用户名: 密码: 验证码:
利用GNSS信号的地基大气折射率剖面反演技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对流层的折射率高度剖面是电波折射修正的基础数据,但是目前还缺乏较为简便的全天候实时获取方法。全球导航卫星系统(GNSS)不仅成功应用于测距、授时和导航等传统领域,而且在环境监测、大地测量、天文、气象等领域也得到广泛的应用。本文基于单站地基GNSS估计的电波折射参数(延迟与弯曲角,以延迟为主),研究了大气折射率剖面的反演算法。主要研究成果如下:
     1)传统的GNSS高精度单点定位(PPP)方法获取对流层延迟是基于IGS精密星历实现的,但是精密星历的发布有13天的延迟,因此对流层延迟不能够实时获取。本文在GNSS高精度单点定位(PPP)方法和IGS超快速星历基础之上,提出了单站地基GNSS接收机对低高度角(<5°)对流层斜延迟的实时估算方法,实验证实该方法获取的斜延迟误差小于5%。
     2)基于大气折射率剖面模型和GNSS探测的对流层延迟,提出了基于GNSS的对流层折射率模型参数的估算反演方法。这种反演方法的主要优点是不需要历史数据。
     3)通过对历史探空数据及其GNSS信号延迟仿真的分析,表明不同高度的折射率与地面气象参数和对流层延迟之间有很好的相关性,因此利用对历史气象探空数据及其仿真对流层延迟建立了不同高度的折射率与地面气象参数、对流层延迟之间的统计回归关系,由此建立了反演模型。
     4)通过引入利用神经网络方法、支持向量机方法等现代优化算法深入挖掘地面气象参数及对流层延迟与不同高度折射率的相关性关系,建立了多种反演模型和算法并进行对比研究,研究发现其中以基于不同高度角对流层延迟差的相关向量机反演方法的综合性能最优,该方法利用多种手段消除延迟测量误差对反演的影响,有效解决了反演方法对延迟测量的容错性问题。
     5)综合单站地基GNSS实时估计低高度角对流层斜延迟方法和基于低高度角斜延迟梯度的对流层折射率剖面相关向量机反演算法,提出了基于地基单站GNSS的对流层折射率剖面的实时反演方法,突破了实时反演的瓶颈,仿真和实验结果证明了该方法的有效性和优越性。
     本文为大气剖面参数的遥感反演提供了一种简便、高效、准确的新手段。本文的研究结果将有助于航天测控、导航定位、雷达探测等系统的大气的实时电波折射修正。
The tropospheric refractivity profile is the basis for radio wave correction for refractive error, however, there is not a simple and convenient method to measure it for all-weather in real time at present. The Global Navigation Satellite System(GNSS) have been applied successfully not only in the traditional field such as ranging, time service, and navigation, but also in environmental monitoring, geodesy, astronomy, and meteorology and so on. On the basis of estimating electromagnetic wave refraction parameters (path delay and bending angle) by single ground-based GNSS receiver, the retrieving algorithms of tropospheric refractivity profile have been investigated herein. The main topics and results of the study are as follows:
     Firstly, the general methods of obtaining tropspheric delay by the Precise Point Position method (PPP) depend upon the precise IGS (the International GPS Service) final products, which are usually available on the thirteenth day after the last observation, therefore the tropospheric delays can not be acquired in real time. On the basis of the PPP method with IGS ultra-rapid products, new techniques are developed here of calclulating the benging angle and the slant path delay (STD) at the straight line elevation below 5°in real time. The experiment show that the RMS errors of the estimated STDs by the methods are less than 5%.
     Secondly, on the assumption that the tropospheric refractivity profile approximates to some model, the retrieving methods are proposed for estimating the parameters of the model by some searching algorithm by path delay of GNSS receiver. The main advantage of this method is that the historical radiosonde data are not necessary here.
     Thirdly, the statistical relationships between simulated path delay and atmospheric refractivity at various height based on historical radiosonde data have been analysed, and it is found that there are good correlations between them. Therefore the regressing models are founded between (a) surface meteorologic parameters and simulated tropospheric path delay and (b) tropospheric refractivity profile.
     Fourthly, the BP (Back Propagation) neutral network, SVM (Support Vector Machine), LS-SVM (Least-Squre SVM), and RVM (Relevance Vector Machine) are used to model tropospheric refactivity profile by the STDs, and these models are compared by simulation and experiment. The RVM model based on the differences of the STDs at various straight line elevations has the best performance, especially for tolerating the errors of the retrieved STDs.
     Fifthly, combining (a) the estimation method of the slant path tropospheric delay (STD) at low straight line elevation (<5°) of single ground-based GNSS receiver in real time and (b) the RVM inversion method based on the differences of STDs, a method is developed for retrieving atmospheric refractivity profiles in real time based on single ground-based GPS receiver, which solves the difficulty of inversion in real time. The simulation and experiment indicate the validity of the method.
     The studies in this dissertation propose a new method to retrieve atmospheric refractive profile in real time, at low cost, and high efficiency. The results herein will be helpful for correction for tropospheric refractive error of radio wave in electronic systems including TT&C (Telemetry, tracking, and commanding), navigation, radar, etc.
引文
[1].徐晓华.利用GNSS无线电掩星技术探测地球大气的研究.武汉大学博士学位论文,2003年.
    [2].熊皓主编.无线电波传播.北京:电子工业出版社,2000年.
    [3].董庆生主编.电波与信息化.北京:航空工业出版社,2009年.
    [4].王刚,王仕璠.大气温度的激光雷达实测方法.激光杂志,2004年,Vol.25, No.2, pp.52-54.
    [5].刘君,华灯鑫,李言.大气边界层白天温度测量用转动拉曼激光雷达.光学学报,2007年,Vol.27, No.5, pp.755-759.
    [6]. Bevis, M., S. Businger, T.A. Herring, et al., GPS meteorology :Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysics Research, 1992,97(D14) :15787-15801.
    [7].刘敏.GPS掩星观测的变分同化技术.中国科学院研究生院硕士论文,2006年.
    [8]. Exne, R.M., D. Feng, M.Gorbunov et al. Bull.Amer.Met.Soc., 77, 19, 1996.
    [9]. Kursinski,E.R., G.A. Hajj, W.1. Bertiger, et al., Initial results of radio occultation observations of earth’s atmosphere using the GPS, Science, 1996, 271, pp.1107-1109.
    [10]. Rocken, C., R. Anthes, M. Exner, et al., Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res., 1997, Vol.102, No.D25, pp.29849-29866.
    [11]. Zuffada, C., G. Hajj, E.R. Kursinski, A novel approach to atmospheric profiling with a mountain-based or airborne GPS receiver. J. Geophys. Res., 1999, Vol.104, No.D20, pp.24435-24447.
    [12].胡雄,张训械,吴小成等.山基GPS掩星观测实验及其反演原理.地球物理学报,2006年,Vol.49,No.1,pp.22-27.
    [13].宫晓艳,胡雄,吴小成等.雾灵山GPS掩星观测实验分析.应用气象学报,2008年,Vol.19,No.2,pp.180-187.
    [14]. Xie, F.Q., Development of a GPS occultation retrieval method for characterizing the marine boundary layer in the presence of super-refraction, Doctoral dissertation of the University of ARIZONA, 2006.
    [15]. Flores, A., L. P. Gradinarsky, P. Elósegui, Sensing atmospheric structure: Tropospheric tomographic results of the small-scale GPS campaign at the Onsala Space Observatory, Earth Planets Space, 2000, 52, pp.941–945.
    [16]. Lubomir, P., Per JarLemark. Ground-Based GPS Tomography of water vapor:analysis of simulated and real data.Special issue of the Journal of the Meteorological Society of Japan, 2004, Vol.82, No.1, pp.:551~560.
    [17]. Foelsche,U., Tropospheric water vapor imaging by combination of ground-based and spaceborne GNSS sounding data. J. Geophy Res, 2001, Vol.106, No.D21, pp. 27221~27231.
    [18]. Ha S Y, Guo Y R, Roken C. Comparison of GPS Slant Wet Delay Measurements with Model Simulations during the Passage of a Squall Line. Geophys Res Lett, 2002, Vol.29, No.23, pp. 2113~2116.
    [19].宋淑丽.地基GPS网对水汽三维分布的监测及其在气象学中的应用.中国科学院研究生院博士论文,2004年.
    [20]. Zhang C.L., Y.H. Kuo, L.J. Dai, et al., The Design and Application of Network of Ground-Based GPS Water Vapor Monitoring Stations to Improve Precipitation Prediction in The Greater Beijing Metropolitan Area, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B8. Beijing 2008, pp.517-522.
    [21].王威.实时GPS遥感水汽技术的理论研究.中国人民解放军信息工程大学硕士论文,2006年.
    [22]. Fang, P., Y. bock, S. Gutman, Assessment of A High Rate Real-time system for Ground-based GPS Meteorology, Joint AOGS lst Annual Meeting & 2nd APHW Conferences, 5-9 July 2004, Singapore.
    [23].王小亚.地面GPS探测大气可降水汽量的研究及其在气象上的应用.中国科学院研究生院博士论文,1998.
    [24].曹云昌,方宗义,夏青.轨道误差对近实时GPS遥感水汽的影响研究.气象科技,2004年,Vol.32, No.4,pp.229-232.
    [25]. Rocken, C., An Introduction to Ground Based GPS Meteorology,―Ground based GPS Meteorology‖, NCAR GPS Meteorology Colloquium, June 20-July 2 2004, Boulder, CO.
    [26].盛峥,黄思训,张流青等.利用GPS技术探测大气中的水汽含量.沈阳师范大学学报(自然科学版),2005年,Vol.23, No.1, pp.33-37.
    [27]. Zumberge, J.F., Heflin, M.B., Jefferson, D.C., et al., Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res., 1997, Vol.102, No.B3, pp.5005-5017.
    [28]. Baker, H.C., A.H. Dodson, N.T. Penna, et al., Ground-based GPS water vapour estimation: potential for meteorological forecasting, Journal of Atmospheric and Solar-Terrestrial Physics, 2001, Vol.63, pp.1331-1341.
    [29]. Gaikovich, K.P., M.I. Sumin, Reconstruction of the altitude profile of the refractive index, pressure, and temperature of the atmosphere from observations of astronomical refraction, Izv. Atm. Oceanic Phys., 1986, Vol.22, pp.710-715.
    [30]. Lowry, A.R., C. Rocken, S.V. Sokolovskiy, et al, Vertical profiling of atmospheric refractivity from ground-based GPS, Radio Sci., Vol.37, No.3, doi10.1029/2000RS002565, 2002.
    [31].王宁.大气剖面的被动微波遥感技术研究.中国电波传播研究所硕士论文,2009年.
    [32].王波.地基微波辐射计大气环境遥感研究.中国海洋大学硕士论文,2007年.
    [33]. Westwater, E. R., and M. T. Decker. Application of Statistical Inversion to Ground-Based Microwave Remote Sensing of Temperature and Water Vapor Profiles. In Inversion Methods in Atmospheric Remote Sounding (A. Decker, ed.), Academic Press, New York, 1977, pp.395-428.
    [34]. Churnside, J.H., T.A. Stermitz, and J.A. Schroeder, Temperature Profiling with Neural Network Inversion of Microwave Radiometer Data, J. Atmos. Oceanic Technol., 1994, No.11, pp.105-109.
    [35].赵振维,王宁.微波辐射计反演大气折射率剖面技术研究.电波科学学报,2010年,Vol.25, No.1, pp.132-137.
    [36]. Press F., Earth models obtained by Monte-Carlo inversion, J. Geophys. Res., 1968, Vol.73, No.16, pp.5223-5234.
    [37]. Press F., An introduction to Earth structure and seismotectonics, Proceedings of the International School of Physics Enrico Fermi, Course L, Mantle and Core in Planetary Physics, Coulomb, J. and Caputo M.(editors), Academic Press, 1971.
    [38]. Smith W. L., Iterative solution of the radiative transfer equation for the temperature and absorbing gas profile of an atmosphere, Applied Optics, 1970, 9, pp.1993-1999.
    [39]. Conrath B. J. Vertical resolution temperature files obtained from remote radiation measurement. Journal of the Atmospheric Science, 1972, Vol.29, pp.1262-1271.
    [40].林黎虹、张健、石耀霖.利用遗传算法反演大气的垂直温度结构.中国科学院研究生院学报,1997,Vol.14, No.1,pp.43-50.
    [41].张玉生,赵振维,康士峰,林乐科等.基于优化算法的辐射计折射率剖面反演.装备环境工程,2008年,5(1):53-55.
    [42]. Scheling, I.C., C.R. Burows, E.B. Ferrell, Ultra short wave propagation, Proc. I.R.E., 1933, Vol.21, No.3, pp.427-463.
    [43]. Rec.ITU-R P.834-6, Effects of tropospheric refraction on radiowave propagation, 2007.
    [44]. Bean, B.R., G.D. Thayer, Models of the atmospheric radio refractive index, Proc. I.I.E., 1959, pp.705-755.
    [45]. Bean, B.R., Double model of radio wave refractivity in the troposphere, Beitr. Phys. Atmosph., 1961, Vol.34, No.1-2, pp.81-91.
    [46]. Hopfield, H.S., Two-quartic tropospheric refractivity profile for correcting satellite data. Journal of Geophysical Research, 1969, Vol. 74, No. 18, pp.4487-4499.
    [47].陈祥明,赵振维,林乐科等.对流层折射率剖面模型研究.电波科学学报,2007年,22卷增刊,pp.178-181.
    [48].盛裴轩,毛节泰,李建国等.大气物理学.北京:北京大学出版社,2003年.
    [49].黄捷.电波大气折射误差修正.北京:国防工业出版社,1999年.
    [50].顾钧禧主编.大气科学辞典.北京:气象出版社,1999年.
    [51].雄年禄,唐存琛,李行健,电离层物理概论,武汉大学出版社,1999年.
    [52].谢益溪,J.拉菲涅特,J.P.蒙等.电波传播——超短波?微波?毫米波.北京:电子工业出版社,1990年.
    [53]. Smith, E.K., S. Weintraub, The constants in the equation for atmospheric refractive index at radio frequencies, Proc. IRE, 1953, Vol.41, pp.1035-1037.
    [54]. Thayer, G.D., A modified equation for radio refractivity of air, Radio Sci., 1974, Vol.9, No.10, pp.803-807.
    [55]. Owens, J.S., Optical refractive index of air: dependence on pressure, temperature, and composition, Appl. Opt., 1967, 6, pp.51-58.
    [56]. Davis, J.L., T.A. Herring, I.I. Shapiro, et al., Geodesy by radio interferometry : Effects of atmospheric modeling errors on estimates of baseline length , Radio Sci., 1985, 20 , pp.1593~1607.
    [57].陈祥明.大气折射率剖面模型与电波折射误差修正方法研究.中国海洋大学硕士论文,2008年.
    [58]. Born, M., and Wolf, E., Principles of Optics, New York: Pergamon Press, 1964.
    [59].李成才,毛节泰.地基GPS遥感大气水汽总量中的―静力延迟‖和―湿延迟‖.大气科学,2004年,Vol.28, No.5, pp.795-800.
    [60]. Saastamoinen J., Contribution to the theory of atmospheric refraction. Bulletin Geodesique, 1973, 107, pp.13-34.
    [61]. MOPS, Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment, Document No. RTCA/DO-229A, June 8, 1998, prepared by SC-159.
    [62]. Elgered, G., J.L. Davis, T.A. Herring, et al., Geodesy by radio interferometry: water vapor radiometry for estimation of the wet delay. J. Geophys Res., 1991, Vol.96, pp.6541-6555.
    [63]. Ifadis, I., The atmospheric delay of radio waves: modeling the elevation dependence on a global scale, Technical Report no. 38L, School of Electrical and Computer Engineering, Chalmers University of Technology, G?teborg, Sweden, 1986.
    [64]. Mendes, V. B., R. B. Langley, Tropospheric zenith delay prediction accuracy for airborne GPS high-precision positioning, Proceedings of The Institute of Navigation 54th Annual Meeting, Denver, CO, U.S.A., 1-3 June 1998, pp. 337-347.
    [65]. Goad, C. C., L. Goodman, A Modified Hopfield Tropospheric Refraction Correction Model., in Proceedings of the Fall Annual Meeting of the American Geophysical Union, San Francisco, California, 1974, December 13.75.
    [66]. Spilker, J. J., Tropospheric Effects on GPS, in: Spilker and Parkinson (eds.), GPS Theory and Applications; Vol. I, Progress in Astronautics and Aeronautics, 1996, Vol.163, pp. 517-546.
    [67]. Black, H.D., A. Eisner, Correcting satellite Doppler data for tropospheric effects, Journal of Geophysical Research, 1984, Vol. 89, No.D2, pp. 2616-2626.
    [68]. Marini, J.W., Correction of satellite tracking data for an arbitrary tropospheric profile, Radio Science, 1972, 7, pp.223–231.
    [69]. Chao, C.C., The tropospheric calibration model for mariner mars 1971, Tech. rep., 32-1587, JPL Pasadena, 1974.
    [70]. Davis, J.L., T.A. Herring, I.I. Shapiro, A.E.E. Rogers, and G. Elgered, Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Science, 1985, 20, pp.1593–1607.
    [71]. Herring, T.A., Modeling atmospheric delays in the analysis of space geodetic data, in Refraction oftransatmospheric signals in geodesy, 1992, pp. 157–164.
    [72]. Niell, A.E., Global mapping functions for the atmosphere delay at radio wavelengths, Journal of Geophysical Research (B), 1996, 101, pp.3227–3246.
    [73]. J. Boehm, J. Kouba, H. Schuh, Forecast Vienna Mapping Functions 1 for real-time analysis of space geodetic observations. J Geod , 2006, DOI 10.1007/s00190-008-0216-y.
    [74]. Guo, J.M., R.B. Langley, a new tropospheric propagation delay mapping function for Elevation Angles Down to 2o[EB/OL]. http://gauss.gge.unb.ca/papers.pdf/ iongpsgnss2003. guo.pdf.
    [75].叶世榕.GPS非差相位精密单点定位理论与实现.武汉大学博士论文,2002.
    [76].李天文.GPS原理与应用.北京,科学出版社,2006年.
    [77]. ION, Global Positioning System,Vol. I, Papers published in NAVIGATION, 1980, ISBN: 0-936406-00-3.
    [78]. ICD-GPS-200, Interface control document, NAVSTAR GPS Space Segment, 1991, July 3.
    [79]. Kouba, J., Relativistic Time Transformations in GPS, GPS Solutions, 2002, Vol. 5, No 4, pp.1-9.
    [80].张小红.动态精密单点定位(PPP)的精度分析.全球定位系统,2006年,No.1, pp.7-11.
    [81]. Vries, J. d., Validation and Error Modelling of GPS Tropospheric Slant Delays, Netherlands, Available as TOUGH project deliverable no D37, 2006, at http://tough.dmi.dk.
    [82]. Born, M. and Wolf, E., Principles of Optics: electromagnetic theory of propagation, interference, and diffraction of light, Pergamon, New York,1964, pp. 856.
    [83]. Gandin,L.S.,Objective Analysis of meteorological Fields,242pp.,Isr. Program for Sci. Transl. Jerusalem, 1965.
    [84]. Kolosov, M.A.M, Pavel’yev, A. G., Radio transillumination of the atmosphere by artificial and natural sources, J. Comnun. Technol. Electron., 1982, Vol.27, No.12, pp.30-37.
    [85]. Vorob’ev, V. V. and Krasil’nikova, T. G., Estimation of the accuracy of atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system, Phys. of Atmos. and Oceans, 1994, Vol.29, pp.602–609.
    [86].徐国明.反演理论及其应用.北京:地震出版社,2003.
    [87].陈宝林.最优化理论与算法.北京:清华大学出版社,1989年.
    [88]. Rec. ITU-R P.835-3, Reference standard atmospheres, 1999.
    [89]. Kirchengast, G., J. Hafner, and W.Poetzi, The CIRA86a Q_UoG model, An extension of the CIRA-86 monthly tables including humidity tables and a Fortran95 global moist air climatology model, IMG/UoG Technical Report for ESA/ESTEC, No.8, 1999.
    [90].蔺发军,刘成国,成思等.海上大气波导的统计分析.电波科学学报,2005年,Vol.20, No.1, pp.64-68.
    [91].王小平,曹立明.遗传算法—理论、应用与软件实现.西安:西安交通大学出版社,2002年.
    [92].雷英杰,张善文,李续武等.遗传算法工具箱及应用.西安:西安电子科技大学出版社,2005年.
    [93].刘希玉,刘弘.人工神经网络与微粒群优化.北京:北京邮电大学出版社,2008年.
    [94].葛哲学,孙志强.神经网络理论与MATLABR2007实现.北京:电子工业出版社,2007年.
    [95].周开利,康耀红.神经网络模型及其MATLAB仿真程序设计.北京:清华大学出版社,2005年.
    [96]. Vapnik, V.N., Estimate ion of Dependencies Based on Empirical Data, Berlin: Springer-Verlag, 1982.
    [97]. Vapnik, V.N., The Nature of Statistical Learning Theory, Springer-Verlag, 1995.
    [98].魏茂安,马海等.基于支持向量机的虚拟测井声波速度重构技术研究.石油钻探技术,2006, Vol.34, No.6, pp. 83-87.
    [99].邬世英,王延江,李莉,等.支持向量机在重震联合反演中的应用研究.地球物理学进展,2007年,Vol.22, No.5, pp.1611-1616.
    [100]. Suykens, J.A.K., J. Vandewalle, Least Squares Support Vector Machine Classifiers, Neural Processing Letters, 1999, Vol.9, No.3, pp.293-300.
    [101]. Suykens, J.A.K., J. Vandewalle, Recurrent Least Squares Support Vector Machines, IEEE Transactions onCircuits and Systems, 2000, Vol.47, No.7, pp.1109~1114.
    [102].贾嵘,王小宇,蔡振华,等.最小二乘支持向量机回归的HHT在水轮发电机组故障诊断中的应用.中国电机工程学报,2006年,Vol.26, No.22, pp.128-133.
    [103]. Tipping, M.E., Sparse Bayesian Learning and the Relevance Vector Machines, Journal of Machine Learning Research 211-244, 2001.
    [104].班盼盼.基于神经网络和支持向量机的电离层foF2短期预报技术研究.电子科学研究院硕士论文,2009年.
    [105]. V. N. Vapnik, S. Golowich, A. Smola. Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems, 1997, 9: 281-287.
    [106].盛骤,谢式千.潘承毅.概率论与数理统计.浙江大学,高等教育出版社,1989.
    [107].李水根,吴纪桃.分形与小波.北京:科学出版社,2002年.
    [108].刘明贵,岳向红,杨永波等.基于Sym小波和BP神经网络的基桩缺陷智能化识别.岩石力学与工程学报,2007年,Vol.26, Supp.1, pp.3484-3488.
    [109]. Rec.ITU-R P.834-6. Effects of tropospheric refraction on radiowave propagation. 2007.
    [110].刘玉梅,陈金松,赵振维等.我国不同地区卫星测控对流层折射误差分析.测控年会,2007年,pp.139-143.
    [111].黄捷.电波大气折射误差修正.北京:国防工业出版社,1999.
    [112].肖景明,王元坤.电波传播工程计算.西安:西安电子科技大学出版社,1989年.
    [113].焦培南,张忠治.雷达环境与电波传播特性.北京:电子工业出版社,2007年.
    [114].江长荫,张明高,焦培南等.雷达电波传播折射与衰减手册.北京:国防科工委军标出版发行部,1997年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700