用户名: 密码: 验证码:
海洋无缝垂直基准面建立方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深度基准面在实现中不连续的问题由来已久,随着海洋测量技术发展的需要,解决该问题的要求日益迫切。国际上,许多国家已经或正在开展海洋无缝垂直基准的相关研究,一些海洋国家相继建立了本国的无缝垂直基准面。我国目前完成了一些相关的基础工作,并有研究人员着手研究建立局部地区的无缝海洋垂直基准面。但是其中还有众多问题亟待解决,建立我国统一的海洋无缝垂直基准的重要性也还没有得到足够充分的认识。本文在国家重大专项(908-ZC-I-07)和863重点项目(2009AA121402)等相关项目的资助下,对海洋无缝垂直基准面建立的若干方法进行了系统的研究,主要内容包括以下五个方面:
     1.按照国际无缝垂直基准面的定义,通过深入分析现有的潮汐面、大地水准面、1985国家高程基准和椭球面等垂直基准的定义、性质、特点、实现及应用现状等内容,参考和借鉴国际经验,建议以CGCS 2000椭球面作为我国统一的海洋无缝垂直基准面。
     2.研究了平均海面高模型的建立方法,对卫星测高技术的原理及其在海洋学上的应用进行了分析。利用卫星测高数据解算的渤海平均海面高格网模型,进行参考椭球转换处理,将参考基准转换为海洋无缝垂直基准面(CGCS 2000椭球)。由于卫星测高数据在近岸等浅水区域受到干扰,存在较大的误差,故收集了渤海区5个同时具有长期的潮汐观测和GPS测量的数据点,对格网模型进行了局部改正分析,试验的结果表明,该项改正使两个改正数据点的模型差值,分别从-2.283m和2.023m减少为-0.805m和0.545m,单点精度有了显著提高。用拟合的方法对改正后的平均海面高格网模型进行曲面逼近。对几个基本的曲面拟合方法进行了研究分析,结合渤海数据情况的特点,选择半变异函数为Exponential-Cosine (type 1)的Kriging拟合方法获得了渤海平均海面高模型,拟合均方根误差6.42cm,外符合已知点趋势面拟合精度为99.93%,均方根误差13.46cm。
     3.研究了深度基准面模型的建立方法,主要利用物理海洋学的海洋数值模式来进行解算。针对渤海海域的特点,采用长期验潮资料运行海洋数值模式解算的渤海深度基准面格网模型,采用半变异函数为Exponential-Bessel的Kriging拟合方法,建立了连续无缝的渤海深度基准面模型,外符合精度的相对均方差为1.16cm。另外还对模型进行了分析,其特征与验潮站实测数据计算的结果相符。
     4.研究了偏差模型的建立方法,分析了国际上建立偏差模型的技术步骤,提出了建立渤海偏差模型的方法——“模型差值法”,对模型差值法的方法步骤进行了说明,利用平均海面和深度基准面之间的关系,建立了渤海的偏差模型,并对精度进行了分析。
     5.提出了基于海洋无缝垂直基准面的转换方法,即通过海洋无缝垂直基准面的建立,统一陆海高程/深度基准,以简化正高(或正常高)与海图高的转换与拼接的工作。选择了渤海某区域的单波束测深数据进行了转换试验,对试验结果进行了分析。实验结果表明,转换在技术上是可行的。
With the needs of the development of marine surveying technology, it's very urgent to solve the problem which the depth datum is discontinuous. Studies on seamless vertical datum have been carried out around the world. In some maritime countries, their own seamless vertical datum has successfully been set up. At present, some related foundation works on the local marine seamless vertical datum have been done in China. But which also have many problems to be solved, for example, it has not been thorough enough understanding of the importance of building China's unified seamless vertical datum. Funded by the Special Grand National Project (908-ZC-I-07), Chinese National Programs for High Technology Research and Development (863 Program) (2009AA121402) and other related projects, a systemic analysis and research has been made for several methods about seamless vertical datum. This thesis consists of seven chapters. The main contents are as follows:
     1. According to international seamless vertical datum definition, by deeply analyzing the definition, properties, characteristics, realization and application status of the existing tidal face, geoids,1985 national vertical datum and ellipsoid, and by referring to the international experience, it is proposed that CGCS 2000 ellipsoid would be used as our country unified seamless vertical datum.
     2. The method to build mean sea level modeling is studied. Based on the principle of satellite altimetry, the application in the ocean field was analyzed. By means of satellite altimetry data to build Bohai Sea mean sea level grid modeling and converted reference ellipsoid to make reference datum to be seamless vertical datum (CGCS 2000). But the data obtained by satellite altimetry has big error in offshore area and shallow water area. Grid model was corrected locally by using five points which have a long-term tidal observations and GPS data points. Experimental results showed that the correction make the two corrected points model difference reduce from -2.283m to -0.805m and 2.023m to 0.545m respectively. Therefore, a single point precision in gird modeling has improved significantly. Curved surface approximation was made by using fitting methods. Combining the characteristics of Bohai sea data with the analysis of several basic surface fitting methods, Bohai Sea mean sea level modeling was built by Kriging fitting method which is one of semivariogram function Exponential-Cosine (type 1). The root-mean-squared error is 6.42 cm. The external precision ws 99.93% and RMS error was 13.46 cm.
     3. The methods to build depth datum modeling were studied. Using Bohai depth datum grid modeling resolved by POM mode and choosing Kriging fitting methods which was one of semivariogram function Exponential-Bessel, Bohai Sea continuous seamless vertical datum was obtained. The relative RMS error was 1.16 cm. In addition, it is found that the characteristic of this model was in agreement with the results calculated by real tidal data.
     4. The method to build separation model was studied. The "Model Difference Method" was proposed. By using the relationship between mean sea level and depth datum, Bohai Sea separation model was built and the error was analyzed.
     5. Conversion method based on the vertical datum was put forward. Namely through the establishment of seamless vertical datum, the land vertical datum and ocean vertical datum was unified to simplify transformation between orthometric height (or normal height) and chart height and map splicing. Some single beam sounding data in a certain area of Bohai Sea were used to do conversion tests. The experimental results showed that the conversion method was technically feasible.
引文
1.中国网.蓝色经济带——2020年中国海洋开发[EB/OL].http://www.china.com.cn/ economic/txt/2009-08/17/content 18351051.htm
    2.梁开龙.海洋测绘与海洋经济的发展[J],测绘工程.2004,13(2):1-4
    3.董鸿闻,李国智,陈士银.地理空间定位基准及其应用[M],北京:测绘出版社,2004
    4.暴景阳.海洋测绘垂直基准综论[J],海洋测绘.2009,29(2):70-73
    5.冯士筰,李凤岐,李少菁.海洋科学导论[M],北京:高等教育出版社,1999
    6.陈宗镛.潮汐学[M],北京:科学出版社,1980
    7.黄祖珂,黄磊.潮汐原理与计算[M],青岛:中国海洋大学出版社,2005
    8.百度百科.深度基准面[EB/OL].2009.http://baike.baidu.com/view/1636044.htm
    9.耿凤奎,梁谋.建立沿海理论最低潮面形态曲线模型方法研究[C],全国测绘科技信息交流会暨信息网成立30周年庆典论文集:2007:437-438
    10.管泽霖,管铮,翟国君.海面地形与高程基准[M],北京:测绘出版社,1996
    11.孙翠羽,周兴华.国外无缝垂直基准面的研究进展[C],2009全国测绘科技信息交流会暨首届测绘博客征文颁奖论文集:2009
    12.孙翠羽,周兴华,陈艳华,等.无缝垂直基准面建立方法研究[C],中国测绘学会第九届海洋测绘专业委员会第一次全体委员会议暨第二十一届海洋测绘综合性学术研讨会:2009:90-93
    13.王骥,刘克修.关于海图深度基准面计算方法的若干问题[J],海洋测绘.2002,22(4):11-13
    14.阮锐.潮汐测量与验潮技术的发展[J],海洋技术.2001,3:68-71
    15.许军.卫星测高技术在海洋动态垂直基准中的应用研究[D],大连:海军大连舰艇学院,2005
    16.胡明城.现代大地测量学的理论及其应用[M],北京:测绘出版社,2003
    17.van Norden Maxim F., Ladner R. Wade, Arroryo-Suarez Elliot N. Developing a Concept of Operations for Military Surverys to Iho Standards without Shore-Based Stations[C], Proceedings of the Canadian Hydrographic Conference and National Surveyors Conference 2008:2008
    18.Wells David, Kleusberg Alfred, Vanicek Petr. A Seamless Vertical-Reference Surface for Acquisition,Management and Display(Ecdis) of Hydrographic Data[R]. New Brunswick: Department of Geodesy and Geomatics Engineering University of New Brunswick,1996
    19.王闰成,张永合.渤海航路深度基准面确定研究[C],中国航海科技优秀论文集:2009:148-157
    20.王志远,蒋铁民.渤黄海区域海洋管理[M],北京:海洋出版社,2003:375
    21.孙湘平.中国近海区域海洋[M],北京:海洋出版社,2006:364
    22. The International Federation Of Surveyors. Fig Guide On the Development of a Vertical Reference Surface for Hydrography[M], Copenhagen:2006
    23. The International Hydrographic Organization.2009.http://www.iho-ohi.net/english/home/
    24.Adams Ruth. A Vertical Reference Surface for Hydrography-Status Report 2005 [R]. Cairo:Proceedings of the FIG Working Week 2005 and GSDI-8,2005
    25.El-Rabbany Ahmed. Relating Data to a Seamless Vertical Reference Surface[J],2004,
    26.Bursa M., Kenyon S., Kouba J., et al. A Global Vertical Reference Frame Based On Four Regional Vertical Datums [J], Studia Geoghysica et Geodaetica,2004,48(3):493-502
    27. Department Of Geodesy And Geomatics Engineering, Brunswick University Of New.2009.http://www.omg.unb.ca/omg/
    28.Martin Raymond J., Broadbent G. John. Chart Datum for Hydrography[J], THE HYDROGRAPHIC JOURNAL,2004,112:
    29.Adams Ruth. Seamless Digital Data and Vertical Datums[R]. Paris:FIG Working Week 2003,2003
    30.Parker Bruce, Milbert Dennis, Hess Kurt, et al. National Vdatum--The Implementation of a National Vertical Datum Transformation Database[J], Sea Technolog,2003,44(9): 10-15
    31.Parker Bruce. The Integration of Bathymetry, Topography, and Shoreline, and the Vertical Datum Transformations Behind It[J], International Hydrographic Review,2002,3(3):
    32.Hess K. W., Milbert D. G., Gill S. K., et al. Vertical Datum Transformations for Kinematic Gps Hydrographic Surveys[C], Proceedings of the U.S. Hydro 2003 Conference:2003
    33.Gesch D. And R. Wilson. Development of a Seamless Multisource Topographic/Bathymetric Elevation Model of Tampa Bay[J], MTS Journal,2002,35(4):
    34.Parker Bruce, Milbert Dennis, Wilson Robert, et al. A Tampa Bay Bathymetric/Topographic Digital Elevation Model with Internally Consistent Shorelines for Various Datums[C],Proceedings Hydro 2001 (SP42):2001:11
    35.Guohong Fang, Ji Wang. An Analysis of the Astrometeorological Constituents of Tide in the Bohai Sea[J], ACTA OCEANOLOGICA SINICA,1986,5(4):486-495
    36.陈俊勇,李建成,晁定波.用T/P测高数据确定中国海域及其邻海的海面高及海面地形[J],武汉测绘科技大学学报.1995,20(4):321-326
    37.黄祖坷,陈宗墉,司鸿业,等.我国沿海若干验潮站的年潮汐分析[J],中国科学.1997,27(2):174-178
    38.高金耀.边缘海卫星测高数据的高精度综合处理方法研究[C],1999年中国地球物理学会年刊—中国地球物理学会第十五届年会论文集:1999
    39.李立,吴日升,李燕初,等.TOPEX/POSEIDON高度计浅海潮汐混淆的初步分析[J],海洋学报.1999,21(3):7-14
    40.暴景阳,晁定波,李建成.南中国海TOPEX/POSEIDON轨迹交叉点测高数据的潮汐调和分析[J],测绘学报.2000,29(1):17-23
    41.李建成,王正涛,胡建国.联合多种卫星测高数据分析全球和中国海海平面变化[J],武汉测绘科技大学学报.2000,25(4):343-347
    42.方国洪,魏泽勋,方越,等.依据海洋环流模式和大地水准测量获取的中国近海平均海面高度分布[J],科学通报.2001,46(18):1572-1575
    43.韩桂军,方国洪,马继瑞,等.利用伴随法优化非线性潮汐模型的开边界条件Ⅱ.黄海、东海潮汐资料的同化试验[J],海洋学报.2001,23(2):25-31
    44.李建成,姜卫平,章磊,联合多种测高数据建立高分辨率中国海平均海面高模型[J],武汉大学学报·信息科学版.2001,26(1):40-45
    45.文援兰,杨元喜.我国近海平均海面及其变化的研究[J],武汉大学学报·信息科学版 .2001,26(2):127-131
    46.刘克修,马继瑞,韩桂军,等.引入差比关系法分析西北太平洋TOPEX/POSEIDON卫星高度计测高数据[J],海洋学报.2002,24(4):1-10
    47.高永泉,章传银.近海多种卫星测高联合数据处理技术[J],测绘科学.2002,27(2):20-25
    48.许家琨.沿岸当地平均海面的高程求取与应用[J],海洋测绘.2002,22(5):16-19
    49.吕咸青,方国洪.渤海M_2分潮的伴随模式数值实验[J],海洋学报.2002,24(1):17-24
    50.吕咸青,方国洪.渤海开边界潮汐的伴随法反演[J],海洋与湖沼.2002,33(2):113-120
    51.Guohong Fang, Zexun Wei, Byung-Ho Choi, et al. Interbasin Freshwater,Heat and Salt Transport through the Boundaries of the East and South China Seas From a Variable-Grid Global Ocean Circulation Model[J], SCIENCE IN CHINA (Series D),2003,46(2): 149-161
    52.王庆业,刘志亮.提取分潮调和常数的新方法——正交方法[R].,2002
    53.王斌.由卫星测高资料确定海洋潮汐模型的研究[D],武汉:武汉大学,2003
    54.王永刚,方国洪,曹德明,等.渤、黄、东海潮汐的一种验潮站资料同化数值模式[J],海洋科学进展.2004,22(3):252-274
    55.Guohong Fang, Susanto Dwi, Soesilo Indroyono, et al. A Note On the South China Sea Shallow Interocean Circulation[J], ADVANCES IN ATMOSPHERIC SCIENCES,2005, 22(6):946-954
    56.黄辰虎,暴景阳,刘雁春,等.正交潮响应分析法与调和分析法在验潮站潮汐资料分析中的对比研究[J],海洋测绘.2004,24(2):19-23
    57.刘传勇,黄谟涛,欧阳永忠,等.卫星测高正常点海面高度计算方法研究[J],海洋测绘.2005,25(6):4-8
    58.许军,暴景阳,章传银.联合TOPEX/Poseidon与Geosat/ERM测高资料建立区域潮汐模型的研究[J],测绘科学.2006,31(2):90-92
    59.郭俊建,方文东,方国洪,等.基于11年高度计资料的南海表层环流时空变化[J],科学通报.2006,51(增刊Ⅱ):1-8
    60.邓凯亮,暴景阳,许军,等.用强制改正法建立中国近海平均海平面高模型[J],武汉大学学报·信息科学版.2008,33(12):1283-1287
    61.汪一航,方国洪,魏泽勋,等.基于卫星高度计的全球大洋潮汐模式的准确度评估[J],地球科学进展.2010,25(4):353-359
    62.汪一航.卫星高度计资料在海洋潮汐研究中的应用[D],青岛:中国科学院海洋研究所,2008
    63.徐菊生,王建华,赖锡安,等.垂直基准定义及联接[J],地壳形变与地震.2001,21(1):24-34
    64.陈俊勇,李建成,宁津生,等.中国新一代高精度、高分辨率大地水准面的研究和实施[J],武汉大学学报·信息科学版.2001,26(4):283-289
    65.罗志才,宁津生,徐菊生.区域性高程基准的统一[J],测绘科学.2004,29(2):13-15
    66.李建成,宁津生,陈俊勇,等.我国海域大地水准面与大陆大地水准面的拼接研究[J],武汉大学学报·信息科学版.2003,28(5):542-546
    67.郭海荣,焦文海,杨元喜.1985国家高程基准与全球似大地水准面之间的系统差及其分布规律[J],测绘学报.2004,33(2):100-104
    68.王虎彪.用卫星测高和船测重力资料联合反演海洋重力场[D],武汉:中国科学院测量与地球物理研究所,2005
    69.许厚泽.我国精化大地水准面工作中若干问题的讨论[J],地理空间信息.2006,4(5):1-3
    70.暴景阳,章传银.关于海洋垂直基准的讨论[J],测绘通报.2001,6:10-11
    71.暴景阳,刘雁春,晁定波,等.中国沿岸主要验潮站海图深度基准面的计算与分析[J],武汉大学学报.信息科学版.2006,31(3):224-228
    72.吴俊彦,韩范畴,成俊,等.我国深度基准面不统一所带来的问题与对策[J],海洋测绘.2008,28(4):54-56
    73.李改肖,刘雁春,崔高嵩,等.海图深度基准面的确定及算法研究[C],中国测绘学会海洋测绘专业委员会第二十一届海洋测绘综合性学术研讨会:2009
    74.张力,孙新轩,刘雁春,等.最低天文潮面的精度研究[J],海洋测绘.2009,29(4):5-8
    75.赵建虎,张红梅,Clarke John E. Hughes.局部无缝垂直参考基准面的建立方法研究[J],武汉大学学报·信息科学版.2006,31(5):448-450
    76.陈艳华,周兴华,孙翠羽,等.我国海域无缝垂直基准面的选择[J],海岸工程.2010,29(2):43-47
    77.Wolfgang Torge. Geodesy [M], deGruyter,2001
    78.A. Heiskanen. W., H. Moritz.,译卢福康Physical Geodesy[M],北京:测绘出版社,1979
    79.H. Moritz. Advanced Physical Geodesy[M], Karlsruhe:Wichmann,1980
    80.王正涛,李建成,晁定波.海洋重力似大地水准面与区域测高似大地水准面的拟合问题[J],武汉大学学报·信息科学版.2005,30(3):234-237
    81.魏子卿.大地水准面短议[J],地理空间信息.2009,7(1):1-3
    82.黄谟涛,管铮,翟国君,等.全球重力场模型研究的过去、现在与未来(一)[J],海洋测绘.1998,1:14-16
    83.黄谟涛,管铮,翟国君,等.全球重力场模型研究的过去、现在与未来(二)[J],海洋测绘.1998,2:16-21
    84.黄谟涛,管铮,翟国君,等.全球重力场模型研究的过去、现在与未来(三)[J],海洋测绘.1998,3:17-23
    85.黄谟涛,管铮,翟国君,等.全球重力场模型研究的过去、现在与未来(四)[J],海洋测绘.1998,4:16-27
    86.孟德润,田光耀,刘雁春.海洋潮汐学[M],北京:海潮出版社,1993
    87.王志豪.中国的海平面与基准面[M],天津:1986
    88.许家琨.沿岸当地平均海面的高程求取与应用[J],海洋测绘.2002,22(5):16-19
    89.章传银,常晓涛,成英雁.测绘垂直基准相互转换与统一技术[C],中国科协2004年学术年会14分会场海洋开发与可持续发展论文汇编:2004
    90.许家琨.海道测量中的基准面及其相互关系[J],海洋测绘.1998,3:50-52
    91.方国洪,郑文振,陈宗镛,等.潮汐和潮流的分析和预报[M],北京:海洋出版社,1986
    92.许家琨,刘雁春,许希启,等.平均大潮高潮面的科学定位和现实描述[J],海洋测绘.2007,27(6):19-24
    93.Changed Chart Sounding Datum (Csd)[R]. Federal waterways and shipping directorate North,2005
    94.翟国君,黄谟涛,暴景阳.海洋测绘基准的需求及现状[J],海洋测绘.2003,23(4):54-58
    95.张泽能.漫谈测量中基准面的确定及相互关系[C],中国航海学会航标专业委员会测绘学组2008年学术研讨会:2008:156-158
    96.孔祥元,郭际明,刘宗泉.大地测量学基础[M],武汉:武汉大学出版社,2001
    97.陈俊勇.中国现代大地基准——中国大地坐标系统2000(CGCS 2000)及其框架[J],测绘学报.2008,37(3):269-271
    98.Kumar M.,梁开龙,王志林译.非时变海洋测深——新概念的定义与概述[C],International Symposium on Marine Positioning,INSMAP:1994:101-113
    99.陈艳华.局部海域无缝深度基准面的建立—以渤海湾为例[D],青岛:国家海洋局第海洋研究所,2010
    100.程鹏飞,文汉江,成英燕,等.2000国家大地坐标系椭球参数与GRS 80和WGS 84的比较[J],测绘学报.2009,38(3):189-194
    101.许军.卫星测高技术在海洋动态垂直基准中的应用研究[D],海军大连舰艇学院,2005
    102.Fu L. L., Christensen E. J., Yamarone C. A., et al. Topex/Poseidon Mission Overview[J], Journal of Geophysical Research,1994,99(C11):24369-24381
    103.王锡祺.台湾海域JASON-1测高卫星的绝对率定与成果[D],民雄:台湾国立中正大学地质研究所,2008
    104.纪永刚,张杰,张有广.神舟四号高度计波形数据预处理和信息处理[J],海洋与湖沼.2007,38(6):487-494
    105.国家卫星海洋应用中心.海洋二号卫星转正样阶段通过评审[EB/OL].2010.http://www.nsoas.gov.cn/new/channel/detail.asp?Content_id=214
    106.姚志青.卫星测高的发展与应用——兼评《卫星测高原理》专著出版[J],测绘工程.1997,6(1):33-35
    107.汪海洪,钟波,王伟,等.卫星测高的局限与新技术发展[J],大地测量与地球动力学.2009,29(1):91-95
    108.翟国君,黄谟涛,欧阳永忠,等.卫星测高原理及其应用[J],海洋测绘.2002,22(1):57-62
    109.何宜军,陈戈,郭佩芳,等.高度计海洋遥感研究与应用[M],北京:科学出版社,2002
    110.翟国君,黄谟涛,欧阳永忠,等.卫星测高在海洋学中的应用[J],海洋测绘.2002,22(3):58-63
    111.胡建国,章传银,常晓涛.近海多卫星测高数据联合处理的方法及应用[J],测绘通报.2004,(1):1-4
    112.Chenway Hwang. Satellite Altimetry Lectures[R]. Wuhan,2002
    113.徐安凤,李金莱,姚春光.非规则三维数据的曲面拟合方法[J],计算机工程与应用.2009,45(20):234-239
    114.于红波,刘惠明.GPS水准拟合的若干问题研究[J],矿山测量.2009,(1):63-66
    115.刘念,胡荣明.拟合推估在GPS高程解算中的应用[J],测绘通报.2000,(7):29-31
    116.郭炳岐.基于Kriging方法的GPS高程拟合模型及其应用研究[D],西安:西安科技大学,2008
    117.颜慧敏.空间插值技术的开发与实现[D],成都:西南石油学院,2005
    118.Wahr J. M. Body Tides On an Elliptical,Rotating,Elastic and Oceanless Earth[J], Geophys.J.R.Astr.Soc,1981,64(3):677-703
    119.Desai S. D., Wahr J. M. Empirical Ocean Tide Models Estimated From Topex/Poseidion Altimetry[J], Journal of Geophysical Research,1995,100(C12):25,205-225,28
    120.Egbert G. D., Bennett A., Foreman M. Topex/Poseidon Tides Estimated Using a Global Inverse Model [J], Journal of Geophysical Research,1994,99(C12):24,821-824,852
    121.Schrama E. J. O., Ray R. D. A Preliminary Tidal Analysis of Topex/Poseidon Altimetry[J], Journal of Geophysical Research,1994,99(C12):24,724-799,808
    122.Le Provost C, Genco M. L., Lyard F. Spectroscopy of the Ocean Tides From a Finite Element Hydrodynamic Model[J], Journal of Geophysical Research,1994,99(C12):24, 724-777,797
    123.Mazaega P., Berge M. Ocean Tides in Asian Semienclosed Seas From Topex/Poseidon[J], Journal of Geophysical Research,1994,99:24,824-867,881
    124.Loder J. W. Topographic Rectification of Tidal Currents On the Sides of Georges Bank[J], J.Phys.Oceanogr.,1980,10:1399-1416
    125.Schwiderski E. W. On Charting Global Ocean Tides[J], Reviews of Geophysics and Space Physics,1980,18:243-268
    126.Tierney C. C. Shallow and Deep Water Global Ocean Tides From Altimetry and Numerical Modeling[J], Journal of Geophysical Research,2000,100(C5):11,211-259, 278
    127.Matsumoto K., Takanezawa T., Ooe M. Ocean Tide Models Developed by Assimilating Topex/Poseidon Altimeter Data Into Hydrodynamical Model:a Global Model and a Regional Model Around Japan[J], Journal of Oceanography,2000,55):567-581
    128.Kantha L. H., Tierney C. H. Global Baroclinic Tides[J], Progress in Oceanography,1997, 40:163-178
    129.Parke M. E. On the Choice of Orbits for an Altimetric Satellite to Study Ocean Circulation and Tides[J], Geophys Research,1987,92:11693-11707
    130.Anderson O. B. Global Ocean Tides From Ers-1 and Topex/Poseidon Altimetry [J], Geophys Research,1995,100:25249-25259
    131.Shum C. K. Accuracy Assessment of Recent Ocean Tide Models[J], Geophys Research, 1997,102:25173-25194
    132.Kantha L. H., Tierney C. C., Lopez J. W. Barotropic Tides in the Global Oceans From a Nonlinear Tidal Model Assimilating Altimetric Tides2. Altimetric and Geophysical Implications[J], Journal of Geophysical Research,1995,100(C12):25,309-325,317
    133.Kantha L. H. Barotropic Tide in the Global Ocean From a Nonlinear Tidal Model Assimilating Altimetric Tides,I,Model Description and Result[J], Journal of Geophysical Research,1995,100(C12):25,225-283,308
    134.Eanes R. J., Bettadpur B. The Csr3.0 Global Ocean Tide Model:Diurnal and Semi-Diurnal Ocean Tides From Topex/Poseidon Altimetry[R]. Texas:Centre for Space Research,1996
    135.Ray R. D., Eanes R. J., Chao B. F. Detection of Tidal Dissipation in the Solid Earth by Satellite Tracking and Altimetry[J],Nature,1996,381:595-597
    136.Egbert G. D., Erofeeva S. Y. Efficient Inverse Modeling of Barotropic Ocean Tides[J], Journal of Atmospheric and Oceanic Technology,2002,19(2):183-204
    137.Egbert G. D. Tidal Data Inversion:Interpolation and Inference [J], Progress in Oceanography,1997,40:53-80
    138.Egbert G. D., Ray R. D. Significant Dissipation of Tidal Energy in the Deep Ocean Inferred Form Satellite Altimeter Data[J], Nature,2000,405:775-778
    139.Ray R. D., Eanes R. J., Egbert G. Error Spectrum for the Global M2 Ocean Tide [J], Geophy.Res.Lett.,2001,28(1):21-24
    140.Morimoto A., Yanagi T., Kandko A. Tidal Correction of Altimetry Data in the Japan Sea[J], J.Ocean,2000,56:31-41
    141.Yanagi, Morimoto A., Ichikawa K. Co-Tidal and Co-Range Charts for the East China Sea and the Yellow Sea Derived From Satellite Altimetric Data[J], J.Oceanogr.,1997,53: 303-309
    142.Yi Y., Matsumoto K., Shum C. K. Advances in Southern Ocean Tide Modeling[J], Journal of Geodynamics,2006,41:128-132
    143.Yanagi, Takao T., Morimoto A. Co-Tidal and Co-Range Charts in the South China Sea Derived From Satellite Altimetry Data [J], La mer,1997,35:85-93
    144.李立,吴日升,李燕初.TOPEX/POSEIDON高度计浅海潮汐混淆的初步分析[J],海洋学报.1999,21(3):1-14
    145.王东晓,施平,杨坤.南海TOPEX海面高度资料的混合同化实验[J],海洋与湖沼.2001,32(1):101-108
    146.董晓军,马继瑞,黄城.利用TOPEX/POSEIDON卫星高度计资料提取东中国海潮汐信息的研究[J],海洋与湖沼.2002,33(1):7-13
    147.李培良,左军成,李磊.南海TOPEX/POSEIDON高度计资料的正交响应法潮汐分析[J],海洋与湖沼.2002,33(3):287-295
    148.刘克修,马继瑞,许建平.用TOPEX/POSEIDON资料研究南海潮汐和海面高度季节变化[J],热带海洋学报.2002,21(3):55-63
    149.李燕初,蔡文理,李立.由TOPEX/POSEIDON卫星高度计资料导出福建和台湾邻近海域的潮汐特征[J],2002,24:154-162
    150.毛庆文,施平,齐义泉.运用调和方法分离卫星高度计资料中的潮汐信息[J],海洋工程.2002,20(1):41-45
    151.毛庆文,齐义泉,施平.在南海南部大纳土纳岛附近存在S2分潮的无潮点吗?[J],海洋通报.2006,51(增2):23-26
    152.邱种锋,何宜军,吕咸青.黄海、渤海TOPEX/POSEIDON高度计资料潮汐随同化[J],海洋学报.2005,27(4):10-18
    153.沈春,左军成,杜凌.世界大洋潮波特征的比较分析[J],中国海洋大学学报.2006,36(4):523-529
    154.沈春,左军成,张建立.太平洋潮波特征比较[J],海洋预报.2008,25(2):42-50
    155.万振玟,乔方利,袁业立.渤、黄、东海三维潮波运动数值模拟[J],海洋与湖沼.1998,29(6):611-616
    156.乔方利,渡边正孝,袁业立,等.黄海和东海的环流数值模拟研究[J],水动力学研究与进展(A辑).1998,13(2):244-254
    157.汪一航,魏泽勋,王永刚.潮汐潮流三维数值模拟在庄河电厂温排水问题中的应用[J1,海洋通报.2006,1:8-15
    158.Deng X. L. Estimation of Contamination of Ers-2 and Poseidon Satellite Radar Altimetry Close to the Coasts of Australia[J], Marine Geodesy,2002,25(4):249-271
    159.Hwang C. Coastal Gravity Anomalies From Retracked Geosat/Gm Altimetry: Improvement, Limitation and the Role of Airborne Gravity Data[J], Journal of Geodesy, 2006,80:204-216
    160.鄂栋臣,杨元德.卫星测高波形重跟踪算法在南极应用的比较[J],大地测量与地球动力学.2007,27(1):45-49
    161.宁津生,罗志才,李建成.我国省市级大地水准面精化的现状及技术模式[J],大地测量与地球动力学.2004,24(1):5-7
    162.吴海涛.区域大地水准面精化理论与应用[D],太原:太原理工大学,2007
    163.刘站科.以CQG2000为平台的区域似大地水准面精化方法研究[D],西安:长安大学,2009
    164.刘念.拟合推估的质量理论[D],郑州:解放军信息工程大学,2001
    165.边少锋,Menz Joachim.克立格估计的分析解释与协方差函数的代数确定[J],地质大学学报.2000,2:195-200
    166.郭俊义.物理大地测量学基础[M],武汉:武汉测绘科技大学出版社,2000
    167.C Hwang. Inverse Vening Meinesz Formula and Deflection-Geoid Formula:Applications to the Prediction of Gravity and Geoid Over the South China Sea[J], Journal of Geodesy, 1998,72:304-312
    168.管泽霖,左传惠,吴黎明,等.用FFT计算川西地区的高程异常[J],武汉侧绘科技大学学报.1993,18(3):11-17
    169.F Kirby J., R Forsberg. A Comparison of Techniques for the Integration of Satellite Altimeter and Surface Gravity Data for Geoid Determination[J], International Association of Geodesy Symposia,1998,119:207-212
    170.M Wang Y. On the Ellipsoidal Corrctions to Gravity Anomalies Computed Using the Inverse Stokes[J], Journal of Geodesy,1999,73:29-34
    171.李建成,陈俊勇,宁津生.地球重力场逼近理论与中国2000似大地水准面的确定[M],武汉:武汉大学出版社,2003
    172.陆彩萍.顾及EGM96模型的GPS水准高程拟合[J],测绘工程.2002,11(3):31-34
    173.魏子卿,王刚.用地球位模型和GPS/水准数据确定我国大陆似大地水准面[J],测绘学报.2003,32(1):1-5
    174.王爱生,欧吉坤,赵长胜.“移去-拟合-恢复”算法进行高程转换和地形改正计算公式探讨[J],测绘通报.2005,4:5-8
    175.Abdelhady Essam, Ghanem Aly. Fft Gravimetric Geoid Determination Teehniques and their Combination with Gps/Levelling Data[J],2001,5-38
    176.李建成,宁津生,陈俊勇,等.中国海域大地水准面和重力异常的确定[J],测绘学报.2003,32(2):114-119
    177.荣敏,周巍,陈春旺.重力场模型EGM2008和EGM96在中国地区的比较与评价[J],大地测量与地球动力学.2009,29(6):123-125
    178.Icgem[EB/OL].2010.http://icgem.gfz-potsdam.de/ICGEM/
    179.章传银,郭春喜,陈俊勇,等.EGM2008地球重力场模型在中国大陆适用性分析[J],测绘学报.2009,38(4):283-289
    180.刘晓刚,邓禹,叶修松,等.EGM96与EGM2008地球重力场模型精度比较[J],海洋测绘.2010,30(2):55-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700