用户名: 密码: 验证码:
单分子动力学特性的测量及操控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过二十多年的发展,单分子光谱学已经逐渐从低温光谱方法演化为一个通用的工具,被广泛用于研究物理、化学、生物和材料科学中的各类相关问题。单分子消除了系综平均,可以作为一个纳米光学探针探测它们所处局部环境的结构和动力学信息,这些信息对研究复杂的聚合物材料或其他种类的复杂物质具有重要的意义,单分子光谱可以提供纳米尺度环境的精细图像,展示了局部环境的异构和异于系综平均的信息。染料荧光单分子已经被用作纳米尺度的量子元件或部件,如触发的单光子源和单分子开关,同时这种有机染料分子材料能够用于下一代的半导体器件,如有机发光二极管、有机场效应管和有机太阳能电池等。研究有机单分子与金属、半导体等材料之间的相互作用以及对电场、电流的响应特性可以为制备分子量子器件与分子器件奠定理论基础与技术储备。
     本文主要工作是探测了在室温条件下单分子在液体环境和聚合物薄膜表面及内部的动力学特性,并分别利用电场和电流来操控分子的动力学特性。通过宽场照明成像和共焦扫描系统两种手段跟踪测量了单分子在液体环境下的随机扩散运动的性质;基于共焦扫描光学实验系统和荧光偏振探测相结合的方法测量了聚合物PMMA薄膜上单分子的偶极再取向动力学特性;通过散焦成像和环形照明的技术手段测量了单分子在聚合物薄膜中的转动动力学。研究了电场作用下单分子的荧光偏振度和荧光发射强度的变化,并通过建立相关的理论模型解释了观察到的实验现象。研究了有机染料分子/半导体纳米粒子系统中系综分子和单分子的界面电子转移动力学特性;测量了电流作用下的单分子荧光强度和荧光寿命的变化,并对实验结果进行了数值模拟。
     本论文工作的创新点:
     1.测量了聚合物PMMA薄膜表面单分子的动力学特性,首次发现单分子的偶极再取向具有三种典型的跳跃模式,利用转动关联时间表征聚合物薄膜表面的动力学特征,测量获得PMMA薄膜表面单分子的平均转动关联时间约为0.1s。
     2.基于宽场荧光显微镜对单分子实现散焦光学成像,利用其成像的特征强度分布获得单分子荧光发射的角分布特性,测量了单分子在聚合物薄膜中的平动与转动动力学,同时实现了多个分子的取向跟踪测量。
     3.利用50V/μm的电场强度操控PMMA聚合物薄膜中的染料单分子的荧光强度,通过测量单分子荧光强度对电场响应特性,发现分子荧光对电场响应的滞后效应以及分子荧光对电场操控存在的记忆效应。
     4.首次将电流引入染料单分子/半导体纳米粒子(IT0)系统中,观察到了电流操控下的单分子荧光强度和寿命的变化,在10-50mA/mm2的电流强度作用下有效地熄灭或增强单分子的荧光辐射,数值计算模拟结果与实验结果相吻合。研究发现平衡费米能级和最高占据分子轨道(HOMO)能级之差△Eg决定着两种不同类型的分子动力学变化特性,当△Eg<0时,分子荧光会发生熄灭;当△Eg>0时,分子荧光会出现增强。
Over the past twenty years, single-molecule spectroscopy has evolved from a specialized variety of optical spectroscopy at low temperatures into a versatile tool used to address a broad range of questions in physics, chemistry, biology, and materials science. The optical detection of single molecules provides information about structures and dynamics of their nanoscale environment, free from space and time averaging. These data are particularly useful whenever complex structures or dynamics are present, as in polymers or in porous oxides, but also in many other classes of materials, where heterogeneity is less obvious. Single molecules provide a detailed picture of condensed matter, often revealing surprisingly large inhomogeneity and deviations from the average. Recent work aims at using single molecules as nanoparts or nanoelements in a variety of molecular-scale devices, from triggered sources of single photons to single-molecular switches. This organic dye molecular material also can be used for the next generation of semiconductor devices. Effectively directed material development, however, requires microscopic information on the relationship between chemical structure and physical properties, which is accessible through measurements on single molecules. To understand the intrinsic properties of a molecular semiconductor in a device configuration, such as a light-emitting diode or a field-effect transistor and solar cells, it is imperative to study the behaviour of single molecules under the influence of an external electric field and electric current.
     The main work in the PHD thesis is that the measurement of dynamics of single molecules in glycerin, polymer, and on the surface of polymer, and manipulation of molecular fluorescence by using of electric voltage and current. The diffusion dynamics of single-molecule in glycerin was tracked by the method of image of wide-field microscopy and the track of confocal fluorescence microscopy, respectively. The reorientation dynamics of single molecules adsorbed onto the polymer films surface was measured by scanning confocal microscopy combined with fluorescence polarization analysis. The methods of defocused wide-field imaging and annular illumination were used to measure single molecules rotational diffusion in the glassy polymer also. The polarization and intensity of molecular fluorescence were manipulated by the electric voltage and the theory models proposed were used to explain the observed phenomenon. An external electric current was applied to dyes/ITO system, we find that the fluorescence emission of single-molecule can be enhanced or quenched. A concise model based on semi-empirical charge transport description is proposed and discussed to interpret the observed change of intensity under EEC.
     The innovations of this paper:
     1. We probe dynamics with reorientation of single dye molecules spin-coated onto polymer films Rotation jumps in transition dipole orientation are observed for approximately 30% of all single molecules. It is found for the first time that there are mainly three typical jumping patterns of orientation:dithering jump, alternate jump and stepping jump patterns. The distributon of rotational correlation time are used to characterize the dynamics of polymer glasses surface. It is found that~0.1 s is a reasonable mean time scale for the dynamics of the polymer glasses surface.
     2. Defocused wide-field fluorescence microscopy was used to trace the 3D rotational diffusion of a fluorescence molecule in a polymer thin film. Orientation dynamics of single molecules can be obtained from the features of intensity distribution of single-molecule fluorescence. The diffusion and rotational dynamics of single molecules are measured simultaneously.
     2. The fluorescence intensity of single dye molecules embedded in PMMA is modulated by electric field, we observed that a large delaying hysteresis response and the voltage dependence of fluorescence. The phenomenon never been reported previously.
     3. We study the dyes/ITO nanoparticle system under external electric current for the first time. The fluorescence emission of single-molecule can be quenched or enhanced by adjusting electric current of 10-50mA/mm2 which is applied to the DiD/ITO nanoparticle system. The calculated results agree with the experimental data and in particular, both the experiment and the simulation have found two kinds of molecules. This is a consequence of different relative positions of the molecular HOMO energy E1 with respect to the material equilibrium Fermi energy EF0. The molecule would show quenching of fluorescence emission under voltage when AEg< 0, and enhancement (firstly enhancing and then quenching) when AEg> 0.
引文
[1]J. Perrin. La fluorescence. Ann. Phys (Paris),1918,9,133-159.
    [2]W. E. Moerner and L. Kador. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett.,1989,62,2535-2538.
    [3]M. Orrit and J. Bernard. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett.,1990,65,2716-2719.
    [4]E. B. Shera, N. K. Seitzinger, L. Davis, R. A. Keller, and S. A. Soper. Detection of single fluorescent molecules. Chem. Phys. Lett.,1990,174,553-557.
    [5]R. Rigler, J. Widengren, and U. Mets. In Fluorescence Spectroscopy. Springer, Berlin, 1992,13.
    [6]T. Plakhotnik, E. A. Donley, U. P. Wild. Single-moleucle spectroscopy. Annu. Rev. Phys. Chem.,1997,48,181-212.
    [7]X. S. Xie, and J. K. Trautman. Optical studies of single molecules at room temperature. Annu. Rev. Phys. Chem.,1998,49,441-480.
    [8]A. A. Deniz, T. A. Laurence, M. Dahan, D. S. Chemla, P. G. Schultz, S. Weiss. Ratiometric single-molecule studies of freely diffusing biomolecules. Annu. Rev. Phys. Chem.,2001,52,233-253.
    [9]S. M. Nie, R. N. Zare. Optical detection of single molecules. Annu. Rev. Biophys. Biomol. Struct.,1997,26,567-596.
    [10]T. Basche, W. E. Moerner, M. Orrit, U. P. Wild. Single-Molecule Optical Detection, Imaging and Spectroscopy. Wild~VCH, Weinheim,1997.
    [11]C. Zander, J. Enderlein, R. A. Keller. Single Molecule Detection in Solution. Berlin, Wiley-VCH.2002.
    [12]P. Tamarat, A. Maali, B. Lounis, M. Orrit. Ten Years of Single-Molecule Spectroscopy. J. Phys. Chem. A,2000,104,1-16
    [13]W. E. Moerner. A Dozen Years of Single-Molecule Spectroscopy in Physics, Chemistry, and Biophysics. J. Phys. Chem. B,2002,106,910-927.
    [14]E. Betzig, R. J. Chichester. Single Molecules Observed by Near-Field Scanning Optical Microscopy. Science,1993,262,1422-1425.
    [15]J. K. Trautman, J. J. Macklin, L. E. Brus, E. Betzig. Near-field spectroscopy of single molecules at room temperature. Nature,1994,369,40-42
    [16]S. Nie, D. T. Chiu, and R. N. Zare. Probing individual molecules with confocal fluorescence microscopy. Science,1994,266,1018-1021.
    [17]J. K. Trautman and J. J. Macklin. Time-resolved spectroscopy of single molecules using near-field and far-field optics. Chem. Phys.,1996,205,221-229.
    [18]T. Funatsu, Y. Hanada, M. Tokunaga, K. Saito, and T. Yanagida. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature,1995,374,555-559.
    [19]M. Orrit, J. Bernard, R. Brown, and B. Lounis, in Progress in Optics XXXV, edited by E. Wolf-Amsterdam Elsevier 1996, p.61.
    [20]R. Kettner, J. Tittel, Th. Basche, and Ch. Bratlchle. Optical Spectroscopy and Spectral Diffusion of Single Dye Molecules in Amorphous Spin-Coated Polymer Films. J. Phys. Chem.,1994,98,6671-6674.
    [21]J. Michaelis, C. Hettich, J. Mlynek, and V. Sandoghdar. Optical microscopy using a single-molecule light source. Nature,2000,495,325-328.
    [22]W. E. Moerner. Those Blinking Single Molecules. Science,1997,277,1059-1060.
    [23]J. Friedrich and D. Haarer. Photochemical Hole Burning:A Spectroscopic Study of Relaxation Processes in Polymers and Glasses. Angew. Chem. Int. Ed. Engl.,1984, 70,113-140.
    [24]W. P. Ambrose, Th. Basche, and W. E. Moerner. Detection and spectroscopy of single pentacene molecules in a P-terphenyl crystal by means of fluorescence excitation. J. Chem. Phys.,1991,95,7150-7163.
    [25]J. Kohler, J. A. J. M. Disselhorst, M. C. J. M. Donckers, E. J. J. Groenen, J. Schmidt, and W. E. Moerner. Magnetic resonance of a single molecular spin. Nature,1993, 363,242-244.
    [26]J. Wrachtrup, C. von Borczyskowski, J. Bernard, M. Orrit, and R. Brown. Optical detection of magnetic resonance in a single molecule. Nature,1993,363,244-245.
    [27]A. C. J. Brouwer, E. J. J. Groenen, and J. Schmidt. Detecting Magnetic Resonance through Quantum Jumps of Single Molecules. Phys. Rev. Lett.,1998,80,3944-3947.
    [28]J. Wrachtrup, A. Gruber, L. Fleury, and C. von Borczyskowski. Magnetic resonance on single nuclei. Chem. Phys. Lett.,1997,267,179-185.
    [29]U. P. Wild, F. Guttler, M. Pirotta, and A. Renn. Single molecule spectroscopy:Stark effect of pentacene in p-terphenyl. Chem. Phys. Lett.,1992,193,451-455.
    [30]M. Orrit, J. Bernard, A. Zumbusch, and R. I. Personov. Stark effect on single molecules in a polymer matrix. Chem. Phys. Lett.,1992,196,595-606.
    [31]M. Croci, H. J. Milschenborn, F. Guttler, A. Renn, and U. P. Wild. Single molecule spectroscopy:pressure effect on pentacene in p-terphenyl. Chem. Phys. Lett.,1993, 212,71-77.
    [32]A. Muller, W. Richter, and L. Kador. Pressure effects on single molecules of terrylene in p-terphenyl. Chem. Phys. Lett.,1995,241,547-554.
    [33]T. Iwamoto, A. Kurita, and T. Kushida. Pressure effects on single-molecule spectra of terrylene in hexadecane. Chem. Phys. Lett.,1998,284,147-152.
    [34]P. Tchenio, A. B. Myers, and W. E. Moerner. Dispersed fluorescence spectra of single molecules of pentacene in p-terphenyl. J. Phys. Chem.,1993,97,2491-2493.
    [35]L. Fleury, Ph. Tamarat, B. Lounis, J. Bernard, and M. Orrit. Fluorescence spectra of single pentacene molecules in p-terphenyl at 1.7 K. Chem. Phys. Lett.,1995,236, 87-95.
    [36]K. Kneipp, Y. Wang, H. Kneipp L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett.,1997,78,1667-1670.
    [37]S. Nie and S. R. Emory. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science,1997,275,1102-1106.
    [38]A. M. van Oijen, M. Ketelaars, J. Kohler, T. J. Aartsma, and J. Schmidt. Unraveling the Electronic Structure of Individual Photosynthetic Pigment-Protein Complexes. Science,1999,285,400-402.
    [39]Ph. Tamarat, B. Lounis, J. Bernard, M. Orrit, S. Kummer, R. Kettner, S. Mais, and Th. Basche, Pump-Probe Experiments with a Single Molecule:ac-Stark Effect and Nonlinear Optical Response. Phys. Rev. Lett.,1995,75,1514-1517.
    [40]B. Lounis, F. Jelezko, and M. Orrit, Single Molecules Driven by Strong Resonant Fields:Hyper-Raman and Subharmonic Resonances. Phys. Rev. Lett.,1997,78, 3673-3676.
    [41]Ch. Brunel, B. Lounis, Ph. Tamarat, and M. Orrit. Rabi Resonances of a Single Molecule Driven by rf and Laser Fields. Rabi Resonances of a Single Molecule Driven by rf and Laser Fields. Phys. Rew. Lett.,1998,81,2679-2682.
    [42]Ch. Brunel, Ph. Tamarat, B. Lounis, and M. Orrit. Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence. Phys. Rev. Lett.,1999, 83,2722-2725.
    [43]Ch. Brunel, Ph. Tamarat, B. Lounis, and M. Orrit, in Single Molecule Spectroscopy, Nobel Conference Lectures, Springer, Berlin 2001.
    [44]E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature,2001,409,46-52.
    [45]A.-M. Boiron, Ph. Tamarat, B. Lounis, R. Brown, and M. Orrit. Are the spectral trails of single molecules consistent with the standard two-level system model of glasses at low temperatures. Chem. Phys.,1999,247,119-132.
    [46]Ph. D. Reilly and J. L. Skinner. Spectral diffusion of individual pentacene molecules in P-terphenyl crystal:Stochastic theoretical model and analysis of experimental data. J. Chem. Phys.,1995,102,1540-1552.
    [47]F. Kulzer, R. Matzke, C. Brauchle, and Th. Basche, Nonphotochemical Hole Burning Investigated at the Single-Molecule Level:Stark Effect Measurements on the Original and Photoproduct State. J. Phys. Chem. A,1999,103,2408-2411.
    [48]J. M. Caruge and M. Orrit. Probing local currents in semiconductors with single molecules. Phys. Rev. B,2001,64,205202.
    [49]J. Michaelis, C. Hettich, A. Zayats, B. Eiermann, J. Mlynek, and V. Sandoghdar, Opt. Lett.,1999,24,581-583.
    [50]K. Yoshimoto, T. S. Jain, P. F. Nealey et al. Local dynamic mechanical properties in model free-standing polymer thin films. J. Chem. Phys.,2005,122,144712.
    [51]S. F. Swallen, K. L. Kearns, M. K. Mapes. Organic Glasses with Exceptional Thermodynamic and Kinetic Stability. Science,2007,315,353-356.
    [52]R. C. Bell, H. Wang, M. J. Iedema. Nanometer-Resolved Interfacial Fluidity. J. Am. Chem. Soc.,2003,125,5176-5185.
    [53]A. M. Boiron, P. Tamarat, B. Lounis, R. Brown, M. Orrit. Are the spectral trails of single molecules consistent with the standard two-level system model of glasses at low temperatures. Chem. Phys.,1999,247,119-32.
    [54]Y. G. Vainer, A. V. Naumov, M. Bauer, L. Kador. Low-temperature dynamics of amorphous polymers and evolution over time of spectra of single impurity molecules: Ⅱ. Model calculations and analysis of results. Opt. Spectrosc.,2003,94,873-884.
    [55]L. A. Deschenes, D. A. Vanden Bout. Single-Molecule Studies of Heterogeneous Dynamics in Polymer Melts Near the Glass Transition. Science,2001,292,255-258.
    [56]R. A. L. Vallee, N. Tomczak, L. Kuipers, G. J. Vancso, and N. F. van Hulst. Single Molecule Lifetime Fluctuations Reveal Segmental Dynamics in Polymers. Phys. Rev. Lett.,2003,91,038301.
    [57]R. A. L. Vallee, N. Tomczak, G. J. Vancso, L. Kuipers, N. F. van Hulst. Fluorescence lifetime fluctuations of single molecules probe local density fluctuations in disordered media:A bulk approach. J. Chem. Phys.,2005,122,114704.
    [58]L. A. Deschenes, D. A. Vanden Bout. Comparison of ensemble and single molecule approaches to probing polymer relaxation dynamics near Tg. J. Chem. Phys.,2002, 116,5850-5856.
    [59]A. Schob, F. Cichos, J. Schuster, C. von Borczyskowski. Reorientation and translation of individual dye molecules in a polymer matrix. Euro. Polym. J,2004, 40,1019-1026.
    [60]H. Ujii, S. M. Melnikov, A. Deres, G. Bergamini, F. De Schryver, A. Herrmann, K. MUllen, J. Enderlein, and J. Hofkens. Visualizing spatial and temporal heterogeneity of single molecule rotational diffusion in a glassy polymer by defocused wide-field imaging. Polymer,2006,47,2511-2518.
    [61]C. J. Ellison, J. M. Torkelson. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater.,2003,2.695-700.
    [62]Z. Fakhraai and J. A. Forrest. Measuring the Surface Dynamics of Glassy Polymers. Science,2008,319,600-604.
    [63]Guofeng Zhang, Liantuan Xiao, Fang Zhang, Xiaobo Wang and Suotuang Jia. Single molecules reorientation reveals the dynamics of polymer glasses surface. Phys. Chem. Chem. Phys.,2010,12,2308-2312.
    [64]W. E. Moerner. Single-photon sources based on single molecules in solids. New J. Phys.2004,6,88.
    [65]B. Lounis, M. Orrit. Single-Photon Sources. Rep. Prog. Phys.,2005,68,1129-1179.
    [66]Z. K. Keane, J. W. Ciszek, J. M. Tour, and D. Natelson. Three-Terminal Devices to Examine Single-Molecule Conductance Switching. Nano Lett.,2006,6,1518-1521.
    [67]Jianhui Liao, Jon S. Agustsson, Songmei Wu, Christian Schnenberger, Michel Calame, Yann Leroux, Marcel Mayor, Olivier Jeannin, Ying-Fen Ran, Shi-Xia Liu and Silvio Decurtins. Cyclic Conductance Switching in Networks of Redox-Active Molecular Junctions. Nano Lett.,2010,10,759-764.
    [68]Peter Lodahl, A. Floris van Driel, Ivan S. Nikolaev, Arie Irman, Karin Overgaag, Daniel Vanmaekelbergh, Willem L. Vos. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature,2004,430,654-657.
    [69]M. D. Barnes, C-Y. Kung, W. B. Whitten, and J. M. Ramsey. Fluorescence of Oriented Molecules in a Microcavity. Phys. Rev. Lett.,1996,76,3931-3934.
    [70]H. Schniepp, V. Sandoghdar. Spontaneous Emission of Europium Ions Embedded in Dielectric Nanospheres. Phys. Rev. Lett.,2002,89,257403.
    [71]P. Anger, P. Bharadwaj, L. Novotny. Enhancement and Quenching of Single-Molecule Fluorescence. Phys. Rev. Lett.,2006,96,113002.
    [72]S. Kuhn, U. Hakanson, L. Rogobete, V. Sandoghdar. Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna. Phys. Rev. Lett.2006,97,017402.
    [73]Felicia Tam, Glenn P. Goodrich, Bruce R. Johnson, and Naomi J. Halas. Plasmonic Enhancement of Molecular Fluorescence. Nano Lett.,2007,7,496-501.
    [74]R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. Van Hulst, L. Kuipers. Reversible Polarization Control of Single Photon Emission. Nano Lett.,2008,8,606-610.
    [75]F. Schindler, J. M. Lupton. Electrothermal Manipulation of Individual Chromophores in Single Conjugated Polymer Chains:Controlling Intrachain FRET, Blinking, and Spectral Diffusion. Nano Lett.,2010,10,2683-2689.
    [76]P. M. Wallace, D. R. B. Sluss, L. R. Dalton, B. H. Robinson, P. J. Reid, Single-Molecule Microscopy Studies of Electric-Field Poling in Chromophore-Polymer Composite Materials. J. Phys. Chem. B,2006,110,75-82.
    [77]I. Scheblykin, G. Zoriniants, J. Hofkens, S. De Feyter, M. Van der Auweraer, F. C. De Schryver. Host matrix dependence on the photophysical properties of individual conjugated polymer chains. ChemPhysChem.,2003,4,260-267.
    [78]T. Sugimoto, S. Habuchi, K. Ogino, M. Vacha. Conformation-Related Exciton Localization and Charge-Pair Formation in Polythiophenes:Ensemble and Single-Molecule Study. J. Phys. Chem. B,2009,113,12220-12226.
    [79]F. Schindler, J. M. Lupton, J. Muller, J. Feldmann, U. Scherf. How single conjugated polymer molecules respond to electric fields. Nat. Mater.,2006,5,141-146.
    [80]Fang Zhang, Guofeng Zhang, Ruiyun Chen, XiaoboWang, Liantuan Xiao and Suotang Jia. Modulation of the fluorescence intensity of single squaraine-derived rotaxane molecules by an electric field.2010, Phys. Scr.,82,055303.
    [81]R. E. Palacios, F. R. F. Fan, A. J. Bard, P. F. Barbara. Single-Molecule Spectroelectrochemistry (SMS-EC). J. Am. Chem. Soc.,2006,128,9028-9029.
    [82]Rodrigo E. Palacios, Wei-Shun Chang, John K. Grey, Ya-Lan Chang, William L. Miller, Chun-Yaung Lu, Graeme Henkelman, Danny Zepeda, John Ferraris and Paul F. Barbara. Detailed Single-Molecule Spectroelectrochemical Studies of the Oxidation of Conjugated Polymers. J. Phys. Chem. B,2009,113,14619-14628.
    [83]C. H. Lei, D. H. Hu and E. Ackerman. Clay Nanoparticle-Supported Single-Molecule Fluorescence Spectroelectrochemistry. Nano Lett.,2009,9,655-658.
    [84]Chenghong Lei, Dehong Hu and Eric J. Ackerman. Single-molecule fluorescence spectroelectrochemistry of cresyl violet. Chem. Commun.,2008,5490-5492.
    [85]Guofeng Zhang, Liantuan Xiao, Ruiyun Chen, Yan Gao, Xiaobo Wang and Suotang Jia. Single-molecule interfacial electron transfer dynamics manipulated by external electric current. Phys. Chem. Chem. Phys.,2011, DOI:10.1039/C1CP20857H.
    [1]M. Orrit, J. Bernard and R. Personov. High-resolution spectroscopy of organic molecules in solids:from fluorescence line narrowing and hole burning to single molecule spectroscopy. J. Phys. Chem.,1993,97,10256-10268.
    [2]W. E. Moerner, and T. Basche. Optical Spectroscopy of Single Impurity Molecules in Solids. Angew. Chrm. Inr. Ed. Engl.,1993,32,451-476.
    [3]T. Basche, M. Orrit, W. E. Moerner, U.P. Wild., Single-Molecule Optical Detection, Imaging and Spectroscopy. VCH, Weinheim (1996).
    [4]H. de Vries and D. A. Wiersma. Fluorescence transient and optical free induction decay spectroscopy of pentacene in mixed crystals:Determination of intersystem crossing and internal conversion rates. J. Chem. Phys.,1979,70,5807-5822.
    [5]R. Verberk, M. Orrit. Photon statistics in the fluorescence of single molecules and nanocrystals:Correlation functions versus distributions of on-and off-times. J. Chem. Phys.,2003,119,2214-2222.
    [6]T. Basche, W. E. Moerner, M. Orrit and H. Talon. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett.,1992,69, 1516-1519.
    [7]L. Fleury, J. M. Segura, G. Zumofen. Nonclassical photon statistics in single-molecule fluorescence at room temperature. Phys. Rev. Lett.,2000,84,1148-1151.
    [8]J. J. Macklin, J. K. Trautman, T. D. Harris and, L. E. Brus. Imaging and Time-Resolved Spectroscopy of Single Molecules at an Interface, Science,1996,272, 255-258.
    [9]Zhengxi Huang, Dongmei Ji, Andong Xia. Fluorescence intensity and lifetime fluctuations of single Cy5 molecules immobilized on the glass surface. Colloids and Surfaces A:Physicochem. Eng. Aspects.,2005,257,203-209.
    [10]R. A. L. Vallee, N. Tomczak, L. Kuipers, G. J. Vancso and N. F. van Hulst. Single Molecule Lifetime Fluctuations Reveal Segmental Dynamics in Polymers. Phys. Rev. Lett.,2003,91,038301.
    [11]Martin Bohmer and Jorg Enderlein. Orientation imaging of single molecules by wide-field epifluorescence microscopy. J. Opt. Soc. Am. B,2003,20,554-559.
    [12]Digambara Patra, Ingo Gregor, and Jorg Enderlein. Image Analysis of Defocused Single-Molecule Images for Three-Dimensional Molecule Orientation Studies. J. Phys. Chem. A,2004,108,6836-6841.
    [13]J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, and N. F. Van Hulst. Time-Varying Triplet State Lifetimes of Single Molecules. Phys. Rev. Lett.,1999,83,2155-2158.
    [14]A. Laura, Deschenes, and David A. Vanden Bout. Single molecule photobleaching: increasing photon yield and survival time through suppression of two-step photolysis. Chem. Phys. Lett.,1995,236,87-95.
    [15]B. Sick and B. Hecht. Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett.,2000,85,4482-4485.
    [16]H. Johannes and G. H. Christian. Simple scheme for rapid three-dimensional orientation determination of the emission dipole of single molecules. Appl. Phys. Lett.,2005,86,121104.
    [17]J. T. Fourkas. Rapid determination of the three-dimensional orientation of single molecules. Opt. Lett.,2000,26,211-213.
    [18]H. P. Lu, L. Y. Xun, and X. S. Xie. Single Molecule Enzymatic Dynamics. Science, 1998,282,1877-1882.
    [19]M. A. Bopp, A. Sytnik, T. D. Howard, R. J. Cogdell, R. M. Hochstrasser. The dynamics of structural deformations of immobilized single light-harvesting complexes. Proc. Natl. Acad. Sci. U.S.A.1999,96,11271-11276.
    [20]T. J. Ha, A. Y. Ting, J. Liang, A. A. Deniz, D. S. Chemla, P. G. Schultz, S. Weiss. Temporal fluctuations of fluorescence resonance energy transfer between two dyes conjugated to a single protein. Chem. Phys.,1999,247,107-118.
    [21]E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics,2001, Nature,409,46-52.
    [22]Shuangli Dong, Tao Huang, Yuan Liu, Jun Wang, Guofeng Zhang, Liantuan Xiao, Suotang Jia. Fast recognition of single molecules based on single-event photon statistics. Phys. Rev. A,2007,76,063820.
    [23]Guofeng Zhang, Liantuan Xiao, Fang Zhang, Xiaobo Wang and Suotang Jia. Single molecules reorientation reveals the dynamics of polymer glasses surface. Phys. Chem. Chem. Phys.,2010,12,2308-2312.
    [24]G. B. DeMaggio, W. E. Frieze, D. W. Gidley, Ming Zhu, H. A. Hristov, and A. F. Yee. Interface and Surface Effects on the Glass Transition in Thin Polystyrene Films. Phys. Rev. Lett.,1997,78,1524-1527.
    [25]Guofeng Zhang, Fang Zhang, Xiaobo Wang, Ruiyun Chen, Liantuan Xiao, and Suotang JIA. A new method to analyze orientation hopping of single molecule on polymer films. J. Phys. Soc. Jpn.,2010,79,064605.
    [26]E. S. Mounir, A. Takahara, T. Kajiyama. Effect of chain end group-substrate interacton on surface molecular motion of polystyrene ultrathin films. Polym. J.,1999, 31,550-556.
    [27]J. K. Trautmann, J. J. Macklin, L. E. Brus, and E. Betzig, Near-field spectroscopy of single molecules at room temperature. Nature,1994,369,40-42.
    [28]X. S. Xie and R. C. Dunn. Probing single molecule dynamics. Science,1994,265, 361-364.
    [29]G. J. Brakenhoff, H. T. M. van de Voort, E. A. van Spronsen, W. A. Linnemans and N. Nanninga. Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy. Nature,1985,317,748-749.
    [30]S. Nie, D. T. Chiu, and R. N. Zare. Probing individual molecules with confocal fluorescence microscopy. Science,1994,266,1018-1021
    [31]T. Funatsu, Y. Hanada, M. Tokunaga, K. Saito and T. Yanagida. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature,1995,374,555-559.
    [32]C. Zander, J. Enderlein, and R. Keller. Single Molecule Detection in Solution. WILEY-VCH Verlag, Berlin,2002.
    [33]B. Lounis and W. E. Moerner. Single photons on demand from a single molecule at room temperature. Nature,2000,407,491-493.
    [34]M. Muller. Confocal Light Microscopy:Fundamentals and biological applications. Universiteit van Amsterdam, Amsterdam,1999.
    [35]L. Fleury, J. M. Segura. Nonclassical photon statistics in single-molecule fluorescence at room temperature, Phys. Rev. Lett.,2000,84,1148-1151.
    [36]M. Bohmer, F. Pampaloni, M. Wahl, H. J. Rahn, R. Erdmann, and J. Enderlein. Time-resolved confocal scanning device for ultrasensitive fluorescence detection. Rev. Scie. Instr.,2001,72,4145-4152.
    [37]F. Zappa, A. L. Lacaita, S. D. Cova, and P. Lovati. Solid-state single-photon detectors. Opt. Eng.,1996,35,938-945.
    [38]T. Maruyama, F. Narusawa, M. Kudo, and M. Tanaka. Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode. Opt. Eng.,2002,41,395-402.
    [39]E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto. Secure communication:Quantum cryptography with a photon turnstile. Nature,2002,420,762-762.
    [40]P. Kask, K. Palo, D. Ullmann, and K. Gall. Fluorescence-intensity distribution analysis and its application in bimolecular detection technology, Proc. Natl. Acad. Sci. U. S. A.,1999,96,13756-13761.
    [41]P. Kask, K. Palo, N. Fay, L. Brand, U. Mets, D. Ullmann, J. Jungmann, J. Pschorr, and K. Gall. Two dimensional fluorescence intensity distribution analysis:theory and applications. Biophys. J.,2000,78,1703-1713.
    [42]H. Qian and E. L. Elson. Distribution of molecular aggregation by analysis of fluctuation moments. Proc. Natl. Acad. Sci. U. S. A.,1990,87,5479-5483.
    [43]Y. Chen, J. D. Muller, and E. Gratton. The Photon Counting Histogram in Fluorescence Fluctuation Spectroscopy. Biophys. J.,1999,77,553-567.
    [44]K. Palo, U. Mets, P. Kask, S. Jager, and K. Gall. Fluorescence intensity multiple distribution analysis:concurrent determination of diffusion times and molecular brightness. Biophys. J.,2000,79,2858-2866.
    [45]Y. Chen, J. D. Muller, Q. Q. Ruan, and E. Gratton. Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy. Biophys. J.,2002,82,133-144.
    [46]D. V. O'Connor, and D. Phillips. Time-correlated single photon counting. Academic Press, London,1984.
    [47]R. Rigler, and J. Widengreen. Utrasensitive detection of single molecules by fluorescence correlation spectroscopy. Bioscience,1990,3,180-183.
    [48]P. Schwille, F. J. Meyer-Almes, and R. Rigler. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J.,1997,72,1878-1886.
    [49]W. Becker. Advanced time-correlated single-photon counting techniques. Springer, Berlin, Heidelberg, New York,2005.
    [50]S. Felekyan, R. Kuhnemuth, V. Kudryavtsev, C. Sandhagen, W. Becker, and C. A. M. Seidel. Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Rev. Sci. Instrum.,2005,76,083104.
    [1]M. J. Saxton and K. Jacobson. Single-particle tracking:applications to membrane dynamics. Annu. Rev. Biophys. Biomolec. Struct.,1997,26,373-399.
    [2]A. E. Cohen and W. E. Moerner. Method for trapping and manipulating nanoscale objects in solution. Appl. Phys. Lett.,2005,86,093109.
    [3]J. Enderlein. Tracking of fluorescent molecules diffusing within membranes. Appl. Phys. B,2000,71,773-777.
    [4]M. A. Digman, C. M. Brown, P. Sengupta, P. W. Wiseman, A. R. Horwitz, and E. Gratton. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys. J.,2005,89,1317-1327.
    [5]X. Zhuang, L. E. Bartley, H. P. Babcock, R. Russell, T. Ha, D. Hershlag, and S. Chu. A Single-Molecule Study of RNA Catalysis and Folding. Science,2000,288, 2048-2051.
    [6]Joanna Andrecka, Robert Lewis, Florian Bruckner, Elisabeth Lehmann, Patrick Cramer, and Jens Michaelis, Single-molecule tracking of mRNA exiting from RNA polymerase Ⅱ. Proc. Natl. Acad. Sci. USA,2008,105,135-140.
    [7]V. Levi, Q. Ruan, and E. Gratton.3-D particle tracking in a two-photon microscope. Application to the study of molecular dynamics in cells. Biophys. J.,2005,88, 2919-2928.
    [8]R. S. Decca, C.-W. Lee, and S. R. Wassall. Single molecule tracking scheme using a near-field scanning optical microscope. Rev. Sci. Instr.,2002,73,2675-2679.
    [9]V. Levi, Q. Ruan, K. Kis-Petikova, and E. Gratton. Scanning FCS, an novel method for three-dimensional particle tracking. Biochem. Soc. Trans.,2003,31,997-1000.
    [10]A. J. Berglund and H. Mabuchi. Feedback controller design for tracking a single fluorescent molecule. Appl. Phys. B,2004,78,653-659.
    [11]K. Kis-Petikova and E. Gratton. Distance measurement by circular scanning of the excitation beam in a two photon microscope. Microsc. Res. Tech.,2004,63,34-49.
    [12]Andrew J. Berglund, Kevin McHale, and Hideo Mabuchi, Fluctuations in closed-loop fluorescent particle tracking. Opt. Express,2007,15,7752-7773.
    [13]J. Enderlein. Positional and Temporal Accuracy of Single Molecule Tracking. Sing. Mol.,2000,1,225-230.
    [14]Christian Hellriegel, Johanna Kirstein and Christoph Brauchle. Tracking of single molecules as a powerful method to characterize diffusivity of organic species in mesoporous materials. New J. Phys.2005,7,23.
    [15]Andrew J. Berglund, Kevin McHale, and Hideo Mabuchi, Feedback localization of freely diffusing fluorescent particles near the optical shot-noise limit. Opt. Lett., 2007,32,145-147.
    [16]K. Yoshimoto, T. S. Jain, P. F. Nealey et al.. Local dynamic mechanical properties in model free-standing polymer thin films. J. Chem. Phys.,2005,122,144712.
    [17]S. F. Swallen, K. L. Kearns, M. K. Mapes et al.. Organic Glasses with Exceptional Thermodynamic and Kinetic Stability. Science,2007,315,353-356.
    [18]R. C. Bell, H. Wang, M. J. Iedema et al.. Nanometer-Resolved Interfacial Fluidity. J. Am. Chem. Soc.,2003,125,5176-5185.
    [19]J. R. Dutcher, M. D. Ediger. Glass Surfaces Not So Glassy. Science,2008,319, 577-578.
    [20]Z. Fakhraai, J. A. Forrest, Measuring the Surface Dynamics of Glassy Polymers. Science,2008,319,600-604.
    [21]M. Orrit. Single-molecule spectroscopy:The road ahead. J. Chem. Phys.,2002,117, 10938-10946.
    [22]A. Dhinojwala, G. K. Wong, J. M. Torkelson. Rotational reorientation dynamics of nonlinear optical chromophores in rubbery and glassy polymers:alpha.-relaxation dynamics probed by second harmonic generation and dielectric relaxation. Macromolecules,1993,26,5943-5953.
    [23]K. D. Weston, L. S. Goldner. Orientation Imaging and Reorientation Dynamics of Single Dye Molecules. J. Phys. Chem. B,2001,105,3453-3462.
    [24]N. Tomczak, R. A. L. Vallee, E. M. H. P. van Dijk et al.. Probing polymers with single fluorescent molecules. Euro. Polym. J,2004,40,1001-1011.
    [25]L. A. Deschenes, D. A. Vanden Bout. Heterogeneous Dynamics and Domains in Supercooled o-Terphenyl:A Single Molecule Study. J. Phys. Chem. B,2002,106, 11438-11445.
    [26]Wang Jinyuan, Wang Chen, Wang Guiying et al.. Imaging Three-Dimensional Single Molecule Orientations by Defocused Microscopy. Acta Optica Sinica,2007,27,766-770.
    [27]Dong Shuangli, Xiao Liantuan, Jia Suotang et al.. Signal-background-ratio dependence of single molecular photon sources. Journal of Atomic and Molecular Physics,2007,24,486-492.
    [28]R. Zondervan, F. Kulzer, G. C. G. Berkhout, M. Orrit. Local viscosity of supercooled glycerol near Tg probed by rotational diffusion of ensembles and single dye molecules. Proc. Natl. Acad. Sci. U.S.A,2007,104,12628-12633.
    [29]B. Valeur. Molecular Fluorescence, An Introduction:Principles and Applications. Germany:Wiley, Weinheim,2002.
    [30]J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers. Time-Varying Triplet State Lifetimes of Single Molecules. Phys. Rev. Lett.,1999,83,2155-2158.
    [31]G. E. P. Box, G. M. Jenkins. Time Series Analysis Forecasting and Control. Holden-Day:San Francisco,1976.
    [32]F. M. Ye, M. M. Collinson, D. A. Higgins. What can be learned from single molecule spectroscopy? Applications to sol-gel-derived silica materials. Phys. Chem. Chem. Phys.,2009,11,66-82.
    [33]W.E. Moerner, R.M. Dickson, D.J. Norris. Single-molecule nanophotonics in solids. Materials Science and Engineering B,1997,48,169-174.
    [34]B. Lounis, M. Orrit. Single-photon sources. Rep. Prog. Phys.,2005,68,1129-1179.
    [35]S. L. Dong, G. F. Zhang, L. T. Xiao et al. Fast recognition of single molecules based on single-event photon statistics. Phys. Rev. A,2007,76,063820.
    [36]D. Rigby, R.J.Roe. Molecular dynamics simulation of polymer liquid and glass.4. Free-volume distribution. Macromolecules,1990,23,5312-5319.
    [37]H. Q. Ding, N. Karasawa, W. A. Goddard Ⅲ. Optimal spline cutoffs for Coulomb and van der Waals interactions. Chem. Phys. Lett.,1992,193,197-201.
    [38]C. Zander, J. Enderlein, and R. A. Keller. Single-Molecule Detection in Solution—Methods and Applications. (Wiley-VCH, Berlin,2002).
    [39]J. Hofkens, W. Verheijen, R. Shulka, H. W. Schryver, and F. C. De. Detection of a single dendrimer macromolecule with a fluorescent dihydropyrrolopurroledione (DPP) core embedded in a thin polystyrene film. Macromolecules,1998,32,4493-4497.
    [40]L. A. Deschenes and D. A. Van den Bout. Single-molecule studies of heterogeneous dynamics in polymer melts near the glass transition. Science,2001,292,233-234.
    [41]W. Trabesinger, A. Renn, B. Hecht, U. P. Wild, A. Montali, P. Smith, and C. Weder. Single-molecule imaging revealing the deformation-induced formation of a molecular polymer blend. J. Phys. Chem. B,2000,104,5221-5224.
    [42]Michael Prummer, Beate Sick, Bert Hecht, and Urs P. Wild. Three-dimensional optical polarization tomography of single molecules. J. Chem. Phys.2003,118, 9824-9829.
    [43]D. M. Warshaw, E. Hayes, D. Gaffney, A. M. Lauzon, J. R.Wu, G. Kennedy, K. Trybus, S. Lowey, and C. Berger. Myosin conformational states determined by single fluorophore polarization. Proc. Natl. Acad. Sci. (USA),1998,95,8034-8039.
    [44]K. Kinosita, H. Itoh, S. Ishiwata, K. Hirano, T. Nishizaka and T. Hayakawa. Dual-view microscopy with a single camera:real-time imaging of molecular orientations and calcium. J. Cell Biol.,1991,115,67-73.
    [45]A. G. T. Ruiter, J. A. Veerman, M. F. Garcia-Parajo, and N. F. Van Hulst. Single-molecule rotational and translational diffusion observed by near-field scanning optical microscopy. J. Phys. Chem. A,1997,101,7318-7323.
    [46]L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown. Longitudinal Field Modes Probed by Single Molecules. Phys. Rev. Lett.,2001,86,5251-5254.
    [47]J. K. Trautman and J. J. Macklin. Time-resolved spectroscopy of single molecules using near-field and far-field optics. Chem. Phys.,1996,205,221-229.
    [48]W. P. Ambrose, P. M. Goodwin, J. C. Martin, and R. A. Keller. Single-molecule detection and photochemistry of a surface using near-field optical excitation. Phys. Rev. Lett.,1994,72,160-163.
    [49]B. Sick, B. Hecht, and L. Novotny. Orientational imaging of single molecules by annular illumination. Phys. Rev. Lett.,2000,85,4482-4485.
    [50]L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown. Longitudinal field modes probed by single molecules. Phys. Rev. Lett.,2001,86,5251-5254.
    [51]Wouter Schroeyers, Renaud Vallee, Digambara Patra, Johan Hofkens, Satoshi Habuchi, Tom Vosch, Mircea Cotlet, Klaus Mullen, Jorg Enderlein, and Frans C. De Schryver. Fluorescence Lifetimes and Emission Patterns Probe the 3D Orientation of the Emitting Chromophore in a Multichromophoric System. J. Am. Chem. Soc.,2004, 126,14310-14311.
    [52]Bohmer, Martin, Enderlein, Jorg. Orientation imaging of single molecules by wide-field epifluorescence microscopy. J. Opt. Soc. Am. B,2003,20,554-559.
    [53]Digambara Patra, Ingo Gregor, and Jorg Enderlein. Image Analysis of Defocused Single-Molecule Images for Three-Dimensional Molecule Orientation Studies. J. Phys. Chem. A,2004,108,6836-6841.
    [54]Andrew P. Bartko, Kewei Xu, and Robert M. Dickson. Three-Dimensional Single Molecule Rotational Diffusion in Glassy State Polymer Films. Phys. Rev. Lett.,2002, 89,026101.
    [55]E. H. Hellen and D. Axelrod. Fluorescence emission at dielectric and metal-film interfaces. J. Opt. Soc. Am. B,1987,4,337-350.
    [56]J. Enderlein, T. Ruckstuhl, and S. Seeger. Highly efficient optical detection of surface-generated fluorescence. Appl. Opt.,1999,38,724-732.
    [57]M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Harry Deutsch, Frankfurt/Main, Germany,1984.
    [58]H. P. Lu, L. Xun, and X. S. Xie. Single-Molecule Enzymatic Dynamics. Science, 1998,282,1877-1882.
    [59]Chun-Yaung Lu, David A, Vanden Bout. Analysis of orientational dynamics of single fluorophore trajectories from three-angle polarization experiments. J. Chem. Phys. 2008,128,244501.
    [60]R. A. L. Vallee, W. Paul, K. Binder. Single molecule probing of the glass transition phenomenon. Simulations of several types of probes. J. Chem. Phys.,2007,127, 154903.
    [61]Johannes Hohlbein, Christian G. Hubner. Three-dimensional orientation determination of the emission dipoles of single molecules:The shot-noise limit. J. Chem. Phys.,2008,129,094703.
    [62]Wai Teng Tang, Elijah Y. S. Yew, Colin J. R. Sheppard. Polarization conversion in confocal microscopy with radially polarized illumination. Opt. Lett.,2009,34, 2147-2149.
    [63]T. Ha, J. Glass, Th. Enderle, D. S. Chemla, and S. Weiss. Hindered Rotational Diffusion and Rotational Jumps of Single Molecules. Phys. Rev. Lett.,1998,80, 2093-2096.
    [64]J. J. Macklin, J. K. Trautman, T. D. Harris and L. E. Brus. Imaging and Time-Resolved Spectroscopy of Single Molecules at an Interface. Science,1996,272, 255-258.
    [65]Taras Plakhotnik, W. E. Moerner, Victor Palm and Urs P. Wild. Single molecule spectroscopy:maximum emission rate and saturation intensity. Opt. Commun.,1995, 114,83-88.
    [66]T. Ha, T. Enderle, D. F. Ogletree, D. S. Chemla, P. R. Selvin, and S. Weiss. Probing the interaction between two single molecules:fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. U.S.A.,1996,93, 6264-6268.
    [67]B. Sick, B. Hecht, L. Novotny. Orientational Imaging of Single Molecules by Annular Illumination. Phys. Rev. Lett.,2000,85,4482-4485.
    [1]S. Marder, B. Kippelen, A. Jen, N. Peyambarian. Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature,1997,338,845-851.
    [2]L. Dalton, A. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, M. Lee. Polymeric Electro-optic Modulators:From Chromophore Design to Integration with Semiconductor Very Large Scale Integration Electronics and Silica Fiber Optics. Ind. Eng. Chem. Res.,1999,38,8-33.
    [3]A. Harper, S. Sun, L. Dalton, S. Garner, A. Chen, S. Kalluri, W. Steier, B. Robinson. Translating microscopic optical nonlinearity into macroscopic optical nonlinearity: the role of chromophore chromophore electrostatic interactions. J. Opt. Soc. Am. B, 1998,15,329-337.
    [4]B. Robinson, L. Dalton, A. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, A. Jen. The molecular and supramolecular engineering of polymeric electro-optic materials. Chem. Phys.1999,245,35-50.
    [5]Yongqiang Shi, Cheng Zhang, Hua Zhang, James H. Bechtell, Larry R. Dalton, Bruce H. Robinson and William H. Steier. Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape. Science,2000,288,119-121.
    [6]A. Galvan-Gonzalez, G. I. Stegeman, A. K-Y. Jen, X. Wu, M. Canva, A. C. Kowalczyk, X. Q. Zhang, H. S. Lackritz, S. Marder, S. Thayumanavan, and G. Levina. Photostability of electro-optic polymers possessing chromophores with efficient amino donors and cyano-containing acceptors. J. Opt. Soc. Am. B,2001,18, 1846-1853.
    [7]L. Demeyu, S. Stafstrom and M. Bekele. Monte Carlo simulations of charge carrier mobility in semiconducting polymer field-effect transistors. Phys. Rev. B.,2007,76, 155202.
    [8]S. J. Martin, A. Kambili and A. B. Walker. Temperature and field dependence of the mobility of highly ordered conjugated polymer films. Phys. Rev. B.,2003,67, 165214.
    [9]Jenny Clark and Guglielmo Lanzani. Organic photonics for communications. Nature Photon.,2000,4,438-446.
    [10]K. Firestone, P. Reid, R. Lawson, S. Jang and L. Dalton. Advances in organic electro-optic materials and processing. Inorg. Chim. Acta.,2004,357,3957-3966.
    [11]C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nature Photon., 2009,3,216-219.
    [12]P. M. Wallace, D. R. B. Sluss, L. R. Dalton, B. H. Robinson, and P. J. Reid. Single-Molecule Microscopy Studies of Electric-Field Poling in Chromophore Polymer Composite Materials. J. Phys. Chem. B,2006,110,75-82.
    [13]V. L. Floch, S. Brasselet, J. F. Roch and J. Zyss. Monitoring of Orientation in Molecular Ensembles by Polarization Sensitive Nonlinear Microscopy. J. Phys. Chem. B,2003,107,12403-12410.
    [14]C. Moylan, S. Ermer, S. Lovejoy, I. McComb, D. Leung, R. Wortmann, P. Krdmer, R. Twieg. (Dicyanomethylene)pyran Derivatives with C2v Symmetry:An Unusual Class of Nonlinear Optical Chromophores. J. Am. Chem. Soc.,1996,118, 12950-12955.
    [15]T. Ha, Th. Enderle, D. S. Chemla, P. R. Selvin, and S. Weiss. Single molecule dynamics studied by polarization modulation. Phys. Rev. Lett.,1996,77,3979-3982.
    [16]H. P. Lu, L. Xun, and X. S. Xie. Single-molecule enzymatic dynamics. Science, 1998,282,1877-1882.
    [17]T. Ha, T. A. Laurence, D. S. Chemla, and S. Weiss. Polarization spectroscopy of single fluorescent molecules. J. Phys. Chem. B,1999,103,6839-6850.
    [18]F. Kulzer, M. Orrit. Single-molecule optics. Annu. Rev. Phys. Chem.,2004,55, 585-611.
    [19]Nikodem Tomczak, Renaud A. L. Vallee, Erik M. H. P. van Dijk, Maria Garcia-Parajo, Laurens Kuipers, Niek F. van Hulst, G. Julius Vancso. Probing polymers with single fluorescent molecules. Euro. Polym. J,2004,40,1001-1011.
    [20]A. Schob, F. Cichos, J. Schuster, C. von Borczyskowski. Reorientation and translation of individual dye molecules in a polymer matrix. Euro. Polym. J,2004, 40,1019-1026.
    [21]R. Zondervan, F. Kulzer, G. C. G. Berkhout and M. Orrit. Single-molecule Chemistry and Biology Special Feature:Local viscosity of supercooled glycerol near Tg probed by rotational diffusion of ensembles and single dye molecules. Proc. Natl. Acad. Sci. U. S. A.,2007,104,12628-12633.
    [22]T. Ha, J. Glass, T. Enderle, D. S. Chemla, and S. Weiss. Hindered rotational diffusion and rotational jumps of single molecules. Phys. Rev. Lett.,1998,80, 2093-2096.
    [23]W. E. Moerner and L. Kador. Optical Detection and Spectroscopy of Single Molecule in a Solid. Phys. Rev. Lett.,1989,62,2535-2538.
    [24]M. Orrit. Single-molecule spectroscopy:The road ahead. J. Chem. Phys.,2002,117, 10938-10946.
    [25]M. L. Blumenfeld, B. S. Tackett, L. K. Schirra, J. M. Tyler and A. O. L. Monti. Confocal single molecule fluorescence spectroscopy in ultrahigh vacuum. Rev. Sci. Instrum.,2009,80,103101.
    [26]S. J. Park, A. J. Gesquiere, J. Yu and P. F. Barbara. Fluorescence Blinking, Exciton Dynamics, and Energy Transfer Domains in Single Conjugated Polymer Chains. J. Am. Chem. Soc.,2004.126,4116-4117.
    [27]P. R. Hania and I. G. Scheblykin. Electric field induced quenching of the fluorescence of a conjugated polymer probed at the single molecule level. Chem. Phys. Lett.,2005,414.127-131.
    [28]F. Schindler, J. M. Lupton, J. Muller, J. Feldmann and U. Scherf. How single conjugated polymer molecules respond to electric fields. Nat. Mater.,2006,5, 141-146.
    [29]P. R. Hania, D. Thomsson and I. G. Scheblykin. Host Matrix Dependent Fluorescence Intensity Modulation by an Electric Field in Single Conjugated Polymer Chains. J. Phys. Chem. B.,2006,110,25895-25900.
    [31]W. A. Lin and I. E. Ballentine. Quantum tunneling and chaos in a driven anharmonic oscillator. Phys. Rev. Lett.,1990,65,2927-2928.
    [32]I. Rozhkov and E. Barkai. Photon emission from a single-molecule source driven by an rf field. Phys. Rev. A.,2005,71,033810.
    [33]E. Arunkumar, C. C. Forbes, B. C. Noll and B. D. Smith. Squaraine-Derived Rotaxanes:Sterically Protected Fluorescent Near-IR Dyes. J. Am. Chem. Soc.,2005, 127,3288-3289.
    [34]D. M. Pai and R. C. Enck. Onsager mechanism of photogeneration in amorphous selenium. Phys. Rev. B.,1975,11,5163-5174.
    [35]J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus. Imaging and Time-Resolved Spectroscopy of Single Molecules at an Interface. Science,1996, 272,255-258.
    [36]W. Lukosz and R. E. Kunz. Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface. Opt. Commun.,1977,20,195-199.
    [37]M. Orrit. Chemical and physical aspects of charge transfer in the fluorescence intermittency of single molecules and quantum dots. Photochem. Photobiol. Sci., 2010,9,637-642.
    [38]Fang Zhang, Guofeng Zhang, Ruiyun Chen, XiaoboWang, Liantuan Xiao and Suotang Jia. Modulation of the fluorescence intensity of single squaraine-derived rotaxane molecules by an electric field. Phys. Scr.,2010,82,055303.
    [39]M. Hilczer, S. Traytak, M. Tachiya. Electric field effects on fluorescence quenching due to electron transfer. J. Chem. Phys.,2001,115,11249-11253.
    [40]S. G. Boxer. In The Photosynthetic Reaction Center, edited by J. Deisenhofer and J. R. Norris. Academic, San Diego,1993, Vol. Ⅱ,179.
    [41]V. I. Arkhipov, E. V. Emelianova and H. Bassler. Quenching of excitons in doped disordered organic semiconductors. Phys. Rev. B,2004,70,205205.
    [42]V. I. Arkhipov and H. Bassler. Exciton dissociation and charge photogeneration in pristine and doped conjugated polymers. Physica Status Solidi A,2004,201, 1152-1187.
    [1]R. J. D. Miller, G. L. McLendon, A. J. Nozik, W. Schmickler, F. Willig. Surface electron transfer processes. VCH Publishers, Inc.:New York,1995.
    [2]P. V. Kamat. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev.,1993,93,267-300.
    [3]A. Hagfeldt, M. Gratzel. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev.,1995,95,49-68.
    [4]P. V. Kamat, D. Meisel. Semiconductor Nanoclusters-Physical, Chemical, and Catalytic Aspects; Amsterdam, Elsevier,1997.
    [5]N. A. Anderson, T. Lian. Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface. Annu. Rev. Phys. Chem.2005,56,491-519.
    [6]Brian O'Regan, Michael Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature,1991,353,737-740.
    [7]W. U. Huynh, J. J. Dittmer, A. P. Alivisatos. Hybrid Nanorod-Polymer Solar Cells. Science,2002,295,2425-2427.
    [8]N. Serpone, E. Pelizzetti. Photocatalysis, Fundamentals and Applications; John Wiley & Sons,1989.
    [9]A. Nitzan, M. A. Ratner. Electron Transport in Molecular Wire Junctions. Science, 2003,300,1384-1389.
    [10]H. P. Lu and X. S. Xie. Single-Molecule Kinetics of Interfacial Electron Transfer. J. Phys. Chem. B 1997,101,2753-2757.
    [11]G. F. Zhang, L. T. Xiao, F. Zhang, X. B. Wang, S. T. Jia. Single molecules reorientation reveals the dynamics of polymer glasses surface. Phys. Chem. Chem. Phys.2010,12,2308-2312.
    [12]G. F. Zhang, L. T. Xiao, F. Zhang, X. B. Wang, R. Y. Chen and S. T. Jia. A new method to analyze orientation hopping of single molecule on polymer films. J. Phys. Soc.Jpn.2010,79,064605.
    [13]J. B. Asbury, E. Hao, Y. Wang, H. N. Ghosh, T. Lian. Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films. J. Phys. Chem. B,2001,105,4545-4557.
    [14]G. Benko, P. Myllyperkio, J. Pan, A. P. Yartsev, V. Sundstrom. Photoinduced Electron Injection from Ru(dcbpy)2(NCS)2 to SnO2 and TiO2 Nanocrystalline Films. J. Am. Chem. Soc.,2003,125,1118-1119.
    [15]P. Piotrowiak, E. Galoppini, Q. Wei, G. J. Meyer, P. Wiewior. Subpicosecond Photoinduced Charge Injection from "Molecular Tripods" into Mesoporous TiO2 Over the Distance of 24 Angstroms. J. Am. Chem. Soc.,2003,125,5278-5279.
    [16]H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, S. E. Lindquist, L. N. Wang, M. Muhammed. High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes. J. Phys. Chem. B,1997,101,2598-2601.
    [17]D. A. Gaal, J. T. Hupp. Thermally Activated, Inverted Interfacial Electron Transfer Kinetics:High Driving Force Reactions between Tin Oxide Nanoparticles and Electrostatically-Bound Molecular Reactants. J. Am. Chem. Soc.,2000,122, 10956-10963.
    [18]Kristine Kilsa, Elizabeth I. Mayo, Darius Kuciauskas, Randy Villahermosa, Nathan S. Lewis, Jay R. Winkler, and Harry B. Gray. Effects of Bridging Ligands on the Current-Potential Behavior and Interfacial Kinetics of Ruthenium-Sensitized Nanocrystalline TiO2 Photoelectrodes. J. Phys. Chem. A,2003,107,3379-3383.
    [19]T. D. Bell, C. Pagba, M. Myahkostupov, J. Hofkens, P. Piotrowiak. Inhomogeneity of Electron Injection Rates in Dye-Sensitized TiO2:Comparison of the Mesoporous Film and Single Nanoparticle Behavior. J. Phys. Chem. B,2006,110, 25314-25321.
    [20]R. A. L. Vallee, M. Cotlet, J. Hofkens, and F. C. De Schryver, K. Mullen. Spatially Heterogeneous Dynamics in Polymer Glasses at Room Temperature Probed by Single Molecule Lifetime Fluctuations. Macromolecules,2003,36,7752-7758.
    [21]Ling Zang, Ruchuan Liu, Michael W. Holman, Kim T. Nguyen, and David M. Adams. A Single-Molecule Probe Based on Intramolecular Electron Transfer. J. Am. Chem. Soc.,2002,124,10640-10641.
    [22]So-Jung Park, Andre J. Gesquiere, Ji Yu, and Paul F. Barbara. Charge Injection and Photooxidation of Single Conjugated Polymer Molecules. J. Am. Chem. Soc. 2004,126,4116-4117.
    [23]Michael W. Holman, Ruchuan Liu, and David M. Adams. Single-Molecule Spectroscopy of Interfacial Electron Transfer. J, Am. Chem. Soc.,2003,125, 12649-12654.
    [24]Vasudevanpillai Biju, Miodrag Micic, Dehong Hu, and H. Peter Lu. Intermittent Single-Molecule Interfacial Electron Transfer Dynamics. J. Am. Chem. Soc.2004, 126,9374-9381.
    [25]Haw Yang, Guobin Luo, Pallop Karnchanaphanurach, Tai-Man Louie, Ivan Rech, Sergio Cova, Luying Xun, and X. Sunney Xie. Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer. Science,2003,302,262-266.
    [26]L. Edman, U. Mets and R. Rigler. Conformational transitions monitored for single molecules in solution. Proc. Natl. Acad. Sci. U.S.A.1996,93,6710-6715.
    [27]Stefan Wennmalm, Lars Edman and Rudolf Rigler. Conformational fluctuations in single DNA molecules. Proc. Natl. Acad. Sci. U.S.A.,1997,94,10641-10646.
    [28]Thomas Heinlein, Jens-Peter Knemeyer, Oliver Piestert, and Markus Sauer. Photoinduced Electron Transfer between Fluorescent Dyes and Guanosine Residues in DNA-Hairpins. J. Phys. Chem. B,2003,107,7957-7964.
    [29]M. Sauer. Single-Molecule-Sensitive Fluorescent Sensors Based on Photoinduced Intramolecular Charge Transfer. Angew. Chem., Int. Ed.2003,42,1790-1793.
    [30]Oliver Piestert, Hannes Barsch, Volker Buschmann, Thomas Heinlein, Jens-Peter Knemeyer, Kenneth D. Weston, and Markus Sauer. A Single-Molecule Sensitive DNA Hairpin System Based on Intramolecular Electron Transfer. Nano Lett.2003, 3,979-982.
    [31]Hannes Neuweiler, Andreas Schulz, Martin Bohmer, Jorg Enderlein, and Markus Sauer. Measurement of Submicrosecond Intramolecular Contact Formation in Peptides at the Single-Molecule Level. J. Am. Chem. Soc.2003,125,5324-5330.
    [32]Lijun Guo, Yuanmin Wang and H. Peter Lu. Combined Single-Molecule Photon-Stamping Spectroscopy and Femtosecond Transient Absorption Spectroscopy Studies of Interfacial Electron Transfer Dynamics. J. Am. Chem. Soc.,2010,132,1999-2004.
    [33]Y. M. Wang, X. F. Wang and H. P. Lu, Probing Single-Molecule Interfacial Geminate Electron-Cation Recombination Dynamics. J. Am. Chem. Soc.,2009, 131,9020-9025.
    [34]S. Jin, R. C. Snoeberger Ⅲ, A. Issac, D. Stockwell, V. S. Batista and T. Lian. Single-Molecule Interfacial Electron Transfer in Donor-Bridge-Nanoparticle Acceptor Complexes. J. Phys. Chem. B,2010,114,14309-14319.
    [35]F. Kulzer, M. Orrit. Single-molecule optics. Ann. Rev. Phys. Chem.2004,55, 585-611.
    [36]B. Lounis, W. E. Moerner. Single photons on demand from a single molecule at room temperature. Nature,2000,407,491-493.
    [37]W. E. Moerner. Single-photon sources based on single molecules in solids. New J. Phys.2004,6,88.
    [38]B. Lounis, M. Orrit. Single-Photon Sources. Rep. Prog. Phys.2005,68,1129-1179.
    [39]Robert M. Dickson, Andrew B. Cubitt, Roger Y. Tsien, W. E. Moerner. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature,1997,388,355-358.
    [40]Daniel W. Pierce, Nora Hom-Booher, Ronald D. Vale Imaging individual green fluorescent proteins. Nature,1997,388,338-338.
    [41]Thorsten Hugel, Nolan B. Holland, Anna Cattani, Luis Moroder, Markus Seitz, and Hermann E. Gaub. Single-Molecule Optomechanical Cycle. Science,2002,296, 1103-1106.
    [42]Z. K. Keane, J. W. Ciszek, J. M. Tour, and D. Natelson. Three-Terminal Devices to Examine Single-Molecule Conductance Switching. Nano Lett.,2006,6, 1518-1521.
    [43]Jianhui Liao, Jon S. Agustsson, Songmei Wu, Christian Schnenberger, Michel Calame, Yann Leroux, Marcel Mayor, Olivier Jeannin, Ying-Fen Ran, Shi-Xia Liu and Silvio Decurtins. Cyclic Conductance Switching in Networks of Redox-Active Molecular Junctions. Nano Lett.,2010,10,759-764.
    [44]Peter Lodahl, A. Floris van Driel, Ivan S. Nikolaev, Arie Irman, Karin Overgaag, Daniel Vanmaekelbergh, Willem L. Vos. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature,2004,430,654-657.
    [45]M. D. Barnes, C-Y. Kung, W. B. Whitten, and J. M. Ramsey. Fluorescence of Oriented Molecules in a Microcavity. Phys. Rev. Lett.,1996,76,3931-3934.
    [46]H. Schniepp, V. Sandoghdar. Spontaneous Emission of Europium Ions Embedded in Dielectric Nanospheres. Phys. Rev. Lett.2002,89,257403.
    [47]S. Kuhn, U. Hakanson, L. Rogobete, V. Sandoghdar. Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna. Phys. Rev. Lett.2006,97,017402.
    [48]P. Anger, P. Bharadwaj, L. Novotny. Enhancement and Quenching of Single-Molecule Fluorescence. Phys. Rev. Lett.2006,96,113002.
    [49]Felicia Tam, Glenn P. Goodrich, Bruce R. Johnson, and Naomi J. Halas. Plasmonic Enhancement of Molecular Fluorescence. Nano Lett.,2007,7,496-501.
    [50]R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. Van Hulst, L. Kuipers. Reversible Polarization Control of Single Photon Emission. Nano Lett.,2008,8, 606-610.
    [51]F. Schindler, J. M. Lupton. Electrothermal Manipulation of Individual Chromophores in Single Conjugated Polymer Chains:Controlling Intrachain FRET, Blinking, and Spectral Diffusion. Nano Lett.,2010,10,2683-2689.
    [52]P. M. Wallace, D. R. B. Sluss, L. R. Dalton, B. H. Robinson, P. J. Reid, Single-Molecule Microscopy Studies of Electric-Field Poling in Chromophore-Polymer Composite Materials. J. Phys. Chem. B,2006,110,75-82.
    [53]I. Scheblykin, G. Zoriniants, J. Hofkens, S. De Feyter, M. Van der Auweraer, F. C. De Schryver. Host matrix dependence on the photophysical properties of individual conjugated polymer chains. ChemPhysChem.,2003,4,260-267.
    [54]T. Sugimoto, S. Habuchi, K. Ogino, M. Vacha. Conformation-Related Exciton Localization and Charge-Pair Formation in Polythiophenes:Ensemble and Single-Molecule Study. J. Phys. Chem. B,2009,113,12220-12226.
    [55]F. Schindler, J. M. Lupton, J. Muller, J. Feldmann, U. Scherf. How single conjugated polymer molecules respond to electric fields. Nat. Mater.,2006,5, 141-146.
    [56]P. R. Hania, D. Thomsson, I. G. Scheblykin. Host Matrix Dependent Fluorescence Intensity Modulation by an Electric Field in Single Conjugated Polymer Chains. J. Phys. Chem. B,2006,110,25895-25900.
    [57]Rodrigo E. Palacios, Wei-Shun Chang, John K. Grey, Ya-Lan Chang, William L. Miller, Chun-Yaung Lu, Graeme Henkelman, Danny Zepeda, John Ferraris, and Paul F. Barbara. Detailed Single-Molecule Spectroelectrochemical Studies of the Oxidation of Conjugated Polymers. J. Phys. Chem. B,2009,113,14619-14628.
    [58]N. A. Anderson and T. Q. Lian, Ultrafast electron transfer at the molecule semiconductor nanopapticle interface. Annu. Rev. Phys. Chem.,2005,56,491-519.
    [59]D. F. Watson and G. J. Meyer, Electron injection at at dye-sensitized semiconductor electrodes. Annu. Rev. Phys. Chem.,2005,56,119-156.
    [60]J. Pan, G. Benko, Y. Xu, T. Pascher, L. Sun, V. Sundstrom and T. Polivka. Photoinduced Electron Transfer between a Carotenoid and TiO2 Nanoparticle. J. Am. Chem. Soc.,2002,124,13949-13957.
    [61]V. V. Matylitsky, M. O. Lenz and J. Wachtveitl. Observation of pH-Dependent Back-Electron-Transfer Dynamics in Alizarin/TiO2 Adsorbates:Importance of Trap States. J. Phys. Chem. B,2006,110,8372-8379.
    [62]C. H. Lei, D. H. Hu and E. Ackerman. Clay Nanoparticle-Supported Single-Molecule Fluorescence Spectroelectrochemistry. Nano Lett.,2009,9, 655-658.
    [63]Y. G. Yang, P. Yin, X. Q. Li, Y. J. Yan. Kinetic Study for Hopping Conduction through DNA Molecules. Appl. Phys. Lett.,2005,86,203901.
    [64]R. A. L. Vallee, N. Tomczak, L. Kuipers, G. J. Vancso and N. F. van Hulst, Single Molecule Lifetime Fluctuations Reveal Segmental Dynamics in Polymers. Phys. Rev. Lett.,2003,91,038301.
    [65]Miller, R. J. D., McLendon, G. L., Nozik, A. J., Schmickler, W., Willig, F., Eds.; In Surface Electron Transfer Processes; VCH Publishers:New York,1995.
    [66]A. J. Nozik, R. Memming. Physical Chemistry of Semiconductor-Liquid Interfaces. J. Phys. Chem.1996,100,13061-13078.
    [67]B. Burfeindt, T. Hannappel, W. Storck, F. Willig. Measurement of Temperature-Independent Femtosecond Interfacial Electron Transfer from an Anchored Molecular Electron Donor to a Semiconductor as Acceptor. J. Phys. Chem.,1996,100,16463-16465.
    [68]J. M. Rehm, G. L. McLendon, Y. Nagasawa, K. Yoshihara, J. Moser, M. Gratzel. Femtosecond Electron-Transfer Dynamics at a Sensitizing Dye-Semiconductor (TiO2) Interface. J. Phys. Chem.1996,100,9577-9578.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700