, 1971.
    [115] M. A. Nowak, K. Sigmund, Evolution of indirect reciprocity by image scoring, Nature, 393, 573-577, 1998.
    [116] B. Rockenbach, M. Milinski, The efficient interaction of indirect reciprocity and costly punishment, Nature, 444, 718-723, 2006.
    [117] A. Traulsen, M. A. Nowak, Evolution of cooperation by multilevel selection, Proc. Natl. Acad Sci. USA, 103, 10952, 2006.
    [118] M. A. Nowak and R. M. May, Evolutionary games and spatial chaos, Nature, 359, 826 -829, 1992.
    [119] F. C. Santos and J. M. Pacheco, Scale-free networks provide a unifying framework for the emergence of cooperation, Phys. Rev. Lett. 95, 098104, 2006.
    [120] C. Hauert and M. Doebeli, Spatial structure often inhibits the evolution of cooperation in the snowdrift game, Nature 428, 643-646, 2004.
    [121] F. C. Santos, M. D. Santos, and J. M. Pacheco, Social diversity promotes the emergence of cooperation in public goods games, Nature 454, 213-216, 2008.
    [122] F. C.Santos, J .F.Rodrigues, J. M. Pacheco, Epidemic spreading and cooperation dynamics on homogeneous small-world networks, Phys. Rev. E, 72, 056128, 2006.
    [123] G. Abramson, M. Kuperman, Social games in a social network, Phys. Rev. E,63, 0309011, 2001.
    [124] J. Ren, W. X. Wang, F. Qi, Randomness enhances cooperation:A resonance-type phenomenon in evolutionary games, Phys. Rev. E,75, 045101, 2007.
    [125] A. Szolnoki, M. Perc, G. Szabó, Diversity of reproduction rate supports cooperation in the prisoner's dilemma game on complex networks, Eur.Phys.J. B, 61, 505-509, 2008.
    [126] J. B. Kim, A. Trusina, P. Holme, et al., Dynamic instabilities induced by asymmetric influence:Prisoners' dilemma game in small-world networks, Phys. Rev.E, 66, 021907,2002.
    [127] F. Fu, L.H. Liu, L. Wang, Evolutionary prisoner's dilemma on heterogeneous Newman-Watts small-world network, Eur. Phys. J. B, 56, 367-372, 2007.
    [128] C. L. Tang, W. X. Wang, Z. X. Wu ,etc., Effects of average degree on cooperation in networked evolutionary game, Eur.Phys.J. B, 53,411-415, 2006.
    [129] M. A. Nowak, R. M. May, The spatial dilemmas of evolution, Int. J. Bifurcat. Chaos, 3, 35-78, 1993.
    [130] R. Axelrod, The evolution of cooperation (Basic Books, New York, 1984).
    [131] R. Axelrod, W. D. Hamilton, The evolution of cooperation, Science 211, 1390-1396, 1981.
    [132] M. A. Nowak, K. Sigmund, A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's Dilemma game, Nature, 364(6432), 56-58, 1993.
    [133] W. X. Wang, J. Ren, G. Chen, B. H. Wang, Memory-based snowdrift game on networks Phys. Rev. E, 74, 056113, 2006.
    [134] A. Szolnoki, M. Perc, Coevolution of teaching activity promotes cooperation, New J. Phys. 10, 043036, 2008.
    [135] F. C. Santos, J. M. Pacheco, T. Lenaerts, Evolutionary dynamics of social dilemmas in structured heterogeneous populations, Proc. Natl. Acad Sci. USA, 103, 3490-3494, 2006.
    [136] Z.-X. Wu, X.-J. Xu, Z.-G. Huang, S.-J. Wang, Y.-H. Wang, Evolutionary prisoner’s dilemma game with dynamic preferential selection, Phys. Rev. E, 74, 021107, 2006.
    [137] X.-J. Chen, L. Wang, Promotion of cooperation induced by appropriate payoff aspirations in a small-world networked game, Phys. Rev. E, 77, 017103, 2008.
    [138] M. Perc, A. Szolnoki, Social diversity and promotion of cooperation in the spatial prisoner’s dilemma game, Phys. Rev. E, 77, 011904, 2008.
    [139] H. F. Zhang, H. X. Yang, W. B. Du, B. H. Wang, X. B. Cao, Evolutionary public goods games on scale-free networks with unequal payoff allocation mechanism, Physica A, 389, 1099-1104, 2010.
    [140] J. M. Epstein, J. Parker, D. Cummings, R. A. Hammond, Coupled Contagion Dynamicsof Fear and Disease: Mathematical and Computational Explorations, PLoS ONE, 3(12), e3955, 2008.
    [141] G. Pappas, I. J. Kiriaze, P. Giannakis, M. E. Falagas, Psychosocial consequences of infectious diseases, Clinical Microbiology and Infection, 15, 743-747, 2009.
    [142] J. Arino, et al., Pandemic influenza: Modelling and public health perspectives,Math Biosci Eng.,8(1),1-20, 2011.
    [143] A. Perisic, C.T. Bauch, Social contact networks and disease eradicability under voluntary vaccination, PLoS Computational Biology, 5(2),e1000280, 2009.
    [144] A. Perisic, C.T. Bauch, A simulation analysis to characterize dynamics of vaccinating behaviour on contact networks, BMC Infectious Diseases, 9, 77, 2009.
    [145] T. Philipson, Economic epidemiology and infectious diseases, In: Handbook of Health Economics, 2000.
    [146] http://en.wikipedia.org/wiki/Dynamic_programming.
    [147] R. M. Anderson, R. M. May, Infectious Diseases in Humans, Oxford University Press, Oxford, 1992.
    [148] F. C. Coelho, C. T. Code(?)o, Dynamic modeling of vaccinating behavior as a function of individual beliefs, PLoS Comput Biol,5(7), e1000425, 2009.
    [149] P. Manfredi, P. della Posta, A. d’Onofrio, E. Salinelli, F. Centrone, C. Meo and P. Poletti, Optimal vaccination choice, vaccination games, and rational exemption: an appraisal, Vaccine, 28, 98–109, 2009.
    [150] R. Breban, R. Vardavas, S. Blower, Mean-field analysis of an inductive reasoning game: application to influenza vaccination, Phys. Rev.E, 76, 031127, 2007.
    [151] D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22(4), 403, 1976.
    [152] T. Kostova, Interplay of node connectivity and epidemic rates in the dynamics of epidemic networks. J. Differ. Equ. Appl., 15(4), 415-428, 2009.
    [153] Y. Wang, D. Chakrabarti, C. X. Wang, C.Faloutsos, Epidemic spreading in Real Networks: An Eigenvalue Viewpoint, In SRDS, 2003.
    [154] H. F. Zhang, B. H. Wang, Different methods for the threshold of epidemic on heterogeneous networks. Physics Procedia, 3(5), 1831-1837, 2010.
    [155] J. Dushoff, J. B. Plotkin, S. A. Levin, D. J. D. Earn, Dynamical resonance can account for seasonality of influenza epidemics, Proc. Natl. Acad Sci. USA, 101, 16915-16916, 2004.
    [156] D. A. T. Cummings et al, Travelling waves in the occurrence of dengue haemorrhagicfever in Thailand. Nature, 427: 344-347, 2004.
    [157] Y. Z. Zhou, Z. H. Liu, J. Zhou, Periodic Wave of Epidemic Spreading in Community Networks, Chin. Phys. Lett., 24, 581-584, 2007.
    [158] G. Q. Sun, Q. X. Liu, Z. Jin, A. Chakraborty, B. L. Li, Influence of infection rate and migration on extinction of disease in spatial epidemics, J. Theor. Biol., 264, 95-103, 2010.
    [159] M. Kuperman, G. Abramson, Small world effect in an epidemiological model, Phys. Rev. Lett., 86, 2909, 2001.
    [160] H. X. Yang, Z. X. Wu, B. H. Wang, Role of aspiration-induced migration in cooperation, Phys. Rev. E, 81, 065101(R), 2010.
    [161] H. F. Zhang, M. Small, H. X. Yang, B. H. Wang, Adjusting learning motivation to promote cooperation, Physica A, 389, 4734-4739, 2010.
    [162] H. F. Zhang, R. R. Liu, Z. Wang, H. X. Yang, B. H. Wang, Aspiration-induced reconnection in spatial public goods game, Europhys. Lett., 94, 18006, 2011.
    [163] A. Szolnoki, G. Szabó, Cooperation enhanced by inhomogeneous activity of teaching for evolutionary prisoner's dilemma games, Europhys. Lett. ,77, 30004, 2007.
    [164] A. Szolnoki, M. Perc, G. Szabó, Diversity of reproduction rate support cooperation in the prisoner's dilemma game in complex networks, Eur.Phys. J. B, 61, 505-509, 2008.
    [165] M. Perc, A. Szolnoki, Social diversity and promotion of cooperation in the spatial prisoner’s dilemma game, Phys. Rev. E, 77, 011904, 2008.
    [166] J. Y. Guan, Z. X. Wu, Y. H. Wang, Effects of inhomogeneous activity of players and noise on cooperation in spatial public goods games, Phys. Rev. E, 76, 056101, 2007.
    [167] G. Szabó, A. Szolnoki, Cooperation in spatial prisoner’s dilemma with two types of players for increasing number of neighbors, Phys. Rev. E, 79, 016106, 2009.
    [168] L. G. Moyano, A. Sánchez, Evolving learning rules and emergence of cooperation in spatial prisoner's dilemma, J. Theor. Biol. 259, 84-95, 2009.
    [169] H. X. Yang, W. X. Wang, Z. X. Wu, Y.C. Lai, B. H. Wang, Diversity-optimized cooperation on complex networks, Phys. Rev. E, 79, 056107, 2009.
    [170] Z. H. Rong, Z. X. Wu, Effect of the degree correlation in public goods game on scale-free networks, Europhys. Lett., 87, 30001, 2009.
    [171] M. G. Zimmermann, V. G. Eguíluz, M. San Miguel, A. Spadaro: Cooperation in an adaptive network, Adv. Com. Syst. 3, 283-297, 2000.
    [172] M.G. Zimmermann, V. M. Eguiluz, M. S. Miguel, Coevolution of dynamical states and interactions in dynamic networks, Phys. Rev. E, 69, 065102(R), 2004.
    [173] M.G. Zimmermann, V. M. Eguiluz, Cooperation, Social Networks and the Emergence ofLeadership in a Prisoners Dilemma with Adaptive Local Interactions, Phys. Rev. E, 72, 056118, 2006.
    [174] J. Poncela, J. Gómez-Garde(n|~)es, L. M. Floria, Y. Moreno, A. Sanchez, Cooperative scale-free networks despite the presence of defector hubs, Europhys. Lett., 88, 38003, 2009.
    [175] J. Poncela, J. Gómez-Garde(n|~)es, Y. Moreno, and A. Traulsen, Evolutionary game dynamics in a growing structured population, New Journal Phyics 11, 083031, 2009.
    [176] J. Poncela, J. Gómez-Garde(n|~)es, L.M. Floria, A. Sanchez, Y. Moreno, Complex Cooperative Networks from Evolutionary Preferential Attachment, PLOS ONE 3, e2449 (2008).
    [177] A. Cardillo, J. Gómez-Garde(n|~)es, D. Vilone and A. Sanchez, Co-evolution of strategies and update rules in the prisoner’s dilemma game on complex networks New Journal of Physics, 9, 184, 2010.
    [178] W. Li, X. M. Zhang, G. Hu, How scale-free networks and large-scale collective cooperation emerge in complex homogeneous social systems, Phys. Rev. E, 76, 045102(R), 2007.
    [179] M. Perc, A Szolnoki: Coevolutionary games—a minireview, BioSystems, 99, 109–125, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700