用户名: 密码: 验证码:
面向聚合物微流控器件的超声波精密联接技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物材料以其种类繁多、价格低廉、易加工等优点,愈加广泛地应用于生化MEMS器件的制造,聚合物MEMS器件的封装成为生化MEMS制造中的关键技术。目前应用于聚合物微装配的联接方法主要有胶粘接、热键合、溶剂键合、激光键合等,以上方法均在某些方面存在着各自的局限性。超声波联接技术具有高效率、局部加热、无需引入其它物质等优点,近年来在MEMS领域的应用展示出较大的潜力,但目前应用于MEMS领域的超声波联接技术基本沿袭了应用于大尺寸零件的超声波塑料焊接技术,在能量精确控制及界面熔接质量优化方面尚无深入研究,因此本文针对微流控器件的精密封装,以精确控制聚合物界面熔接质量为目标,在聚合物界面熔合机理、超声波精密联接方法及界面熔接质量优化等方面对超声波联接技术展开研究。
     首先从微观角度分析了聚合物界面的熔接机理,应用分子动力学方法模拟了聚合物界面间高分子链的扩散及相互缠绕行为,研究了压强和温度因素对以上过程的影响,在模拟中通过计算模型的体系形变、扩散系数、界面间的扩散深度和界面结合能等参量,分析了聚合物联接过程中高分子链的运动趋势,进而研究了压强和温度两个因素对器件形变、熔接层尺寸、熔接强度等特征的影响,对后续超声波精密联接方法的研究奠定了理论基础。
     针对微流控器件的封接研制了超声波精密联接装置,选择高频率、低振幅超声换能器,以降低超声波能量下微器件的结构形变及对局部低强度结构的破坏性。基于以上装置,提出了基于聚合物力学状态反馈的超声波精密联接方法,其原理在于以界面聚合物力学状态的变化监测聚合物材料的玻璃化转变行为,并作为控制超声波能量的信号。在聚合物力学状态检测方面分别设计了基于压力传递效率检测和基于超声传播效率检测两种方法,在基于压力传递效率检测方法基础上扩展设计了基于压力自适应的超声波精密联接方法,在实验中验证了基于上述方法可以实现界面熔接质量较为精确的控制。
     为进一步提高熔接质量,结合大尺寸零件超声波塑料焊接技术中的导能筋结构,提出了针对超声波精密联接的微导能阵列,通过在待联接表面制作微米级尺寸的导能结构阵列来减小界面接触面积,将超声波能量集中引导于导能点阵结构,并为粘性聚合物的流延提供空间,起到优化界面熔接质量的作用。采用热压成形工艺及硅模具在基片表面制作微导能阵列,并通过实验分析了结构尺寸和分布尺寸对界面熔接质量的影响,实验结果表明制作合适配合尺寸的微导能阵列可以提高超声波能量利用效率及界面熔接质量的可控性。
     设计了压电驱动式微泵,应用紫外光刻工艺制作了SU-8微止回阀,应用超声波精密联接技术进行了泵体的组装,并将阀片密封其中,在封装过程中保证了易碎阀片的结构不受损坏,在实验中测试了微泵液体泵送流量对应驱动频率和电压的关系。
With the advantages of great variety, low price and easy for fabrication et al, polymer was widely employed in biochemical MEMS. So the package of polymer micro devices became key technique in MEMS. The bonding methods used in micro assembly includes adhesive bonding, thermal bonding, solvent bonding, laser bonding, etc, which have limits in some respects. Ultrasonic bonding technique has the advantages of high efficiency, local heating and no foreign materials introduced, which indicates great potential in micro assembly. The ultrasonic bonding technique used in MEMS now is almost the same to the plastic ultrasonic welding for bulk devices and it has no deep studies in precise control of energy and optimization of interfacial fusion quality. So in this paper ultrasonic bonding was studied in polymer fusion mechanism of polymer interface, ultrasonic precise bonding method and optimization of intercial fusion quality to realize the precise fusion bonding for microfluidic devices.
     Fusion mechanism of polymer interface was studied in micro scale firstly. Molecular dynamics simulation was employed to simulate the diffusion and entanglement of macromolecular chains between polymer interfaces. System deformation, diffusion coefficient, diffusion depth and binding energy were calculated to analyse the movement tendancy of macromolecular chains during polymer fusion bonding. The influences from factors of pressure and temperature to the features of fusion bonding including device deformation, size of fusion layer, bonding strength, etc were studied. It provided theoretical foundation for the research of ultrasonic precise bonding method.
     Ultrasonic precise bonding equipment was established for microfluidic devices. High frequency, low amplitude ultrasonic transducer was employed to decrease the deformation of micro devices and also weaken the destruct to the microstructures in low strength. Based on the equipment ultrasonic precise bonding method with the feedback of polymer mechanical behavior was proposed. The mechanism was that the glass transition behavior of polymer components was detected by the changing of mechanical behavior and this information was made as the signal to control ultrasonic energy. Based on this idea two methods including measuring the pressure transfer efficiency and the ultrasound propagation efficiency were designed for ultrasonic precise bonding. Based on the feedback of pressure transfer efficiency an extended adaptive pressure ultrasonic precise bonding method was also designed. In experiments it was verified that the interfacial fusion degree could be controlled by the new ultrasonic bonding methods
     To improve the interfacial fusion quality further, according to the energy directors used in plastic ultrasonic welding for bulk devices micro energy director array was proposed for ultrasonic precise bonding of microfluidic devices. Energy director structures in micrometer size were fabricated on the bonding surface to concentrate ultrasonic energy to small area and provide spaces for the spread of polymer components in viscous state, which could improve the forming quality. The micro energy director array was fabricated by hot embossing. The influence from the factors of structure size and distribution size to fusion degree was studied in experiments. Results indicated that fabricating micro energy director array in proper size on the bonding surface could improve the utilization of ultrasonic energy and make the bonding process more controllable.
     Piezoelectric micro pump was designed with SU-8 micro valve fabricated by ultraviolet lithography. Ultrasonic precise bonding was applied in the packaging of pump and sealing of micro valve. In the bonding process the micro valve structure in low strength was verified in good condition. The flow velocities of liquid pumping corresponding to the frequency of piezoelectric elements were measured in experiments.
引文
[1]王立鼎,罗怡.中国MEMS的研究与开发进程[J].仪表技术与传感器,2003,1:1-3.
    [2]温诗铸.关于微机电系统研究[J].中国机械工程.2003,14(2):159-163.
    [3]Becker H, Locascio L E. Polymer microfluidic devices [J]. Talanta,2002,56(2): 267-287.
    [4]West J, Becker M, Tombrink S, et al. Micro total analysis systems:Latest achievements [J]. Analytical Chemistry,2008,80(12):4403-4419.
    [5]Liu C. Recent developments in polymer MEMS [J]. Advanced Materials,2007,19(22): 3783-3790.
    [6]Tennico Y H, Koesdjojo M T, Kondo S, et al. Surface modification-assisted bonding of polymer-based microfluidic devices[J]. Sensors and Actuators, B:Chemical,2010, 143(2):799-804.
    [7]Jeong 0 C, Konishi S. Fabrication and drive test of pneumatic PDMS micro pump [J]. 2007,135(2):849-856.
    [8]Zhang P C, Le K, Malalur N R S. A Polymer-based Fabry-Perot Filter Integrated with 3-D MEMS Structures [C]. Proceedings of SPIE-The International Society for Optical Engineering,2006.
    [9]Seo Y H, Cho Y H. Micro direct methanol fuel cells and their stacks using a polymer electrolyte sandwiched by multi-window microcolumn electrodes [J].2009,150(1): 87-96.
    [10]Truckenmueller R, Chen Y, Ahrens R, et al. Micro ultrasonic welding:Joining of chemically inert polymer microparts for single material fluidic components and systems [C]. Microsystem Technologies,2006,12(10-11):1027-1029.
    [11]Kim J, Jeong B, Chiao M, et al. Ultrasonic bonding for MEMS sealing and packaging [J]. IEEE Transactions on Advanced Packaging,2009,32(2):461-467.
    [12]Ng S H, Wang Z F, de Rooij N F. Microfluidic connectors by ultrasonic welding {J}. Microelectronic Engineering,2009,86(4-6):1354-1357.
    [13]Dechev N, Mills J K, Cleghorn W L. Mechanical fastener designs for use in the microassembly of 3D microstructures [C]. American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division,2004:447-456.
    [14]Wang L, Mills J K, Cleghorn W L. Adhesive mechanical fastener design for use in micro assembly [C]. Canadian Conference on Electrical and Computer Engineering, 2008:1093-1096.
    [15]Nguyen N T, Truong T Q. A fully polymeric micropump with piezoelectric actuator [J].2004,97(1):137-143.
    [16]王晓东,宋洪侠,HesselbachJ.微型零件胶粘接的微装配技术[J].制造业自动化.2004,26(9):16-19.
    [17]Becker H, Gartner C. Polymer micro fabric at ion methods for microfluidic analytical applications [J]. Electrophoresis,2000 21(1):12-26.
    [18]Rotting 0, Ropke W, Becker H, et al. Polymer microfabrication technologies [J]. Microsystem Technologies,2002,8(1):32-36.
    [19]Dang F, Shinohara S, Tabata O, et al. Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method [J]. Lab Chip, 2005,5(4):472-478.
    [20]Lu C, Lee L J, Juang Y J. Packaging of microfluidic chips via interstitial bonding technique [J]. Electrophoresis,29(7):1407-1414.
    [21]Roberts M A, Rossier J S, Bercier P, et al. UV laser machined polymer substrates for the development of microdiagnostic systems [J]. Analytical Chemistry,1997, 69(11):2035-2042.
    [22]Huang F C, Chen Y F, Lee G B. CE chips fabricated by injection molding and polyethylene/thermoplastic elastomer film packaging methods [J]. Electrophoresi, 2007,28(7):1130-1137.
    [23]Paul D, Pallandre A, Miserere S, et al. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates [J]. Electrophoresis, 2007,28(7):1115-1122.
    [24]Abgrall P, Lattes C, Conederal V, et al. A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films [J]. Journal of Micromechanics and Microengineering,2006,16(1):113-121.
    [25]Klank H, Kutter J P, Geschke 0. C02-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems [J]. Lab Chip,2002 2(4): 242-246.
    [26]Brown L, Koerner T, Horton J H, et al. Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents [J]. Lab Chip,2006,6(1):66-73.
    [27]Hsu Y C, Chen T Y. Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic μ-TAS devices [J]. Biomedical Microdevices,2007, 9(4):513-522.
    [28]Ng S H, Tjeung R T, Wang Z F, et al. Thermally activated solvent bonding of polymers [J]. Microsystem Technologies,2008,14(6):753-759.
    [29]Sun X, Peeni B A, Yang W, et al. Rapid prototyping of poly(methyl methacrylate) microfluidic systems using solvent imprinting and bonding [J]. Journal of Chromatogr A,2007,1162(2):162-166.
    [30]Wallow T I, Morales A M, Simmons B A, et al. Low distortion, high-strength bonding of thermoplastic microfluidic devices employing case-II diffusion-mediated permeant activation [J]. Lab Chip,2007,7(12):1825-1831.
    [31]Mair D A, Rolandi M, Snauko M, et al. Room-temperature bonding for plastic high-pressure microfluidic chips [J]. Analytical Chemistry,2007,79(13): 5097-5102.
    [32]Bucknall C B, Drinkwater I C, Smith G R. Hot plate welding of plastics:Factors affecting weld strength [J]. Polymer Engineering and Science,1980,20(6):432-440.
    [33]Qiu J, Takahata H, Huang Y, et al. The relationship between interfacial structure and welding strength of hot plate welding crystalline polymer[J]. Kobunshi Ronbunshu.2008,65(3):235-241
    [34]王钧,王晓东,刘冲.塑料微流控芯片热压及键合设备结构设计研究[J].机械设计与制造.2004,4:93-95.
    [35]王晓东,刘冲,王立鼎.面向聚合物微结构制作的热压成形设备的研制[J].中国机械工程,2002,16(14):1229-1232.
    [36]Chen Z, Gao Y, Su R, et al. Fabrication and characterization of poly (methyl methacrylate) microchannels by in situ polymerization with a novel metal template [J]. Electrophoresis,2003,24(18):3246-3252.
    [37]Chen Y, Zhang L, Chen G. Fabrication, modification, and application of department of analytical poly(methyl methacrylate) microfluidic chips [J]. Electrophoresis, 2008,29(9):1801-1814.
    [38]Wang Y, Chen H, He Q, et al. A high-performance polycarbonate electrophoresis microchip with integrated three electrode system for end-channel amperometric detection [J]. Electrophoresis,2008,29(9):1881-1888.
    [39]Tsao C W, Liu J, DeVoe D L. Droplet formation from hydro dynamically coupled capillaries for parallel microfluidic contact spotting [J]. Journal of Micromechanics and Microengineering,2008,18(2):025013.
    [40]Luo Y, Wang X, Yang F. Microfluidic chip made of COP (cyclo-olefin polymer) and comparison to PMMA (polymethylmethacrylate) microfluidic chip [J]. Journal of Materials Processing Technology,2008,208(1-3):63-69.
    [41]Li J M, Liu C, Zhu L Y, et al. Hot embossing/bonding of a PET microfluidic chip [J]. Journal of Micromechanics and Microengineering,2008,18(1):1-015008.
    [42]Schrott W, Slouka Z, Cervenka P, et al. Study on surface properties of PDMS microfluidic chips treated with albumin [J]. Biomicrofluidics,2009,3(4):1-15.
    [43]Chen Z F, Gao Y H, Lin J M, et al. Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template [J]. Journal of Chromatography A,2004,1038(1-2):239-245.
    [44]Sun Y, Kwok Y C, Nguyen N T. Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation [J]. Journal of Micromechanics and Microengineering,2006,16(8): 1681-1688.
    [45]Tan H Y, Loke W K, Tan Y T, et al. A lab-on-a-chip for detection of nerve agent sarin in blood [J]. Lab Chip,2008,8(6):885-891.
    [46]Sung W C, Lee G B, Tzeng C C, et al. Plastic microchip electrophoresis for genetic screening:the analysis of polymerase chain reactions products of fragile X (CGG)n alleles [J]. Electrophoresis,2001,22(6):1188-1193.
    [47]Ahn C H, Choi J W, Beaucage G, et al. Disposable Smart lab on a chip for point-of-care clinical diagnostics [C]. Proceedings of the IEEE,2004,92(1):154-173.
    [48]Park D S W, Hupert M L, Witek M A, et al. A titer plate-based polymer microfluidic platform for high throughput nucleic acid purification [J]. Biomedical Microdevices,2008,10(1):21-33.
    [49]Wu S. Polymer Interface and Adhesion [M]. New York:Marcel Dekker,1982.
    [50]Brown L, Koerner T, Horton J H, et al. Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents [J]. Lab Chip,2006,6(1):66-73.
    [51]Klintberg L, Svedberg M, Nikolajeff F, et al. Fabrication of a paraffin actuator using hot embossing of polycarbonate [J]. Sensors and Actuators A:Physical,2003, 103(3):307-316.
    [52]Bhattacharyya A, Klapperich C M. Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices [J]. Lab Chip,2007,7(7):876-882.
    [53]Wu Z Y, Xanthopoulos N, Reymond F, et al. Polymer microchips bonded by 0-2-plasma activation [J]. Electrophoresis,2002,23(5):782-790.
    [54]Nikolova D, Dayss E, Leps G, et al. Surface modification of cycloolefinic copolymers for optimization of the adhesion to metals [J]. Surface and Interface Analysis,2004,36(8):689-693.
    [55]Truckenmuller R, Henzi P, Herrmann D, et al. Bonding of polymer microstructures by UV irradiation and subsequent welding at low temperatures [J]. Microsystem Technologies,2004,10(5):372-374.
    [56]Witek M A, Wei S Y, Vaidya B, et al. Cell transport via electromigration in polymer-based microfluidic devices [J]. Lab Chip,2004,4(5):464-472.
    [57]Atkinson J R, Turner B E. Repairability of plastic automobile bumpers by hot gas welding [J]. Polymer Engineering & Science,2004,29(5):1368-1375.
    [58]Marczis B, Cziqany T. Interrelationships between welding parameters of hot-gas welded polypropylene [J]. Polymer Engineering and Science,2006,46(9):1173-1181.
    [59]Balkan 0, Demirer H, Ezdesir A, et al. Effects of welding procedures on mechanical and morphological properties of hot gas butt welded PE, PP, and PVC sheets[J]. Polymer Engineering and Science,2008,48(4):732-746.
    [60]Anon. High speed hot gas welding of polypropylene [J]. British Plastics,1969 42(8):81-82.
    [61]Andrijasevic D, Giouroudi L, Smetana W, et al. New approach to micro-joining by hot gas stream. Microelectronic Engineering [J]. Microelectronic Engineering,2006, 83(4-9):1445-1448.
    [62]Wu C Y, Avraham B. Microwave welding of high-density polyethylene using intrinsically conductive polyaniline [J]. Polymer Engineering & Science,1997, 37(4):738-743.
    [63]Yarlagadda P K D V, Tan C C. An investigation into welding of engineering thermoplastics using focused microwave energy [J]. Journal of Materials Processing Technology,1998,74(1-3):199-212.
    [64]Lei K F, Ahsan S, Budraa N, et al. Microwave bonding of polymer-based substrates for potential encapsulated micro/nanofluidic device fabrication [J]. Sensors and Actuators A:Physical,2004,114(2-3):340-346.
    [65]Yussuf A A, Sbarski I, Hayes J P, et al. Microwave welding of polymeric-microfluidic devices [J]. Journal of Micromechanics and Microengineering,2005,15(9): 1692-1699.
    [66]Yussuf A A, Sbarski I, Solomon M, et al. Sealing of polymeric-microfluidic devices by using high frequency electromagnetic field and screen printing technique [J]. Journal of Materials Processing Technology,189(1-3):401-408.
    [67]杭争翔,唱丽丽,甘洪岩等.激光焊接塑料的原理及特性[J].焊接技术,2010,36(8):4-9.
    [68]Gillner A, Bosse L, Kramer T, et al. Laser joining of microcomponents with fiber lasers and diode lasers [C]. The international Society for Optical Engineering, 2000,4088:260-263.
    [69]Hoult A P. Laser welding of polymer micro-fluidic devices using novel diode laser sources [C]. The international Society for Optical Engineering.2003,5063:308-313
    [70]Boglea A, Olowinsky A, Gillner A. Fiber laser welding for packaging of disposable polymeric microfluidic-biochips [J]. Applied Surface Science,2007,254(4): 1174-1178.
    [71]Ussing T, Petersen L V, Nielsen C B, et al. Micro laser welding of polymer using low power laser diodes [J]. The International Journal of Advanced Manufacturing Technology,2007,33(1-2):198-205.
    [72]Pfleging W, Baldus 0, Bruns M, et al. Laser-assisted welding of transparent polymers for micro-chemical engineering and life science [C]. The International Society for Optical Engineering,2005,5713:479-488.
    [73]韦鹤,王晓东,刘冲等.塑料微流控芯片的超声波焊接键合的仿真[J].中国机械工程.2005,16(7):82-85.
    [74]Menges G, Potente H. Study on the weldability of thermoplastic materials by ultrasound [J]. Welding in the World,1971,9(1-2):46-59.
    [75]Aliosio C J, Wahl D G, Whetsel'E E. A Simplified Thermoviscoelastic analysis of ultrasonic bonding [C]. Annual Technical conference, Society of Plastic Engineering,1972:26-32.
    [76]Ng W C. Study of vibration and viscoelastic heating of thermoplastic parts subjected to ultrasonic excitation [D]. Columbus Ohio State University,1996.
    [77]Nonhof C J, Luiten G A. Estimates for process conditions during the ultrasonic welding of thermo-plastics [J]. Polymer Engineering and Science,1996,36(9): 1177-1183.
    [78]Takeda K, Tanaka H, Tsuchiya T, et al. Molecular movement during welding for engineering plastics using Langevin transducer equipped with half-wave-length step horn [J]. Ultrasonics,1998,36(1-5):75-78.
    [79]Becker K, Pungs L, Lamberts K. Heat analysis of a plastic bar during ultrasonic welding [J]. Kunststoffe,1973,63 (6):100-112.
    [80]Nesterenko N P, Senchenkov I K. Current state and prospects of improvement of ultrasound welding of polymers and thermoplastic composite material [J]. Welding Research Abroad,2004,50 (2):28-34.
    [81]Li X C, Ling S F, Sun Z. Heating mechanism in ultrasonic welding of thermoplastics [J]. International Journal for the Joining of Materials,2004,16(2):37-42.
    [82]Benatar A, Gutowski T G. Ultrasonic welding of PEEK graphite APC-2 composites [J]. Polymer Engineering and Science,1989,29(23):1705-1721.
    [83]梁延德,刘川.超声波塑料焊接温度场的数值模拟[J].机械科学与技术.2003,22(S1):180-182.
    [84]梁延德,邓莹莹,刘利.超声波塑料焊接温度场的有限元计算及检测[J].机械工程师.2004,8:38-40.
    [85]Wang X, Yan J, Li R, et al. FEM investigation of the temperature field of energy director during ultrasonic welding of PEEK [J]. Journal of Thermoplastic Composite Material 2006,19(9):593-607.
    [86]Wang X, Li R, Yan J, et al. Transient finite element analysis of ultrasonic of ultrasonic welding of PEEK [J]. China Welding,2006,15(2):55-59.
    [87]Masuzawa N, Ohdaira E. Information contained in the radiating ultrasound during ultrasonic welding [J]. Ultrasonics,2000,38(1-8):609-613
    [88]董震,阎久春,杨士勤等.超声波塑料焊接过程声学系统电参数的检测[J].哈尔滨工业大学学报.1990,31(6):5-8.
    [89]杨士勤,阎久春.超声波塑料焊接机的能量控制模式[J].焊接学报.1995,6(16):118-123.
    [90]田修波,杨士勤,阎久春等.超声波塑料焊机的气动加压系统[J].焊接,1996,10:16-19.
    [91]田修波,杨士勤,阎久春等.压力可变的超声波塑料焊机[J].电焊机.1999,29(12):14-17.
    [92]周玉生,阎久春,董震等.塑料超声波焊接过程及质量研究Ⅰ:焊接过程接头熔化状态分析[J].材料科学与工艺.1999,7(S1):52-55
    [93]阎久春,周玉生,董震等.塑料超声波焊接过程及质量研究Ⅱ:焊接接头熔化膜厚度计算模型[J].材料科学与工艺.1999,7(S1):55-58.
    [94]周玉生,阎久春,卢彤等.塑料超声波焊接过程及质量研究Ⅲ:焊接接头质量影响因素分析[J].材料科学与工艺.1999,7(S1):59-62.
    [95]Thomas R. Kirkland. The implications of the fundamental formulas for frequency selection in ultrasonic plastics welding [C]. Ultrasonic Industry Association 31st Annual Symposium,2001:1286-1293.
    [96]Tsujino J, Ishii Y, Shiraki T, et al. Welding Characteristics of 90 kHz Two-Vibration-System Ultrasonic Plastic Welding Equipment [C]. Proceedings of the IEEE Ultrasonics Symposium,1994,3(1-4):1353-1358.
    [97]Tsujino J, Sano T, Ogata H, et al. Complex vibration ultrasonic welding systems with large area welding tips [J]. Ultrasonics,2002,40(1-8):361-364.
    [98]Tsujino J, Harada Y, Lhara S, et al. Configurations of high-frequency ultrasonics complex vibration systems for packaging in microelectronics [J]. Ultrasonics,2004, 42(1-9):125-129.
    [99]Tsujino J, Hongoh M, Yoshikuni M, et al. Welding characteristics of 27,40 and 67 kHz ultrasonic plastic welding systems using fundamental- and higher-resonance frequencies [J]. Ultrasonics,2004,42(1-9):131-137.
    [100]Naruse K, Watanabe Y. Ultrasonic plastic welding at 1.2MHz using a surface acoustic wave device [J]. Japanese Journal of Applied Physics,2006,45:4812-4815.
    [101]Frantz J. Joining plastics the sound way [J]. Machine Design,1997,69(7):61-65.
    [102]Devine J. Ultrasonic plastic welding basics [J]. Welding Journal,2001,80(1): 29-33.
    [103]Suresh K S, Rani M R, Prakasan K, et al. Modeling of temperature distribution in ultrasonic welding of thermoplastics for various joint designs [J]. Journal of materials Processing Technology,2007,186(1-3):138-146.
    [104]Liu S J, Chang I T, Hung S W. Factors Affecting the Joint Strength of Ultrasonically Welded Polypropylene Composites [J]. Polymer Composites,2001,22(1):132-141
    [105]Liu S J, Chang I T. Optimizing the Weld Strength of Ultrasonically Welded Nylon Composites [J]. Journal of Composite Materials,2002,36(5):611-624.
    [106]Truckenmuller R, Ahrens R, Cheng Y, et al. An ultrasonic welding based process for building up a new class of inert fluidic micro sensors and actuators from polymers [J]. Sensors and Actuators A:Physical,2006,132(1):385-392.
    [107]Wool R P, OConnor K M. A theory crack healing in polymers [J]. Journal of Applied Physics,1981,52 (10):5953-5963.
    [108]杨小震.分子模拟与高分子材料[M].北京:科学出版社,2002.
    [109]陈正国,朱申敏,程时远.分子模拟方法及在高聚物中的应用[J].材料报道,1997,11(6):49-51.
    [110]Alder B J, Wainwright T E. Phase transition for a hard sphere system [J]. Journal of Chemical Physics,1957,27(5):1208-1209.
    [111]Soldera A, Metatla N. Glass transition phenomena observed in stereoregular PMMAs using molecular modeling [J]. Composites Part A:Applied Science and Manufacturing, 2005,36(4):521-530.
    [112]Hooper J B, Bedrov D, Smith G D, et al. A molecular dynamics simulation study of the pressure-volume-temperature behavior of polymers under high pressure. Journal of Chemical Physics,2009,130(14):144904.
    [113]Fan H B, Wong C K Y, Yuen M M F. Prediction of Material Properties of Epoxy Materials using Molecular Dynamic Simulation [C].7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2006:1-4.
    [114]Chen S D, Soh A K, Ke F J. Molecular dynamics modeling of diffusion bonding [J]. Scripta Materialia,2005,52(11):1135-1140.
    [115]刘浩,柯孚久.铜-铝扩散焊及拉伸的分子动力学模拟[J].物理学报.2007,56(1):407-412.
    [116]程宏涛,杨建国.铜/锡界面间扩散行为分子动力学模拟[J].焊接学报.2009,30(5):49-52.
    [117]Rappe A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations [J]. Journal of American Chemical Society,1992,114(25):10024-10035.
    [118]Hagler A T, Ewig C S. On the use of quantum energy surfaces in the derivation of molecular force fields [J]. Computer Physics Communications,1994,84(1-3): 131-155.
    [119]Lim S Y, Tsotsis T T, Sahimi M. Molecular simulation of diffusion and sorption of gases in an amorphous polymer [J]. Journal of Chemical Physics.2003,119(1): 496-504.
    [120]Mayo S L, Olafson B D, Goddard W A, et al. DREIDING:A Generic forcefield for molecular simulations [J]. The Journal of Physical Chemistry,1990,94(26): 8897-8909.
    [121]Sun H, Ren P, Fried J R. COMPASS:an ab initio forcefield optimized for condensed-phase applications-overview with details on alkane and benzene compounds [J]. The Journal of Physical Chemistry B,1998,102(38):7338-7364.
    [122]吉青,杨小震.分子力场发展的新趋势[J].化学通报,2005,68(2):111-116.
    [123]Allen M P, Tildesley D J. Computer simulation of liquids [M]. Oxford:Clarendon Press,1987.
    [124]Quinlan G D, Tremain S. On the reliability of gravitational N-body integrations [J]. Royal Astronomical Society,1992,259(3):505-518
    [125]Soldera A, Metatla N. Glass transition phenomena observed in stereoregular PMMAs using molecular modeling [J]. Composites Part A:Applied Science and Manufacturing, 2005,36(4):521-530.
    [126]Ferry J D. Viscoelastics properties of polymers [M]. Canada:Wiley and sons Inc, 1970.
    [127]Bernstein B, SHOKOOH A. The stress clock function in viscoelasticity [J]. Journal of Rheology,1980,24(2):189-212.
    [128]Luo W, Yang T Q, An Q. Time-temperature-stress equivalenceand its application to nonlinear viscoelastic materials [J]. Acta Mechanica Solida Sinica,2001,14(3): 195-199.
    [129]Buckley C P, Wu J, Haughie D W. The integrity of welded interfaces in ultra high molecular weight polyethylene:Part 1-Model [J]. Biomaterials,2006,27(3): 3178-3186.
    [130]戴振冬,王珉,薛群基.摩擦体系热力学引论[M].北京:国防工业出版社.2002.
    [131]林书玉.超声换能器的原理及设计[M].北京:科学出版社.2004.
    [132]何曼君,张红东,陈维孝等.高分子物理[M].上海:复旦大学出版社,2007.
    [133]Aliosio C J, Wahl D G, Whetsel E E. A simplified thermoviscoelastic analysis of ultrasonic bonding [C]. Annual Technical Conference, Society of Plastics Engineers,1972:445-451.
    [134]Suresh K S, Rani M R, Prakasan K, et al. Modeling of temperature distribution in ultrasonic welding of thermoplastics for various joint designs [J]. Journal of materials Processing Technology,2007,186(1-3):138-146.
    [135]Elwenspoek M, Lammerink T S J, Miyake R, et al. Towards Integrated Microliquid Handling Systems [J]. Journal of Micromechanics and Microengineering,1994,4(4): 227-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700